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Abstract: The two step synthesis of a new bolaamphiphile derived from alkenyl  

L-rhamnosides was described. The general synthetic strategy of bolaamphiphiles derived 

from L-rhamnose was based on a previous work describing the synthesis of 

bolaamphiphiles derived from D-xylose. The conformational properties of this new 

compound were investigated by FTIR spectroscopy in an aqueous film in order to obtain a 

reference for further studies about the membrane-interacting properties. Moreover, the 

surface activity of this new bolaamphiphile was analyzed by Langmuir balance technology 

and was compared with that of the analogous bolaamphiphile derived from alkenyl  

D-xylosides. The findings indicate that the rhamnoside-based bolaform has an increased 

surface activity and a better ability to form aggregates than xyloside-based one.  
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1. Introduction 

Sugar-based biosurfactants are considering as environmental-friendly molecules due to their 

biocompatibility and biodegradability. Their use has thus become more widespread in recent years 

because of environmental and toxicity issues [1]. In this context, our work was focused on a special 

class of sugar-based surfactant derived from L-rhamnosides which could be considered as 

rhamnolipids. Rhamnolipids constitute a class of glycolipid known as the best characterized of the 

bacterial surfactants [2–5]. In particular, rhamnolipids have been broadly used in the cosmetic industry 

for products such as moisturizers, toothpaste, condom lubricant and shampoo [2]. Rhamnolipids are 

efficient in bioremediation of organic and heavy metal polluted sites [6]; they have also long been 

reported to have antimicrobial properties [7] and to have plant defence elicitor activities [8,9] 

We previously described the synthesis and the interfacial and membrane properties of  

D-xylosidesand D-xylosides-based bolaamphiphiles (Figure 1) [10–12]. 

Figure 1. D-xylosides and D-xylosides-based bolaamphiphiles. 

 

In these last studies, the monolayer properties, the adsorption behavior and membrane 

destabilization properties of two D-xylosides-based bolaamphiphiles differing by their spacers 

(presence or absence of one double bond on a C18 chain, Figure 1) were investigated. The presence of 

one unsaturation has no influence on the interfacial organization at low compression but impairs the 

stability of the monolayer at high compression [10–12]. 

In the present study, we focused on a rhamnoside-based bolaamphiphile differing from  

xylose-based ones only by containing L-rhamnoside instead of D-xyoside at the level of the hydrophilic 

heads. L-rhamnose was used as starting sugar to synthetize by metathesis L-rhamnoside-based 

bolaamphiphile with a C18 unsaturated chain. Its conformational and surface-active properties were 

analysed. These properties, susceptible to play a crucial role on the interactions with biological 
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membranes, were compared with those of the analogous D-xylosides-based bolaamphiphile in order to 

evaluate the role of the hydrophilic head.  

2. Results and Discussion  

2.1. Synthesis of the 1', 18'-bis-octadec-9'-enyl-α-L-rhamnopyranoside (3) 

The general synthesis strategy was based on previously described work concerning bolaamphiphiles 

derived from D-xylose [10]. In a first step, a glycosylation of the L-rhamnose with 9-decen-1-ol 

following Fischer’s method [12] led to a rhamnoside with very good stereoselectivity in favour of the 

monocatenar α (ratio α/β: 95/5) as typically described for other glycosylation of L-rhamnose related in 

the literature [13–15]. In a second step, classical conditions of metathesis reaction [10] in the presence 

of a catalytic quantity of Grubbs I catalyst gave the bolaamphiphile 3 with a yield of 21% and a Z/E 

ratio around 20/80 (Scheme 1). 

Scheme 1. Synthesis of bolaamphiphile 3. 

 

Unlike the synthesis from D-xylose [10] the glycosylation of L-rhamnose with 9-decenol is 

stereospecific because only the α anomer is obtained, as confirmed by a single signal at 101.6 ppm in 

the 13C-NMR spectrum. This reactivity was already described by Jung [16]. This makes easier the 

preparation of the corresponding stereospecific bolaamphiphile αα by suppressing the 

protection/deprotection steps generally required for the separation of different anomers. The direct 

metathesis of the L-rhamnoside 2 led to a 21% yield of the bolaamphiphile 3 as a classical 20/80 

mixture of Z/E isomers. This low yield could be explained because of the high viscosity of the 

compound 3, obtained as a relatively difficult to purify wax. Further improvement of the purification 

steps, especially the one concerning the elimination of the metallic residue is required to increase  

the yield.  
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2.2. FTIR Spectroscopy  

FTIR spectroscopy is a very sensitive technique to the presence of chemical groups and the 

hydrogen bonds. After the synthesis, we performed the FTIR measurement of the bolaamphiphile 3 in 

solid state in order to examine if the expected chemical groups are present within the molecule. In a 

second experiment, before starting the physicochemical characterization, we performed the FTIR 

measurement of the D2O-hydrated film of the bolaamphiphile 3. This spectrum of the D2O-hydrated 

film was compared to those obtained in solid state for detecting chemical groups which can be 

involved in hydrogen bonding and will serve as reference for further studies of interaction of this 

molecule with biological membrane lipids.  

The Figure 2 gives the three regions of FTIR spectrum of the D2O-hydrated film of the 

bolaamphiphile 3. In the 1,600–1,300 cm−1 region of the FTIR spectrum (Figure 2-A), three bands are 

observed. The second derivative spectrum (insert Figure 2-A), processed to better distinguish the 

wavenumber of the bands gives three peaks at 1,537, 1,458 and 1,403 cm−1. The peak at 1,537 cm−1 

could be attributed to the residual presence of CH2Cl2 which became more significant in the case of 

hydrated films. The peak at 1,458 cm−1 could be attributed to the bending vibrations of CH2 groups of 

the hydrocarbon chain and the peak at 1,403 cm−1 to the OH bending vibrations in the plane of the 

alcohol groups of two L-rhamnosides.  

Figure 2-B shows the 3,050–2,800 cm−1 region. The second derivative of the spectrum displayed 

three peaks located at 2,958, 2,913 and 2,851 cm−1. The absorbance in this region corresponds to the 

stretching vibrations of the CH2 and CH3 groups of the hydrocarbon chain.  

Figure 2-C corresponds to the 3,590–3,090 cm−1 region of the spectrum. A broad band located at 

3,396 cm−1 is observed. It corresponds to the alcohol groups of two L-rhamnosides. Compared to the 

spectrum of the solid state the shift to lower wavenumber and the broad shape could be attributed to 

the presence of alcohol groups involved in hydrogen bonds. 

Figure 2. FTIR spectra of the D2O-hydrated film of the bolaamphiphile 3. (A) The  

1,600–1,300 cm−1 region; (B) the 3,050–2,800 cm−1 region; (C) the 3,600-3,090 cm−1 region. 
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Figure 2. Cont. 
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2.3. Surface Activity of the Rhamnoside-Based Bolaform (Bolaamphiphile 3) 

The surface pressure is the difference between the tension of the neat air-water interface and the 

tension of the air-water interface in the presence of a molecular film. The kinetics profiles of the 

surface pressure at various concentrations of the bolaamphiphile 3 were examined in order to analyze 

its abilities to form an interfacial film (Figure 3).  

For concentrations less than 0.5 µM, no bolaform-induced increase of the surface pressure is 

observed (data not shown). This could indicate that bolaamphiphile 3 cannot adsorb to the air-water 

interface or even though there was an adsorption, the coverage of the surface was not sufficient for 

detecting an increase of the surface pressure [17]. For concentrations equal or greater than 0.625 µM, 

whatever the concentration of bolaamphiphile 3 injected into the subphase, we observed a sigmoïdal 

increase of the surface pressure indicating that the adsorption of the bolaamphiphile over time was 

gradual and reached a steady-state more or less rapidly depending on the concentration. Moreover, 

there was a lag period prior to the detection of the increase of the surface pressure depending on the 

concentration of the bolaform into the subphase. The difference between lag periods was more 

significant for concentrations between 0.625–2.5 µM and became less important for 2.5–20 µM. This 
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shows that the more bolaform concentration into the subphase is, the faster the adsorption of the 

bolaform to the air–water interface is.  

Figure 3. Surface activity of the bolaamphiphile 3. Kinetics of bolaform adsorption at the 

air-water interface. Time zero corresponds to the injection of the bolaform into the subphase. 

 

Suggesting that increasing the amount of bolaform molecules into the subphase increased the 

probability of the interactions between them, it could be proposed that these interactions played an 

important role on the adsorption of bolaform molecules at the air-water interface as in the case of other 

surface-active molecules [17]. This interpretation seems to be also consistent with the absence of the 

increase of the surface pressure when the concentration of the bolaform in the subphase did not 

reached the threshold concentration for having enough interactions between them as previously 

proposed by Volinsky et al. or Sun et al.[18,19]. 

Figure 4 shows the maximal surface pressure induced by the bolaform adsorption as a function of 

the bolaform concentration in the subphase. The relationship between the amount of the bolaform 

molecules adsorbed at the air-water interface and the concentration of the bolaform molecules in the 

subphase is not linear.  

Figure 4. Influence of the bolaamphiphile 3 concentration on the reached maximal surface pressure. 
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This threshold concentration could correspond to a state where the interactions between bolaform 

molecules were strong enough to cover the entire available surface. These interactions could occur in 

the direction of the surface between molecules and conceptualized as “work of adhesion” [20]. The 

interactions in the direction of the surface at this threshold concentration would be a key factor for the 

surface coverage. Above this concentration, aggregates of bolaform in the bulk phase should be 

formed. From this curve, the critical aggregation concentration (CAC) of the bolaamphiphile 3 could 

be determined at the intersection of two linear fittings of the curve. The CAC of bolaamphiphile 3 is 

2.3 ± 1.4 µM and the corresponding γCAC is 49 ± 1.9 mN/m. 

In a previous study, the CAC of the analogue bolaamphiphile 1 derived from D-xylose differing in 

the hydrophilic heads (xylose instead of rhamnose) was determined by ITC measurements as 50 µM [10]. 

This value is not in the same range as that obtained in the present study. New ITC measurements were 

then performed in a range of lower concentrations. The results revealed the existence of another 

aggregation state. The Figure 5 gives the heat of disaggregation per mole of bolaamphiphile 1 (δhi/δn1) 

as a function of its concentration in the measurement cell. This sigmoidal curve shows that the 

(δhi/δn1) decreased when the concentration of bolaamphiphile 1 increased. The principle of the 

determination of the CAC by ITC is based on the relationship between the number of molecules in the 

solution and the energy released upon break-up of their aggregates (δhi). Every injection into the 

sample cell increases the number of compound 1 in the solution and decreases the δhi until a threshold 

value approaching zero. The determination of the inflection point of this sigmoidal curve (by the 

second derivative, see inset) gave the CAC value which is 5.6 ± 0.4 µM for bolaamphiphile 1.  

This value was at the same range than the one obtained for bolaamphiphile 3 in the present study. 

These findings could be interpreted as the existence of two states of aggregation for bolaamphiphile 1. 

The first state at 5.5µM could correspond to a state for which a molecular association between 

xyloside-based bolaforms to form a micelle-like structure while the second state at 50 µM could agree 

with a supramolecular association of the aggregated structures. This second step was not observed for 

bolaamphiphile 3. 

Figure 5. Critical aggregation concentration (CAC) of bolaamphiphile 1 determined by 

ITC measurements. The graph show the heat of disaggregation per mole of 1 plotted versus 

the concentration logarithm of the bolaform in the ITC cell. Inset: second derivative of the 

disaggregation heat as a function of concentration. 
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If we considered the first step of aggregation, the CAC of the bolaamphiphile 3 was slightly less 

than those obtained for bolaamphiphile 1 showing that the bolaamphiphile 3 is more able to form 

aggregates than bolaamphiphile 1. Then, we can conclude that the hydrophilic heads of the bolaform 

play an important role on their capacity of aggregation. The importance of the polar head on the 

aggregation behavior of the surfactants has been previously shown in the case of N-methyl,  

N-polyethyleneglycol dodecylamide type surfactants. These authors have reported that the increase of 

the head group polarity results into an increase of the CAC value [21]. Our results are in accordance 

with this study. Indeed, the presence of a supplementary methyl group on the hydrophilic head of the 

bolaamphiphile 3 compared to the bolaamphiphile 1 increases the global hydrophobicity of the 

molecule which seems in favour of an aggregation.  

3. Experimental 

3.1. General 

All reagents were commercially available and used as received. Solvents were dried and distilled 

under argon before use (CH2Cl2 over CaCl2 and diethyl ether, THF over sodium/benzophenone) and 

stored over molecular sieves. 1H- (250.1 MHz) and 13C-NMR (62.9 MHz) spectra were recorded on an 

AC 250 Bruker instrument in CDCl3, MeOD or acetone-d6 with TMS as reference for 1H spectra and 

CDCl3 (δ 77.0), MeOD (δ 49.9) or acetone-d6 (δ 30.6) for 13C spectra. The infrared spectra were 

recorded with Spectrafile IRTM Plus MIDAC. C, H and N analyses were performed on a Perkin Elmer 

2400 CHN equipment. GC was recorded on a Hewlett-Packard HP-6890 gas chromatograph, fitted 

with DB-1 capillary column (25 m, 0.32 mm), a flame ionisation detector and HP-3395 integrator; 

chromatography was carried out on SDS Silica 60 (40–63 μm), Art 2050044 (flash-chromatography) 

or Silica 60 F254 (TLC plates). All experiments (MS and HRMS) were obtained on a hybrid tandem 

quadrupole/time-of-flight (Q-TOF) instrument, equipped with a pneumatically assisted electrospray 

(Z-spray) ion source (Micromass, Manchester, UK) operated in positive mode. The electrospray 

potential was set to 3 kV in positive ion mode (flow of injection 5 μL/min.) and the extraction cone 

voltage was usually varied between 30 and 90 V. 

Dec-9-enyl-α-rhamnopyranoside (2) 

 

To a solution of L-rhamnose (4 g; 24 mmol; 1 eq) and 9-decen-1-ol (8.6 mL; 48 mmol; 2 eq) in 

THF (20 mL) are added at 80 °C, 2.7 g of PTSA (14 mmol; 0.6 eq) in three portions (900 mg each h). 

After 48 h of reaction, the mixture is neutralized with addition of a 0.5 M MeONa solution (≈20 mL) 

and the purification of the major α anomer (ratio α/β: 95/5) is realized through flash chromatography 

(eluting mixture: CH2Cl2/MeOH 9:1). Compound 2 is obtained as a brown paste with a yield of 56%. IR 

(KBr) ν cm−1: 3407 (F), 2928 (F), 2856 (m), 1640 (f), 1456 (f), 1132 (m), 1056 (F). 1H-NMR 

(CD3OD): δ (ppm) 1.23 (d, 3H, J = 7.5 Hz, H6), 1.32 (br, 10H, H3', H4', H5', H6', H7'), 1.56 (br m, 
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2H, H2'), 2.03 (br m, 2H, H8'), 3.35 (overlap, 2H, H1'a, H4), 3.62 (overlap, 3H, H1’b, H2, H5), 3.75 

(br, 1H, H3), 4.63 (br, 1H, H1), 4.91 (overlap, 4H, H10', -OH), 5.00 (br, 1H, H10'), 5.79 (m, 1H, H9'). 
13C-NMR (CD3OD): δ (ppm) 18.1 (C6), 27.4 (C2'), 30.1, 30.2, 30.5, 30.6, 30.7 (C3', C4', C5', C6', 

C7'), 34.9 (C8'), 68.5 (C1'), 69.7 (C5), 72.4 (C4), 72.5 (C3), 74.0 (C2), 101.6 (C1α), 115.0 (C10), 

140.1 (C9’). Elemental analysis for C16H30O5, 0.25 H2O: calcd C: 62.62%; H: 10.02%. Found: C: 

62.59%; H: 9.92%. 

1', 18'-bis-octadec-9'-enyl-α-L-rhamnopyranoside (3) 

 

Compound 2 (2 g; 6.6 mmol; 1 eq) is diluted in CH2Cl2 (40 mL) in a Schlenk tube under argon and 

the Grubbs I catalyst (543 mg; 0.66 mmol; 0.1 eq) is added in three portions over 3 h. After 72 h of 

reaction at 40 °C, the solvent is evaporated under reduced pressure and the residue is purified by flash 

chromatography (eluting mixture: CH2Cl2/MeOH 9:1). Compound 3 is obtained as a brown wax with a 

yield of 21% as a mixture Z/E of 21/79. IR (KBr) ν cm−1: 3429 (F), 2926 (F), 2855 (m), 1634 (f), 1455 

(f), 1131 (m), 1057 (F). 1H-NMR (CD3OD): δ (ppm) 1.24 (d, 6H, J = 5 Hz, H6), 1.31 (br, 20H, H3', 

H4', H5', H6', H7', H12', H13', H14', H15', H16’), 1.56 (br m, 4H, H2', H17’), 1.97 (br m, 2H, H8', 

H11'), 3.34 (overlap, 4H, H1'a, H18'a, H4), 3.62 (overlap, 6H, H1'b, H18'b, H2, H5), 3.76 (br, 2H, 

H3), 4.63 (br, 2H, H1), 4.87 (s, 6H, -OH), 5.37 (m, 2H, H9', H10'). 13C-NMR (CD3OD,): δ (ppm) 17.7 

(C6), 26.9 (C3', C16'), 29.8–30.3 (C2', C4', C5', C6', C7', C12', C13', C14', C15', C16', C17'), 33.2 

(C8',C11'), 68.1 (C1', C18'), 69.2 (C5), 71.8 (C4), 72.0 (C3), 73.5 (C2), 101.1 (C1α), 130.3 

(C9'Z,C10'Z), 130.4, 131.0 (C9', C10'). Elemental analysis for C30H56O10, 1.1 H2O: calcd C: 60.40%; 

H: 9.83%. Found: C: 60.37%; H: 9.50%. 

3.2. Physico-Chemical Characterization 

Commercially-available dimethylsulfoxide (DMSO), trifluoroethanol (TFE) and deuterium oxide 

(D2O) at 99.9% isotopic purity were purchased from Sigma Chemical Co. (St. Louis, MO, USA). All 

solvents were analytical grade and used without further purification. The ultrapure water was produced 

by a Millipore system and had a resistivity of 18.2 MΩ·cm. 

3.3. FTIR Spectroscopy 

Infrared spectra were recorded by means of a Bruker Equinox 55 spectrometer (Karlsruhe, 

Germany) equipped with a liquid nitrogen-cooled Mercury-Cadmium-Telluride detector. The number 

scans was 128 and the resolution was 4 cm−1. All the experiments were performed with a demountable 

cell (Bruker) equipped with CaF2 windows [22]. During all experiments, the spectrophotometer was 

continuously purged with filtered dry air. The bolaamphiphile 3 was first dissolved in TFE at 10 mg/mL. 

The solution was then deposited on a CaF2 window and dried under vacuum in order to obtain a film. 
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This resulting film was hydrated by spreading 10 µL of D2O. The spectrum of pure D2O was 

subtracted from the sample spectrum obtained under same conditions. 

3.4. Adsorption Experiments at the Neat Air-Water Interface 

The Wilhemy film balance was built by KSV (Helsinki, Finland) and placed on a vibration-isolated 

table. Bolaamphiphile 3 adsorption experiments to the neat air-water interface were performed in a 

KSV Minitrough with a volume of 190 cm3. The subphase was ultra-pure water at 25 °C and was 

continuously stirred with a magnetic spin stirrer at constant spinning. The bolaamphiphile 3 dissolved 

in DMSO was injected into the subphase. The adsorption was followed by measuring surface pressure 

as described previously [17]. The same volume of pure DMSO was injected under the lipid monolayer 

and no change of the surface pressure was detected. 

3.5. Isothermal Titration Calorimetry (ITC) Experiments  

Isothermal titration calorimetry was used in order to determine the thermodynamic parameters 

associated with the aggregation. Experiments were performed on a VP-ITC Microcalorimeter 

(Microcal, Northampton, MA, USA). The XylBol was dissolved in dimethylsulfoxide (DMSO) and 

the concentrated organic solution was diluted with milli-Q water (final DMSO concentration of 1% 

(v/v)). Aliquots of 0.27 mM solution of bolaamphiphile 1 (6 µL) were injected into a calorimeter cell 

at constant time intervals of 300s. The calorimeter cell had a volume of 1.4565 mL containing 

ultrapure water with 1% (v/v) of DMSO and its temperature maintained very accurately at 25 °C. The 

solution in the sample cell was stirred at a speed of 305 rpm. The reference cell was filled with milli-Q 

water. Prior to each analysis, all solutions were degassed using a sonicator bath. The heats related to 

the fall of the drop were determined by injecting at constant time interval 6 µL of water with 1% (v/v) 

of DMSO into the measuring cell containing water with 1% (v/v) of DMSO. These values were 

subtracted from the observed heats for determining the effective heats as described previously [10]. All 

measurements were repeated twice with two distinct bolaform solutions. Raw data were processed by 

software Origin 7 (Originlab, Northampton, MA, USA). 

4. Conclusions 

A new bolaamphiphile derived from an alkenyl L-rhamnoside was prepared easily in two reaction 

steps without recurring to a protection/deprotection procedure. The surface activity of this new 

bolaamphiphile was analyzed by Langmuir balance technology and compared with that of the 

analogous bolaamphiphile derived from alkenyl D-xylosides. The findings indicate the importance of 

the nature of the hydrophilic heads, the rhamnoside-based bolaform having an increased surface 

activity and a better ability to form aggregates than the xyloside-based one. 
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