Supplementary Materials

1. NMR Assignment Schemes

Scheme 1. ${ }^{1} \mathrm{H}$-NMR assignments for model Fe(II) complexes $\mathbf{5 a}$ and $\mathbf{5 b}$.

Scheme 2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ assignments for $\mathrm{Fe}(\mathrm{II})$ cylinders $\mathbf{6 a - f}$ and $\mathbf{8}$.

2. NMR SpectraFigure S1. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{5 a}$.

Figure S2. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of a) the ligand 4 a and b) the Fe(II) model complex 5a.

Figure S3. Partial ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of the Fe (II) model complex 5a.

$\left.\begin{array}{llllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ \delta(\mathrm{ppm})\end{array} & 100 & 90 & 80 & 70 & 60 & 50 \\ \hline(\mathrm{pm}\end{array}\right)$
Figure S4. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$) of $\mathbf{5 b}$.

Figure S5. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$) of a) the ligand $\mathbf{4 b}$ and b) the Fe(II) model complex 5b.
a)

Figure S6. Partial ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of the $\mathrm{Fe}(\mathrm{II})$ model complex $\mathbf{5 b}$.

N8
$\stackrel{y y}{m}$
$\stackrel{y}{m}$

Figure S7. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{6 a}$.

Figure S8. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$) of a) the ligand 3a and b) the Fe(II) cylinder $\mathbf{6 a}$.

Figure S9. Partial ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{6 a}$.

Figure S10. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$) of $\mathbf{6 b}$.

nin

Figure S11. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$) of a) the ligand 3b and b) the Fe(II) cylinder $\mathbf{6 b}$.

Figure S12. Partial ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{6 b}$.

Figure S13. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{6 c}$.

Figure S14. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$) of a) the ligand $\mathbf{3 c}$ and b) the Fe(II) cylinder $\mathbf{6 c}$.

Figure S15. Partial ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{6 c}$.

Figure S16. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{6 d}$.

Figure S17. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of a) the ligand 3d and b) the $\mathrm{Fe}(\mathrm{II})$ cylinder 6d.

Figure S18. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{6 e}$.

Figure S19．Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of a）the ligand 3e and b）the Fe（II）cylinder $\mathbf{6 e}$ ．

Figure S20．Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{6 f}$ ．

m挚星等

Figure S21. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of a) the ligand 3 f and b) the mixture meso- and rac-Fe(II) cylinder $\mathbf{6 f}$.

Figure S22. Partial ${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) of $\mathbf{6 f}$.

$\begin{aligned} & \ddot{o} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\sim}{1} \end{aligned}$	$\stackrel{N}{N}$		$\begin{aligned} & \text { M } \\ & \stackrel{\text { j}}{i} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\omega}{m} \\ & \underset{\sim}{n} \end{aligned}$		$\stackrel{\text { ®on }}{\substack{\mathrm{y}}}$	N

Figure S23. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{8}$.

Figure S24. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of a) the ligand 7 and b) the Fe(II) cylinder 8.

Figure S25. Partial ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of $\mathbf{8}$.

3. ${ }^{1} \mathrm{H}$ DOSY NMR Spectra

Figure S26. DOSY NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) recorded for the ligand 3a (top) and the Fe (II) cylinder $\mathbf{6 a}$ (bottom).

Figure S26. Cont.

Figure S27. DOSY NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) recorded for the ligand 3d (top) and the Fe(II) cylinder 6d (bottom).

Figure S27. Cont.

Figure S28. DOSY NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) recorded for the ligand 3e (top) and the Fe (II) cylinder $\mathbf{6 e}$ (bottom).

Figure S28. Cont.

Figure S29. DOSY NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) recorded for the ligand $\mathbf{3 f}$ (top) and the Fe(II) cylinder $\mathbf{6 f}$ (bottom).

Figure S30. DOSY NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) recorded for the ligand 7 (top) and the Fe(II) cylinder 8 (bottom).

4. X-ray Structure ViewsFigure S31. (a) A labelled ORTEP diagram and (b) space filling
representation of the cation of $\mathbf{6 b}$. The thermal ellipsoids are shown at the 50% probability level. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{6 b}$; Fe1-Fe1 12.182, Fe-N1 1.998 (3), Fe-N2 1.923(3); N1-Fe-N2 81.19 (13).
(a)

(b)

Figure S32. (a) A labelled ORTEP diagram and (b) space filling representation of the cation of $\mathbf{6 c}$. The thermal ellipsoids are shown at the 50% probability level. Selected bond lengths $\left(\AA\right.$) and angles $\left({ }^{\circ}\right)$ for $\mathbf{6 c}$; Fe1-Fe2 12.234, Fel-N1 2.001 (4), Fe1-N2 1.944(3); N1-Fe-N2 81.05(15).
a)

b)

Figure S33. (a) A labelled ORTEP diagram and (b) space filling representation of the cation of $\mathbf{6 f}$. The thermal ellipsoids are shown at the 50% probability level. Selected bond lengths $(\AA ̊)$ and angles $\left({ }^{\circ}\right)$ for $\mathbf{6 f}$; Fe1-Fe 214.579 , Fe1-N1 1.938, Fe1-N6 2.009; N1-Fe1N6 81.30.
a)

b)

Figure S34. (a) A labelled ORTEP diagram and (b) space filling representation of the cation of 8. The thermal ellipsoids are shown at the 50% probability level. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{8}$; Fe1-Fe 2 11.246, Fe1-N1 1.994(4), Fe1-N3 2.010(4); N1-Fe-N3 80.65(15).
a)

b)

5. X-ray Crystal Data Tables

Table S1. X-Ray Crystal Data Table for 5a

Identification code	5a (CCDC 931620)	
Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{FeN}_{12} \mathrm{O}_{0.17}$	
Formula weight	938.95	
Temperature	89(2) K	
Wavelength	0.71073 A	
Crystal system	Trigonal	
Space group	R-3	
Unit cell dimensions	$a=14.6715(18) \AA$	$\alpha=90^{\circ}$.
	$b=14.6715(18) \AA$	$\beta=90^{\circ}$.
	$c=37.495(5) \AA$	$\gamma=120^{\circ}$.
Volume	6989.6(16) \AA^{3}	
Z	6	
Density (calculated)	$1.338 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.400 \mathrm{~mm}^{-1}$	
F(000)	2876	
Crystal size	$0.38 \times 0.30 \times 0.16 \mathrm{~mm}^{3}$	
Theta range for data collection	2.70 to 26.39°	
Index ranges	$-18<=\mathrm{h}<=18,-18<=\mathrm{k}<=18,-46<=\mathrm{l}<=46$	
Reflections collected	59973	
Independent reflections	$3183[\mathrm{R}(\mathrm{int})=0.0680]$	
Completeness to theta $=26.39^{\circ}$	99.7\%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9388 and 0.8628	
Refinement method	Full-matrix least-squares on F^{2}	
Data/restraints/parameters	3183/0/213	
Goodness-of-fit on F^{2}	1.084	
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$R_{1}=0.0789, \mathrm{w} R_{2}=0.2315$	
R indices (all data)	$R_{1}=0.0881, \mathrm{w} R_{2}=0.2382$	
Largest diff. peak and hole	1.427 and -0.477 e. \AA^{-3}	

In the case of $\mathbf{5 a}, \mathrm{a}_{2} \mathrm{H}_{2} \mathrm{O}$ molecule sitting on a special position was refined isotropically and had its site occupancy fixed at 0.1111 . $\mathrm{A} \mathrm{BF}_{4}{ }^{-}$anion had its site occupancy fixed at 0.6666 in order to balance the charge of the cation.

Table S2. X-Ray Crystal Data Table for 5b.

Identification code	5b (CCDC 931617)	
Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{FeN}_{12}$	
Formula weight	896.22	
Temperature	89(2) K	
Wavelength	0.71073 A	
Crystal system	Triclinic	
Space group	$P-1$	
Unit cell dimensions	$a=8.7106(6) \AA$	$\alpha=101.395(4)^{\circ}$.
	$b=13.1870(10) \AA$	$\beta=100.194(4)^{\circ}$.
	$c=22.8993(18) \AA$	$\gamma=97.669(4)^{\circ}$.
Volume	2498.8(3) \AA^{3}	
Z	2	
Density (calculated)	$1.191 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.370 \mathrm{~mm}^{-1}$	
F(000)	912	
Crystal size	$0.85 \times 0.33 \times 0.10 \mathrm{~mm}^{3}$	
Theta range for data collection	0.93 to 25.50°	
Index ranges	$-10<=\mathrm{h}<=9,-15<=\mathrm{k}<=15,-27<=1<=27$	
Reflections collected	37471	
Independent reflections	$8971[\mathrm{R}(\mathrm{int})=0.0715]$	
Completeness to theta $=25.50^{\circ}$	96.5\%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7447 and 0.5809	
Refinement method	Full-matrix least-squares on F^{2}	
Data/restraints/parameters	8971/0/559	
Goodness-of-fit on F^{2}	1.093	
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$R_{1}=0.0945, \mathrm{w} R_{2}=0.2581$	
R indices (all data)	$R_{1}=0.1083, \mathrm{w} R_{2}=0.2680$	
Largest diff. peak and hole	1.143 and $-0.818 \mathrm{e} . \AA^{-3}$	

Following the location of the atoms of $\mathbf{5 b}$ in the $\Delta \mathrm{F}$ map, there was still residual electron density present within channels through the structure. Disappointingly, this residual electron density could not be satisfactorily modeled. The SQUEEZE routine of PLATON was employed to treat the regions of diffuse solvent. The number of electrons located was 155 per unit cell and this was assigned to a molecule of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $3 / 2$ molecules of $\mathrm{CH}_{3} \mathrm{CN}$ per complex.

Table S3. X-Ray Crystal Data Table for 6 b .

Identification code	6b (CCDC 931619)	
Empirical formula	$\mathrm{C}_{68} \mathrm{H}_{88} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{24} \mathrm{O}$	
Formula weight	1716.56	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/m	
Unit cell dimensions	$a=13.004(3) \AA$	$\alpha=90^{\circ}$.
	$b=23.348(5) \AA$	$\beta=92.558(12)^{\circ}$.
	$c=14.674(3) \AA$	$\gamma=90^{\circ}$.
Volume	$4450.8(16) \AA^{3}$	
Z	2	
Density (calculated)	$1.281 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.412 \mathrm{~mm}^{-1}$	
F(000)	1776	
Crystal size	$0.54 \times 0.41 \times 0.15 \mathrm{~mm}^{3}$	
Theta range for data collection	1.39 to 25.28°	
Index ranges	$-15<=\mathrm{h}<=15,-27<=\mathrm{k}<=27,-17<=\mathrm{l}<=17$	
Reflections collected	77349	
Independent reflections	$8030[\mathrm{R}(\mathrm{int})=0.2002]$	
Completeness to theta $=25.28^{\circ}$	96.9\%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9408 and 0.8081	
Refinement method	Full-matrix least-squares on F^{2}	
Data/restraints/parameters	8030/0/533	
Goodness-of-fit on F^{2}	0.852	
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$R_{1}=0.0738, \mathrm{w} R_{2}=0.2132$	
R indices (all data)	$R_{1}=0.1023, \mathrm{w} R_{2}=0.2336$	
Largest diff. peak and hole	1.276 and $-1.218 \mathrm{e} . \AA^{-3}$	

Similar issues, to those observed for $\mathbf{5 b}$, were encountered in the case of $\mathbf{6 b}$. The SQUEEZE routine of PLATON was applied and this located 467 electrons per unit cell. These were assigned to 10 $\mathrm{CH}_{3} \mathrm{CN}$ molecules per complex.

Table S4. X-Ray Crystal Data Table for 6 c .

Identification code	6c (CCDC 931618)	
Empirical formula	$\mathrm{C}_{63} \mathrm{H}_{51} \mathrm{Fe}_{2} \mathrm{~N}_{27}$	
Formula weight	1298.01	
Temperature	89(2) K	
Wavelength	0.71073 A	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	$a=41.770(4) \AA$	$\alpha=90^{\circ}$.
	$b=20.297(2) \AA$	$\beta=95.264(4)^{\circ}$.
	$c=18.751(2) \AA$	$\gamma=90^{\circ}$.
Volume	15830(3) \AA^{3}	
Z	8	
Density (calculated)	$1.089 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.418 \mathrm{~mm}^{-1}$	
F(000)	6672	
Crystal size	$0.23 \times 0.19 \times 0.12 \mathrm{~mm}^{3}$	
Theta range for data collection	0.98 to 24.85°	
Index ranges	$-49<=\mathrm{h}<=42,-22<=\mathrm{k}<=20,-15<=1<=22$	
Reflections collected	22939	
Independent reflections	$9733[\mathrm{R}(\mathrm{int})=0.0410]$	
Completeness to theta $=24.85^{\circ}$	71.1\%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9729 and 0.6874	
Refinement method	Full-matrix least-squares on F^{2}	
Data/restraints/parameters	9733/48/829	
Goodness-of-fit on F^{2}	1.056	
Final R indices [$[>2 \operatorname{sigma}(\mathrm{I})]$	$R_{1}=0.0610, \mathrm{w} R_{2}=0.1721$	
R indices (all data)	$R_{1}=0.0805, \mathrm{w} R_{2}=0.1841$	
Largest diff. peak and hole	0.748 and -0.346 e..$^{-3}$	

The crystals of $\mathbf{6 c}$ were small and weakly diffracting resulting in low completeness (71\%). A SIMU restraint was applied to various atoms in the ligand namely $\mathrm{C} 1, \mathrm{C} 2$; $\mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 8, \mathrm{~N} 5 ; \mathrm{C} 16, \mathrm{C} 17, \mathrm{C} 15$; N4,C8,N5,C7. Additionally, the SQUEEZE procedure was employed to treat regions of diffuse solvent which could not be sensibly modelled, 2003 electrons per unit cell were located and this was assigned to $4 \mathrm{BF}_{4}$ and $4 \mathrm{CH}_{3} \mathrm{CN}$ molecules per complex.

Table S5. X-Ray Crystal Data Table for 6 f.

Identification code	6f (CCDC 931616)	
Empirical formula	$\mathrm{C}_{45.50} \mathrm{H}_{37.50} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{FeN}_{14.50}$	
Formula weight	1016.87	
Temperature	100(2) K	
Wavelength	0.71080 A	
Crystal system	Triclinic	
Space group	$P-1$	
Unit cell dimensions	$a=15.815(3) \AA$	$\alpha=93.71(3)^{\circ}$.
	$b=16.813(3) \AA$	$\beta=100.45(3)^{\circ}$.
	$c=18.505(4) \AA$	$\gamma=93.53(3)^{\circ}$.
Volume	4815.1(17) \AA^{3}	
Z	4	
Density (calculated)	$1.403 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.394 \mathrm{~mm}^{-1}$	
F(000)	2080	
Crystal size	$0.1 \times 0.1 \times 0.1 \mathrm{~mm}^{3}$	
Theta range for data collection	1.31 to 26.00°	
Index ranges	$-18<=\mathrm{h}<=18,-20<=\mathrm{k}<=20,-22<=1<=22$	
Reflections collected	63141	
Independent reflections	$17236[\mathrm{R}(\mathrm{int})=0.0489]$	
Completeness to theta $=26.00^{\circ}$	91.0\%	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F^{2}	
Data/restraints/parameters	17236/18/1284	
Goodness-of-fit on F^{2}	1.070	
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})]$	$R_{1}=0.0930, \mathrm{w} R_{2}=0.2782$	
R indices (all data)	$R_{1}=0.1071, \mathrm{w} R_{2}=0.2884$	
Largest diff. peak and hole	1.092 and -0.661 e..$^{-3}$	

In case of structure $\mathbf{6 f} \mathrm{CH}_{3} \mathrm{CN}$ carbon atoms $\mathrm{C} 10, \mathrm{C} 11$ and C 158 when refined anisotropically had anisotropic displacement parameters (ADPs) uniaxially elongated. An ISOR command was employed to restrain the ADPs of these atoms.

Table S6. X-Ray Crystal Data Table for 8.

Identification code	8 (CCDC 931621)	
Empirical formula	$\mathrm{C}_{77} \mathrm{H}_{63} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{13} \mathrm{O}_{0.54}$	
Formula weight	1637.98	
Temperature	90(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	$a=22.372(5) \AA$	$\alpha=90^{\circ}$.
	$b=13.462(2) \AA$	$\beta=107.148(7)^{\circ}$.
	$c=24.944(5) \AA$	$\gamma=90^{\circ}$.
Volume	7179(3) \AA^{3}	
Z	4	
Density (calculated)	$1.516 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.503 \mathrm{~mm}^{-1}$	
F(000)	3345.6	
Crystal size	$0.67 \times 0.30 \times 0.07 \mathrm{~mm}^{3}$	
Theta range for data collection	1.08 to $24.73{ }^{\circ}$	
Index ranges	$-26<=\mathrm{h}<=25,0<=\mathrm{k}<=15,0<=1<=29$	
Reflections collected	12078	
Independent reflections	$12078[\mathrm{R}(\mathrm{int})=0.0000]$	
Completeness to theta $=24.73{ }^{\circ}$	98.5\%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7451 and 0.6945	
Refinement method	Full-matrix least-squares on F^{2}	
Data/restraints/parameters	12078/0/1075	
Goodness-of-fit on F^{2}	1.041	
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$R_{1}=0.0616, \mathrm{w} R_{2}=0.1424$	
R indices (all data)	$R_{1}=0.1014, \mathrm{w} R_{2}=0.1699$	
Largest diff. peak and hole	1.350 and $-0.529 \mathrm{e} . \AA^{-3}$	

In the structure $\mathbf{8}$ two of the BF_{4} ions showed random disorder about a threefold axis. For the anion containing B1 the occupancy of the major component for F1, F3, F4 was 0.52 and for the anion containing B3 the occupancy of the major component for F5, F6, F8 was 0.67 . A water molecule was assigned partial site occupancy of 0.54 .

6. Overlaid X-ray Crystal Structures

Figure S35. Overlaid X-ray structures of Fe(II) cylinders $\mathbf{6 b}$ (solid lines) and $\mathbf{6 c}$ (dotted lines).

Figure S36. Overlaid X-ray structures of Fe(II) cylinders 1 (solid lines) and $\mathbf{8}$ (dotted lines).

Figure S37. Overlaid X-ray structures of Fe(II) cylinders 8 (solid lines) and $\mathbf{6 f}$ (dotted lines).

7. Histidine Competition ${ }^{1}$ H-NMR Experiments

Figure S38. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of a) 3a in $\mathrm{CD}_{3} \mathrm{CN} / \mathrm{D}_{2} \mathrm{O}(97: 3)$ b) $\mathbf{6 a}$ in $\mathrm{CD}_{3} \mathrm{CN} / \mathrm{D}_{2} \mathrm{O}$ (97:3) and c) $\mathbf{6 a}$ after the addition of histidine in $\mathrm{CD}_{3} \mathrm{CN} / \mathrm{D}_{2} \mathrm{O}$ (97:3).

8. UV-Vis Spectra

Figure S39. UV-Vis spectra $\left(\mathrm{CH}_{3} \mathrm{CN}, 10^{-5} \mathrm{M}\right)$ of $\mathrm{Fe}(\mathrm{II})$ model complexes $\mathbf{5 a}$ and $\mathbf{5 b}$.

Figure S40. UV-Vis spectra $\left(10^{-4} \mathrm{M}\right)$ of the Fe(II) cylinder $\mathbf{6 a}$ in acetonitrile and DMSO.

Figure S41. Photograph of the Fe (II) cylinder $\mathbf{6 a}$ obtained at $10^{-4} \mathrm{M}$ concentrations in acetonitrile (left) and DMSO (right).

Figure S42. Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra ($500 \mathrm{MHz}, d_{6}$-DMSO, 298 K) of a) the ligand 3a and b) the $\mathrm{Fe}(\mathrm{II})$ cylinder $\mathbf{6 a}$.

Figure S43. UV-Vis spectra $\left(\mathrm{CH}_{3} \mathrm{CN}, 10^{-4} \mathrm{M}\right)$ of the $\mathrm{Fe}(\mathrm{II})$ cylinder $\mathbf{6 a}$ before and after the addition of histidine.

Figure S44. Photograph of the $\mathrm{Fe}(\mathrm{II})$ cylinder $\mathbf{6 a}$ obtained at $10^{-4} \mathrm{M}$ concentrations before (left) and after the addition of histidine (right) in acetonitrile.

Figure S45. UV-Vis spectra $\left(10^{-4} \mathrm{M}\right)$ of the Fe (II) cylinder $\mathbf{8}$ in acetonitrile and DMSO.

Figure S46. Photograph of the $\mathrm{Fe}(\mathrm{II})$ cylinder $\mathbf{8}$ obtained at $10^{-4} \mathrm{M}$ concentrations in acetonitrile (left) and DMSO (right).

Figure S47. UV-Vis spectra $\left(\mathrm{CH}_{3} \mathrm{CN}, 10^{-4} \mathrm{M}\right)$ of the $\mathrm{Fe}(\mathrm{II})$ cylinder $\mathbf{8}$ before and after the addition of histidine.

Figure S48. Photograph of the Fe(II) cylinder $\mathbf{8}$ obtained at $10^{-4} \mathrm{M}$ concentrations before (left) and after (right) the addition of histidine in acetonitrile.

9. Disc Diffusion Assay

Figure S49. Disc diffusion assay showing the effect of DMSO, Amphotericin-B (100 nmol control), the ligands ($\mathbf{3 a}-\mathbf{d}, \mathbf{4 a}, 100 \mathrm{nmol}$) and the $\mathrm{Fe}(\mathrm{II})$ complexes (5a, $\mathbf{6 a - d}, 100 \mathrm{nmol})$ on S. cervisiae .

