Supplementary Materials

1. NMR Assignment Schemes

Scheme 1. ¹H-NMR assignments for model Fe(II) complexes 5a and 5b.

b

Scheme 2. ¹H-NMR assignments for Fe(II) cylinders 6a–f and 8.

/2

Figure S2. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand 4a and b) the Fe(II) model complex 5a.

Figure S3. Partial ¹³C-NMR (125 MHz, CD₃CN, 298 K) of the Fe(II) model complex 5a.

Figure S4. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of 5b.

Figure S5. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand **4b** and b) the Fe(II) model complex **5b**.

Figure S6. Partial ¹³C-NMR (125 MHz, CD₃CN, 298 K) of the Fe(II) model complex 5b.

Figure S7. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of 6a.

Figure S8. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand **3a** and b) the Fe(II) cylinder **6a**.

Figure S9. Partial ¹³C-NMR (125 MHz, CD₃CN, 298 K) of 6a.

Figure S11. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand **3b** and b) the Fe(II) cylinder **6b**.

Figure S13. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of 6c.

Figure S14. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand 3c and b) the Fe(II) cylinder 6c.

Figure S15. Partial ¹³C-NMR (125 MHz, CD₃CN, 298 K) of 6c.

Figure S16. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of 6d.

Figure S17. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand **3d** and b) the Fe(II) cylinder **6d**.

Figure S19. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand **3e** and b) the Fe(II) cylinder **6e**.

Figure S20. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of 6f.

9.26	8.27 8.26 8.15 8.15 7.160 7.151 7.757 7.7557 7.7557 7.7557 7.7557 7.7557 7.7557 7.75577 7.75577 7.755777 7.75577777777	4.13 4.05 4.05
------	---	----------------------

Figure S21. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand **3f** and b) the mixture *meso-* and *rac-*Fe(II) cylinder **6f**.

Figure S23. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of **8**.

Figure S24. Partial ¹H-NMR (500 MHz, CD₃CN, 298 K) of a) the ligand 7 and b) the Fe(II) cylinder 8.


```
Figure S25. Partial <sup>13</sup>C-NMR (125 MHz, CD<sub>3</sub>CN, 298 K) of 8.
```

3.¹H DOSY NMR Spectra

Figure S26. DOSY NMR spectra (500 MHz, CD₃CN, 298 K) recorded for the ligand **3a** (top) and the Fe(II) cylinder **6a** (bottom).

Figure S27. DOSY NMR spectra (500 MHz, CD₃CN, 298 K) recorded for the ligand **3d** (top) and the Fe(II) cylinder **6d** (bottom).

Figure S28. DOSY NMR spectra (500 MHz, CD₃CN, 298 K) recorded for the ligand **3e** (top) and the Fe(II) cylinder **6e** (bottom).

Figure S27. Cont.

Figure S28. Cont.

Figure S29. DOSY NMR spectra (500 MHz, CD₃CN, 298 K) recorded for the ligand **3f** (top) and the Fe(II) cylinder **6f** (bottom).

Figure S30. DOSY NMR spectra (500 MHz, CD₃CN, 298 K) recorded for the ligand 7 (top) and the Fe(II) cylinder **8** (bottom).

4. X-ray Structure ViewsFigure S31. (a) A labelled ORTEP diagram and (b) space filling representation of the cation of 6b. The thermal ellipsoids are shown at the 50% probability level. Selected bond lengths (Å) and angles (°) for 6b; Fe1-Fe1 12.182, Fe-N1 1.998 (3), Fe-N2 1.923(3); N1-Fe-N2 81.19 (13).

(a)

(b)

Figure S32. (a) A labelled ORTEP diagram and (b) space filling representation of the cation of **6c**. The thermal ellipsoids are shown at the 50% probability level. Selected bond lengths (Å) and angles (°) for **6c**; Fe1-Fe2 12.234, Fe1-N1 2.001 (4), Fe1-N2 1.944(3); N1-Fe-N2 81.05(15).

a)

b)

Figure S33. (a) A labelled ORTEP diagram and (b) space filling representation of the cation of **6f**. The thermal ellipsoids are shown at the 50% probability level. Selected bond lengths (Å) and angles (°) for **6f**; Fe1-Fe 2 14.579, Fe1-N1 1.938, Fe1-N6 2.009; N1-Fe1-N6 81.30.

a)

b)

Figure S34. (a) A labelled ORTEP diagram and (b) space filling representation of the cation of **8**. The thermal ellipsoids are shown at the 50% probability level. Selected bond lengths (Å) and angles (°) for **8**; Fe1-Fe 2 11.246, Fe1-N1 1.994(4), Fe1-N3 2.010(4); N1-Fe-N3 80.65(15).

a)

b)

5. X-ray Crystal Data Tables

Identification code	5a (CCDC 931620)	
Empirical formula	$C_{42}H_{34}B_2F_8FeN_{12}O_{0.17}$	
Formula weight	938.95	
Temperature	89(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
Space group	<i>R</i> -3	
Unit cell dimensions	a = 14.6715(18) Å	$\alpha = 90^{\circ}$.
	b = 14.6715(18) Å	$\beta = 90^{\circ}$.
	c = 37.495(5) Å	$\gamma = 120^{\circ}$.
Volume	6989.6(16) Å ³	
Ζ	6	
Density (calculated)	1.338 Mg/m^3	
Absorption coefficient	0.400 mm^{-1}	
F(000)	2876	
Crystal size	$0.38\times0.30\times0.16\ mm^3$	
Theta range for data collection	2.70 to 26.39°	
Index ranges	-18<=h<=18, -18<=k<=18, -46<=l<=46	
Reflections collected	59973	
Independent reflections	3183 [R(int) = 0.0680]	
Completeness to theta = 26.39°	99.7%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission		
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	3183/0/213	
Goodness-of-fit on F ²	1.084	
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0789, wR_2 = 0.2315$	
R indices (all data)	$R_1 = 0.0881$, w $R_2 = 0.2382$	
Largest diff. peak and hole	1.427 and -0.477 e.Å ⁻³	

Table S1. X-Ray Crystal Data Table for 5a

In the case of **5a**, a H₂O molecule sitting on a special position was refined isotropically and had its site occupancy fixed at 0.1111. A BF_4^- anion had its site occupancy fixed at 0.6666 in order to balance the charge of the cation.

Identification code	5b (CCDC 931617)	
Empirical formula	$C_{39}H_{30}B_2F_8FeN_{12}$	
Formula weight	896.22	
Temperature	89(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 8.7106(6) Å	$\alpha = 101.395(4)^{\circ}$.
	b = 13.1870(10) Å	$\beta = 100.194(4)^{\circ}$.
	c = 22.8993(18) Å	$\gamma = 97.669(4)^{\circ}$.
Volume	2498.8(3) Å ³	
Ζ	2	
Density (calculated)	1.191 Mg/m^3	
Absorption coefficient	0.370 mm^{-1}	
F(000)	912	
Crystal size	$0.85\times0.33\times0.10\ mm^3$	
Theta range for data collection	0.93 to 25.50°	
Index ranges	-10<=h<=9, -15<=k<=15, -27<=l<=27	
Reflections collected	37471	
Independent reflections	8971 [R(int) = 0.0715]	
Completeness to theta = 25.50°	96.5%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7447 and 0.5809	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	8971/0/559	
Goodness-of-fit on F ²	1.093	
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0945, wR_2 = 0.2581$	
R indices (all data)	$R_1 = 0.1083, wR_2 = 0.2680$	
Largest diff. peak and hole	1.143 and -0.818 e.Å^{-3}	

Table S2. X-Ray Crystal Data Table for 5b.

Following the location of the atoms of **5b** in the ΔF map, there was still residual electron density present within channels through the structure. Disappointingly, this residual electron density could not be satisfactorily modeled. The SQUEEZE routine of PLATON was employed to treat the regions of diffuse solvent. The number of electrons located was 155 per unit cell and this was assigned to a molecule of CH₃CH₂OCH₂CH₃ and 3/2 molecules of CH₃CN per complex.

Identification code	6b (CCDC 931619)	
Empirical formula	$C_{68}H_{88}B_4F_{16}Fe_2N_{24}O$	
Formula weight	1716.56	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/m	
Unit cell dimensions	a = 13.004(3) Å	$\alpha = 90^{\circ}$.
	b = 23.348(5) Å	$\beta = 92.558(12)^{\circ}$.
	c = 14.674(3) Å	$\gamma = 90^{\circ}$.
Volume	4450.8(16) Å ³	
Ζ	2	
Density (calculated)	1.281 Mg/m^3	
Absorption coefficient	0.412 mm^{-1}	
F(000)	1776	
Crystal size	$0.54\times0.41\times0.15~mm^3$	
Theta range for data collection	1.39 to 25.28°	
Index ranges	-15<=h<=15, -27<=k<=27, -17<=l<=17	
Reflections collected	77349	
Independent reflections	8030 [R(int) = 0.2002]	
Completeness to theta = 25.28°	96.9%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9408 and 0.8081	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	8030/0/533	
Goodness-of-fit on F ²	0.852	
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0738$, w $R_2 = 0.2132$	
R indices (all data)	$R_1 = 0.1023, wR_2 = 0.2336$	
Largest diff. peak and hole	$1.276 \text{ and } -1.218 \text{ e.}\text{\AA}^{-3}$	

 Table S3. X-Ray Crystal Data Table for 6b.

Similar issues, to those observed for **5b**, were encountered in the case of **6b**. The SQUEEZE routine of PLATON was applied and this located 467 electrons per unit cell. These were assigned to 10 CH_3CN molecules per complex.

Identification code	6c (CCDC 931618)	
Empirical formula	$C_{63}H_{51}Fe_2N_{27}$	
Formula weight	1298.01	
Temperature	89(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 41.770(4) Å	$\alpha = 90^{\circ}$.
	b = 20.297(2) Å	$\beta = 95.264(4)^{\circ}$.
	c = 18.751(2) Å	$\gamma = 90^{\circ}$.
Volume	15830(3) Å ³	
Z	8	
Density (calculated)	1.089 Mg/m^3	
Absorption coefficient	0.418 mm^{-1}	
F(000)	6672	
Crystal size	$0.23\times0.19\times0.12~mm^3$	
Theta range for data collection	0.98 to 24.85°	
Index ranges	-49<=h<=42, -22<=k<=20, -15<=l<=22	
Reflections collected	22939	
Independent reflections	9733 [R(int) = 0.0410]	
Completeness to theta = 24.85°	71.1%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9729 and 0.6874	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	9733/48/829	
Goodness-of-fit on F ²	1.056	
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0610$, w $R_2 = 0.1721$	
R indices (all data)	$R_1 = 0.0805, wR_2 = 0.1841$	
Largest diff. peak and hole	0.748 and $-0.346 \text{ e.}\text{\AA}^{-3}$	

Table S4. X-Ray Crystal Data Table for 6c.

The crystals of **6c** were small and weakly diffracting resulting in low completeness (71%). A SIMU restraint was applied to various atoms in the ligand namely C1,C2; C9,C10,C8, N5; C16,C17,C15; N4,C8,N5,C7. Additionally, the SQUEEZE procedure was employed to treat regions of diffuse solvent which could not be sensibly modelled, 2003 electrons per unit cell were located and this was assigned to 4 BF₄ and 4 CH₃CN molecules per complex.

Identification code	6f (CCDC 931616)	
Empirical formula	$C_{45.50}H_{37.50}B_2F_8FeN_{14.50}$	
Formula weight	1016.87	
Temperature	100(2) K	
Wavelength	0.71080 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 15.815(3) Å	$\alpha = 93.71(3)^{\circ}$.
	b = 16.813(3) Å	$\beta = 100.45(3)^{\circ}$.
	c = 18.505(4) Å	$\gamma = 93.53(3)^{\circ}$.
Volume	4815.1(17) Å ³	
Ζ	4	
Density (calculated)	1.403 Mg/m^3	
Absorption coefficient	0.394 mm^{-1}	
F(000)	2080	
Crystal size	$0.1 \times 0.1 \times 0.1 \text{ mm}^3$	
Theta range for data collection	1.31 to 26.00°	
Index ranges	-18<=h<=18, -20<=k<=20, -22<=l<=22	
Reflections collected	63141	
Independent reflections	17236 [R(int) = 0.0489]	
Completeness to theta = 26.00°	91.0%	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	17236/18/1284	
Goodness-of-fit on F ²	1.070	
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0930, wR_2 = 0.2782$	
R indices (all data)	$R_1 = 0.1071, wR_2 = 0.2884$	
Largest diff. peak and hole	1.092 and $-0.661 \text{ e.}\text{\AA}^{-3}$	

Table S5. X-Ray Crystal Data Table for 6f.

In case of structure **6f** CH₃CN carbon atoms C10, C11 and C158 when refined anisotropically had anisotropic displacement parameters (ADPs) uniaxially elongated. An ISOR command was employed to restrain the ADPs of these atoms.

Identification code	8 (CCDC 931621)	
Empirical formula	$C_{77}H_{63}B_4F_{16}Fe_2N_{13}O_{0.54}$	
Formula weight	1637.98	
Temperature	90(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 22.372(5) Å	$\alpha = 90^{\circ}$.
	b = 13.462(2) Å	$\beta = 107.148(7)^{\circ}$.
	c = 24.944(5) Å	$\gamma = 90^{\circ}$.
Volume	7179(3) Å ³	
Ζ	4	
Density (calculated)	1.516 Mg/m^3	
Absorption coefficient	0.503 mm^{-1}	
F(000)	3345.6	
Crystal size	$0.67\times0.30\times0.07~mm^3$	
Theta range for data collection	1.08 to 24.73°	
Index ranges	-26<=h<=25, 0<=k<=15, 0<=l<=29	
Reflections collected	12078	
Independent reflections	12078 [R(int) = 0.0000]	
Completeness to theta = 24.73°	98.5%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7451 and 0.6945	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	12078/0/1075	
Goodness-of-fit on F ²	1.041	
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0616$, w $R_2 = 0.1424$	
R indices (all data)	$R_1 = 0.1014, wR_2 = 0.1699$	
Largest diff. peak and hole	$1.350 \text{ and } -0.529 \text{ e.}\text{\AA}^{-3}$	

Table S6. X-Ray Crystal Data Table for 8.

In the structure **8** two of the BF_4 ions showed random disorder about a threefold axis. For the anion containing B1 the occupancy of the major component for F1, F3, F4 was 0.52 and for the anion containing B3 the occupancy of the major component for F5, F6, F8 was 0.67. A water molecule was assigned partial site occupancy of 0.54.

6. Overlaid X-ray Crystal Structures

Figure S35. Overlaid X-ray structures of Fe(II) cylinders 6b (solid lines) and 6c (dotted lines).

N4A

N2A

N1A

Fe1

Fe1A

Weighted R.M.S. deviation:

0.260

0.235

0.451

0.117 0.095

0.2572 Å

N14

N30

N31

Fe1

Fe2

Figure S36. Overlaid X-ray structures of Fe(II) cylinders 1 (solid lines) and 8 (dotted lines).

Figure S37. Overlaid X-ray structures of Fe(II) cylinders 8 (solid lines) and 6f (dotted lines).

7. Histidine Competition ¹H-NMR Experiments

Figure S38. Partial ¹H-NMR of a) **3a** in CD₃CN/D₂O (97:3) b) **6a** in CD₃CN/D₂O (97:3) and c) **6a** after the addition of histidine in CD₃CN/D₂O (97:3).

8. UV-Vis Spectra

Figure S40. UV-Vis spectra (10^{-4} M) of the Fe(II) cylinder **6a** in acetonitrile and DMSO.

Figure S41. Photograph of the Fe (II) cylinder **6a** obtained at 10^{-4} M concentrations in acetonitrile (left) and DMSO (right).

Figure S42. Partial ¹H-NMR spectra (500 MHz, d_6 -DMSO, 298 K) of a) the ligand **3a** and b) the Fe(II) cylinder **6a**.

Figure S43. UV-Vis spectra (CH₃CN, 10^{-4} M) of the Fe(II) cylinder **6a** before and after the addition of histidine.

Figure S44. Photograph of the Fe(II) cylinder **6a** obtained at 10^{-4} M concentrations before (left) and after the addition of histidine (right) in acetonitrile.

Figure S45. UV-Vis spectra (10^{-4} M) of the Fe(II) cylinder **8** in acetonitrile and DMSO.

Figure S46. Photograph of the Fe(II) cylinder **8** obtained at 10^{-4} M concentrations in acetonitrile (left) and DMSO (right).

Figure S47. UV-Vis spectra (CH₃CN, 10^{-4} M) of the Fe(II) cylinder **8** before and after the addition of histidine.

Figure S48. Photograph of the Fe(II) cylinder **8** obtained at 10^{-4} M concentrations before (left) and after (right) the addition of histidine in acetonitrile.

9. Disc Diffusion Assay

Figure S49. Disc diffusion assay showing the effect of DMSO, Amphotericin-B (100 nmol control), the ligands (**3a–d**, **4a**, 100 nmol) and the Fe(II) complexes (**5a**, **6a–d**, 100 nmol) on *S. cervisiae*.

