An Efficient Synthesis of Aldohexose-Derived Piperidine Nitrones: Precursors of Piperidine Iminosugars

Hui Zhao, Wen-Bo Zhao, Jian-She Zhu, Yue-Mei Jia and Chu-Yi Yu *

Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

* Author to whom correspondence should be addressed; E-Mail: yucy@iccas.ac.cn; Tel.: +86-010-6261-0366; Fax: +86-010-6261-2893.

Received: 7 May 2013; in revised form: 15 May 2013 / Accepted: 17 May 2013 / Published: 21 May 2013

Abstract: D-Glucopyranose-derived and L-idopyranose-derived piperidine nitrones were synthesized in good overall yields through six-step reaction sequence starting from readily available 2,3,4,6-tetra-O-benzyl-D-glucopyranose. The method is efficient and could be general for the synthesis of aldohexose-derived piperidine nitrones which are precursors of piperidine iminosugars.

Keywords: aldohexose-derived cyclic nitrones; synthesis; piperidine iminosugars

1. Introduction

Because of their remarkable biological activities [1–3], iminosugars, the ‘nitrogen-in-the-ring’ analogues of pyranoses and furanoses, have attracted considerable attention from synthetic organic chemists [4–7]. Over the last 40 years, a very large number of azapyranose sugars, i.e., piperidine iminosugars, have been isolated from various plants and animal sources (Figure 1). Nearly all these naturally-occurring iminosugars, as well as the majority of synthetic azapyranose sugars, elicit some sort of biological response [6]. Although great efforts have been made and numerous synthetic procedures have been developed for the synthesis of iminosugars [8–22], efficient methods for the rapid generation of azapyranoses with the structural diversity necessary for in-depth structure-activity studies are still lacking. Due to the versatile reactivities of the nitrone functionality, synthetic methods based on sugar-derived cyclic nitrones have emerged as a potentially powerful strategy for the diversity-oriented synthesis of iminosugars among the existing approaches [23–33].
Figure 1. Some naturally occurring azapyranose alkaloids.

As a result of their capability of undergoing a variety of synthetically useful reactions, such as 1,3-dipolar cycloadditions [34–40], nucleophilic additions [39,41–48], and pinacol-type coupling reactions [49–56], etc., nitrones [57,58] have been shown to be powerful synthetic intermediates for the construction of structurally complex molecules [59–61]. Polyhydroxylated cyclic nitrones or sugar-derived cyclic nitrones, which have been widely used in the synthesis of various natural and biologically active nitrogen-containing compounds [27,28,32,33,62–65], are especially valuable in organic synthesis. The piperidine nitrones, may serve as the powerful synthons or precursors for the synthesis of naturally-occurring piperidine iminosugars, especially for the diversity-oriented synthesis.

Although, methods for the synthesis of cyclic nitrones have been well documented [66], including oxidation of hydroxylamine [67–69], amines [70–73], and imines [74,75], condensation of ketones with hydroxylamines [76,77], and N-alkylation of oximes [78–80], efficient synthetic methods for the preparation of pyranose-derived nitrones are still lacking. Several syntheses of pentopyranose-derived piperidine nitrones have been reported before [81–83], however, to the best of our knowledge, the only synthesis of a hexopyranose-derived piperidine nitrone so far has been reported in 1996 by van den Broek and co-workers [84] who described the preparation of pyranose-derived nitrones by oxidation of 2,3,4,6-O-benzyl-DNJ 6 employing 2,2-dimethyldioxirane (DMDO) as oxidizing agent (Scheme 1). This method, however, has obvious drawbacks in that the regioselectivity of the oxidation was poor and the oxidation of the piperidine resulted in the formation of an inseparable mixture of two regio-isomers, i.e., the aldo and keto nitrones 7 and 8.

Scheme 1. van den Broek’s synthesis of pyranose-derived nitrone.

In the context of our ongoing projects on the synthesis and application of sugar-derived cyclic nitrones [80], herein we report an efficient synthesis of D-glucopyranose- and L-idopyranose-derived piperidine nitrones. We intend to develop a general and efficient method for the synthesis of aldohexose-derived piperidine nitrones, which could be powerful synthons for the synthesis of iminosugars containing a piperidine moiety in the molecules.
2. Results and Discussion

2.1. The Unsuccessful N-alkylation Strategy

Intramolecular N-alkylation, the most widely used strategy in cyclic nitrene synthesis, was not applicable here. Oxime 10, prepared from D-glucose-derived aldehyde 9, failed under various conditions to undergo the predicted intramolecular N-alkylation to give the desired hexopyranose-derived piperidine nitrene 11 (Scheme 2). It seems that intramolecular nucleophilic substitution to form hexopyranose-type piperidine rings is less favorable than for furanose- or pentopyranose rings, possibly due to the relatively poor reactivity of the leaving group at C5 of the hexopyranose.

Scheme 2. Unsuccessful intramolecular N-alkylation strategy.

In order to avoid the low regioselectivity and ring formation problems of the method of oxidation and intramolecular N-alkylation, we turned to a less employed strategy in sugar-derived cyclic nitrene synthesis—the intramolecular condensation of aldehydes with hydroxylamines [76,77,85,86]—which has been successfully applied in the synthesis of aldohexose-derived azepane nitrones.

2.2. The Preparation of Diethyl Dithioacetal

The readily available 2,3,4,6-tetra-O-benzyl-D-glucopyranose (12) was chosen as the starting material for our investigation on the synthesis of aldohexose-derived piperidine nitrones, which is expected to give two nitrones, i.e., a D-glucopyranose-derived nitrene and an L-idopyranose-derived nitrene.

Table 1. Screening of conditions of preparing diethyl dithioacetal.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additives</th>
<th>Eq.</th>
<th>Solvent</th>
<th>Tem. (°C)</th>
<th>Yield a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMSCl</td>
<td>0.2</td>
<td>CHCl₃</td>
<td>RT</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>BF₃·Et₂O</td>
<td>0.2</td>
<td>CHCl₃</td>
<td>RT</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>AcCl</td>
<td>0.2</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>conc. HCl</td>
<td>excess</td>
<td>MeOH</td>
<td>RT</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>HCl (g)</td>
<td>excess</td>
<td>Dioxane</td>
<td>RT</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>BDMS</td>
<td>0.2</td>
<td>CH₂CN</td>
<td>0- RT</td>
<td>trace</td>
</tr>
<tr>
<td>8</td>
<td>BDMS</td>
<td>0.2</td>
<td>CH₂Cl₂</td>
<td>0- RT</td>
<td>trace</td>
</tr>
<tr>
<td>9</td>
<td>BDMS</td>
<td>0.2</td>
<td>EtSH</td>
<td>RT</td>
<td>84 b</td>
</tr>
</tbody>
</table>

a Isolated yield. b Reference [82].
First of all, in order to find the optimal reaction conditions for the synthesis of the key intermediate, the alcohol 13, through the pyranose hemiacetal ring opening by ethanethiol, various reagents and reaction conditions has been screened (Table 1). It turned out that the method using bromodimethylsulfonium bromide (BDMS), reported by Khan’s group [87], gave the best result.

2.3. Completion of the Synthesis

Oxidation of the resulting alcohol 13 using tetrapropylammonium per ruthenate (TPAP) [88] gave the corresponding ketone 14 in 81% yield (Scheme 3). Other methods of oxidation, such as the Swern oxidation, Corey-Suggs oxidation (PCC), and Dess-Martin oxidation (DMP), all failed to oxidize 13 into the desired ketone 14. To transform the diethyl dithiolacetal protecting group of 14 into more acid-labile dimethyl acetal protecting group, the ketone 14 was treated with mercury salts in the presence of methanol to form the dimethyl acetal protected ketone 15 in 81% yield.

Scheme 3. Completion of the synthesis of D-glucopyranose-derived and L-idopyranose-derived piperidine nitrones.

Then, condensation of ketone 15 with NH₂OH, followed by reduction of the resulting oxime with sodium cyanoborohydride gave the hydroxylamine 16 as an inseparable mixture of two C5 isomers in 73% yield. A pure analytical sample of the major C5 isomer of 16 was obtained by flash column chromatography and its structure was determined by NMR (see Supporting Information). Finally, acidic hydrolysis of the dimethyl acetal 16 by CH₃CN/6 N HCl and subsequent intramolecular condensation of the hydroxylamine and aldehyde produced a mixture of two products, the D-glucopyranose-derived piperidine nitrone 7 and L-idopyranose-derived piperidine nitrone 17, in 81% total yield, which are easily separated by column chromatography on silica gel with a ratio of 2:1. The structures of the two nitrones have been determined undoubtedly by NMR and NOESY experiments (see Supplementary Materials). It is worth noting that the D-glucopyranose-derived piperidine nitrone 7 was found to be quite stable, even at room temperature, rather than unstable as has been reported before [84], while the L-idopyranose-derived piperidine nitrone 17 is less stable, and gradually decomposed at room temperature, although it was stable at low temperature when stored in a fridge.
3. Experimental

3.1. General Methods

All reagents were used as received from commercial sources without further purification or prepared as described in the literature. Reactions were stirred using Teflon-coated magnetic stirring bars. Analytical TLC was performed with 0.20 mm silica gel 60F plates with 254 nm fluorescent indicator. TLC plates were visualized by ultraviolet light or by treatment with a spray of Pancaldi reagent \([\text{NH}_4\text{MoO}_4, \text{Ce(SO}_4\text{)}_2, \text{H}_2\text{SO}_4, \text{H}_2\text{O}]\). Chromatographic purification of products was carried out by flash column chromatography on silica gel (200–300 mesh). Infrared spectra were recorded on a JASCO FT/IR-480 plus Fourier transform spectrometer. NMR spectra were measured in CDCl₃ (with TMS as internal standard) on a Bruker AV300 (1H at 300 MHz, 13C at 75 MHz) magnetic resonance spectrometer. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific LTQ/FT mass spectrometer or a GCT mass spectrometer. Polarimetry was carried out using an Optical Activity AA-10R polarimeter and the measurements were made at the sodium D-line with a 0.5 dm pathlength cell. Concentrations (c) are given in gram per 100 mL.

3.2. Synthesis

(2R,3R,4S,5R)-1,3,4,5-Tetrakis(benzyloxy)-6,6-bis(ethylthio)hexan-2-ol (13). A catalytic amount (7 mg, 0.03 mmol) of bromodimethylsulphonium bromide (BDMS) was added to a stirred mixture of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (12, 500 mg, 1 mmol) and ethanethiol (5 mL) at room temperature. The mixture was stirred for 2 h, and the mixture gradually became clear. TLC indicated the disappearance of starting material, then the excess ethanethiol was removed in vacuo. The residual products were dissolved in ethyl acetate, and washed with aq. NaHCO₃ (3 × 10 mL). Removal of the solvent in vacuo after dried over MgSO₄, the crude product was purified by column chromatography on silica gel (petroleum ether-ethyl acetate = 40:1–20:1) to give compound 13 (552 mg, 84%) as a colourless oil. ¹H-NMR (CDCl₃) δ 7.48–7.25 (m, 20H), 4.95 (d, J = 11.1 Hz, 1H), 4.86 (d, J = 11.2 Hz, 1H), 4.85 (d, J = 11.2 Hz, 1H), 4.73 (d, J = 11.2 Hz, 1H), 4.64–4.54 (m, 4H), 4.33 (dd, J = 6.6, 3.6 Hz, 1H), 4.20 (dd, J = 6.6, 3.7 Hz, 1H), 4.13 (dt, J = 10.1, 4.9 Hz, 1H), 3.98 (d, J = 3.7 Hz, 1H), 3.77 (dd, J = 7.0, 3.6 Hz, 1H), 3.71 (d, J = 3.8 Hz, 1H), 3.69 (d, J = 5.5 Hz, 1H), 3.15 (d, J = 4.7 Hz, 1H), 2.72 (q, J = 7.4 Hz, 2H), 2.67–2.53 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.6 Hz, 3H). ¹³C-NMR (CDCl₃) δ 138.5, 138.1, 137.9, 128.5, 128.4, 128.3, 128.2, 127.9, 127.9, 127.7, 127.78, 127.5, 127.5, 82.7, 80.0, 75.3, 74.9, 73.5, 72.8, 71.4, 70.9, 53.8, 25.5, 25.3, 14.5. [lit. [82] ¹H-NMR (400 MHz; CDCl₃) δ 7.38–7.23 (m, 20H), 4.89 (d, J = 11.2 Hz, 1H), 4.80 (d, J = 11.2 Hz, 1H), 4.79 (d, J = 11.6 Hz, 1H), 4.67 (d, J = 11.6 Hz, 1H), 4.59–4.49 (m, 4H), 4.27 (dd, J = 6.8, 3.6 Hz, 1H), 4.14 (dd, J = 6.8, 4.0 Hz, 1H), 4.15–4.03 (m, 1H), 3.93 (d, J = 4.0 Hz, 1H), 3.71 (d, J = 6.8, 3.6 Hz, 1H), 3.66 (dd, J = 10.0, 4.0 Hz, 1H), 3.61 (dd, J = 10.0, 5.6 Hz, 1H), 3.08 (d, J = 5.2 Hz, 1H), 2.66 (q, J = 7.6 Hz, 2H), 2.60–2.50 (m, 2H), 1.18 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz; CDCl₃) δ 138.7, 138.4, 138.1, 128.6, 128.4, 128.3, 128.2, 128.03, 128.0, 127.96, 127.9, 127.6, 82.9, 80.3, 77.5, 75.5, 75.1, 73.7, 73.0, 71.6, 71.1, 54.0, 25.7, 25.5, 14.6.]
(3S,4S,5R)-1,3,4,5-Tetrakis(benzyloxy)-6,6-bis(ethylthio)hexan-2-one (14). Solid TPAP (68 mg, 0.19 mmol) was added portionwise to a stirred mixture of dithioacetal 13 (2.49 g, 3.85 mmol), 4-methylmorpholine N-oxide (NMO) (676 mg, 5.77 mmol) and powdered 4 Å molecular sieves (2 g) in dry CH₂Cl₂ (8 mL) at 0 °C under nitrogen. The mixture was stirred for 45 min at room temperature, filtered through a short pad of silica and eluted with ethyl acetate. The filtrate was concentrated in vacuo to give a yellow oil. Column chromatography (petroleum ether-ethyl acetate = 6:1) provided ketone 14 (2.07 g, 81%) as a colourless oil. ¹H-NMR (CDCl₃) δ 7.43–7.13 (m, 20H), 4.81 (d, J = 10.9 Hz, 1H), 4.73 (d, J = 11.2 Hz, 1H), 4.70 (s, 1H), 4.66 (s, 1H), 4.51 (d, J = 11.2 Hz, 1H), 4.41–4.32 (m, 4H), 4.23 (d, J = 4.2 Hz, 1H), 4.11 (d, J = 17.6 Hz, 1H), 4.03 (dd, J = 5.8, 4.6 Hz, 1H), 3.75 (d, J = 4.4 Hz, 1H), 2.69–2.60 (m, 2H), 2.55 (dd, J = 14.9, 7.8 Hz, 2H), 1.18 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.6 Hz, 3H). ¹³C-NMR (CDCl₃) δ 206.5, 138.3, 137.8, 137.4, 136.9, 128.6, 128.43, 128.38, 128.35, 128.24, 128.0, 127.9, 127.8, 127.5, 127.4, 127.3, 74.4, 73.4, 73.3, 53.4, 25.3, 14.4. [lit. ⁸⁹] ¹H-NMR (300 MHz; CDCl₃) δ 7.43–7.18 (20H, m), 4.82 (d, J = 11.0 Hz, 1H), 4.74 (d, J = 11.0 Hz, 1H), 4.70 (d, J = 11.0 Hz, 1H), 4.69 (d, J = 11.0 Hz, 1H), 4.52 (d, J = 11.0 Hz, 1H), 4.41–4.33 (m, 4H), 4.24 (d, J = 18.0 Hz, 1H), 4.16 (d, J = 4.0 Hz, 1H), 4.12 (d, J = 18.0 Hz, 1H), 4.04 (dd, J = 6.0, 4.5 Hz, 1H), 3.75 (d, J = 4.5 Hz, 1H), 2.64 (m, 2H), 2.56 (m, 2H), 1.19 (t, J = 7.5 Hz, 3H), 1.18 (t, J = 7.5 Hz, 3H); ¹³C-NMR (75 MHz; CDCl₃) δ 206.5, 138.3, 137.7, 137.3, 136.8, 128.6, 128.46, 128.43, 128.38, 128.35, 128.25, 128.21, 127.9, 127.87, 127.85, 127.5, 81.6, 81.4, 80.7, 75.2, 75.1, 74.4, 73.4, 73.3. ⁶⁵C-NMR (CDCl₃) δ 206.3, 138.5, 137.8, 137.7, 137.4, 128.5, 128.43, 128.41, 128.38, 128.2, 128.0, 127.9, 127.8, 127.5, 105.5, 80.9, 80.0, 77.7, 74.8, 74.3, 74.3, 73.3, 73.2, 56.0, 54.7. [lit. ⁸⁹] ¹H-NMR (300 MHz; CDCl₃) δ 7.50–7.15 (m, 20H), 4.72 (d, J = 11.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 11.0 Hz, 1H), 4.53 (m, 2H), 4.46 (d, J = 12.0 Hz, 1H), 4.43 (d, J = 6.3 Hz, 1H), 4.37 (d, J = 12.0 Hz, 1H), 4.31 (d, J = 12.0 Hz, 1H), 4.21 (s, 2H), 4.15 (d, J = 4.7 Hz, 1H), 4.00 (dd, J = 4.5, 4.7 Hz, 1H), 3.73 (dd, J = 4.5, 6.3 Hz, 1H), 3.40 (s, 3H), 3.31 (s, 3H); ¹³C-NMR (75 MHz; CDCl₃) δ 206.3, 138.4, 137.7, 137.6, 137.3, 128.5, 128.45, 128.43, 128.39, 128.36, 128.2, 128.0, 127.8, 127.7, 127.5, 105.4, 80.8, 79.9, 77.6, 74.7, 74.3, 74.2, 73.3, 73.2, 56.0, 54.7].
N-((3R,4S,5R)-1,3,4,5-Tetrakis(benzyloxy)-6,6-dimethoxyhexan-2-yl)hydroxylamine (16). A stirred solution of ketone 15 (592 mg, 1.01 mmol), hydroxylamine hydrochloride (211 mg, 3.03 mmol), pyridine (327 mL, 4.05 mmol) and EtOH (2.5 mL) was heated at 60 °C for 20 min. The solvent was removed in vacuo and the residue taken up in Et₂O and washed with water. The organic layer was dried over MgSO₄, filtered and the solvent was removed in vacuo. Column chromatography (petroleum ether-ethyl acetate = 3:1 containing 1% Et₃N) provided oxime (546 mg, 90%) as a colourless oil and as a 1:1 mixture of Z and E isomers. The oxime (200 mg, 0.33 mmol) was redissolved in methanol (10 mL) and sodium cyanoborohydride (42 mg, 0.66 mmol) was added. 4 drops of methyl orange was added as the indicator. The resulting solution was carefully treated at room temperature with concentrated HCl/methanol (v/v = 1/10) to maintain the pH value between 3 and 4. After the completion of the reaction, the resulting solution was concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (10 mL) and washed with 1 N NaOH (1 × 10 mL) and then brine (2 × 10 mL). After dried (MgSO₄) and condensed under reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether-ethyl acetate = 3:1 to 1:1) to afford isomers of hydroxylamine 16 (181 mg, 73% for 2 steps) as a colorless oil. ¹H-NMR (CDCl₃) δ 7.49–7.12 (m, 20H), 5.14 (br, 1H), 4.87 (d, J = 10.7 Hz, 2H), 4.83–4.71 (m, 3H), 4.64 (d, J = 10.5 Hz, 3H), 4.59 (s, 2H), 4.50 (d, J = 11.0 Hz, 2H), 4.38 (s, 3H), 4.26 (dd, J = 5.5, 2.2 Hz, 1H), 4.17–4.08 (m, 1H), 3.85 (dd, J = 9.5, 7.9 Hz, 1H), 3.76 (d, J = 8.3 Hz, 1H), 3.63 (d, J = 10.0 Hz, 1H). ¹³C-NMR (CDCl₃) δ 138.8, 138.5, 138.1, 128.4, 128.3, 128.1, 127.8, 127.6, 127.4, 105.4, 79.5, 78.3, 78.2, 75.0, 74.8, 73.9, 73.3, 68.4, 62.0, 56.0, 54.1. ESI-MS: m/z 602.96 [M+H]+.

(2R,3R,4S,5S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-2,3,4,5-Tetrahydropyridine 1-oxide (D-Glucopyranose-Derived Piperidine Nitrone (7) and (2S,3R,4S,5S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-2,3,4,5-Tetrahydropyridine 1-oxide (L-Idopyranose-Derived Piperidine Nitrone (17)). To a solution of hydroxylamine 16 (180 mg, 0.3 mmol) in CH₃CN (6 mL) was added concentrated HCl (2 mL) and the resulting solution was stirred at room temperature for 2 h. The solution was diluted with EtOAc (10 mL) and then washed with H₂O (2 × 20 mL) and saturated NaHCO₃ solution (1 × 10 mL). The organic phase was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 1:1 to ethyl acetate) to afford D-glucopyranose-type nitrone 7 (87 mg, 54%) and L-idopyranose-type nitrone 17 (44 mg, 27%) as yellow oils.

D-Glucopyranose-derived piperidine nitrone (7). [α]D¹⁴ = +33.33° (c 1.2, CH₂Cl₂). IR (KBr, cm⁻¹): 3031, 2870, 1454. ¹H-NMR (CDCl₃) δ 7.41–7.22 (m, 17H), 7.17 (d, J = 3.5 Hz, 2H), 7.16 (s, 1H), 7.06 (s, 1H), 4.86 (d, J = 4.1 Hz, 2H), 4.81 (s, 1H), 4.68 (s, 2H), 4.56 (d, J = 12.0 Hz, 1H), 4.47 (d, J = 11.0 Hz, 1H), 4.38 (s, 1H), 4.35 (d, J = 4.1 Hz, 1H), 4.26 (dd, J = 5.5, 2.2 Hz, 1H), 4.17–4.08 (m, 1H), 3.85 (dd, J = 9.5, 7.9 Hz, 1H), 3.76 (d, J = 8.3 Hz, 1H), 3.63 (d, J = 10.0 Hz, 1H). ¹³C-NMR (CDCl₃) δ 137.9, 137.8, 137.6 137.0, 135.3, 128.7, 128.5, 128.4, 128.3, 128.1, 128.0, 128.0, 127.8, 81.0, 76.1, 75.1, 73.8, 73.3, 73.2, 72.4, 64.6. HRMS-ESI (m/z): calcd for C₃₄H₅₆NO₅ [M+H]+ 538.25880, found 538.25879.
L-Idopyranose-derived Piperidine Nitrone (17). \([\alpha]_D^{14} = -0.1^\circ \text{ c 1.0, CH}_2\text{Cl}_2\). IR (KBr, cm\(^{-1}\)) : 3031, 2825, 1454. \(^1\)H-NMR (CDCl\(_3\)) \(\delta\) 7.40–7.33 (m, 12H), 7.32–7.28 (m, 6H), 7.26 (d, \(J = 6.9\) Hz, 2H), 7.10 (d, \(J = 2.7\) Hz, 1H), 4.89 (d, \(J = 11.3\) Hz, 1H), 4.80 (t, \(J = 12.4\) Hz, 2H), 4.67 (d, \(J = 11.6\) Hz, 2H), 4.60 (t, \(J = 10.4\) Hz, 2H), 4.53 (d, \(J = 12.0\) Hz, 1H), 4.51–4.48 (m, 1H), 4.30 (s, 1H), 4.17 (dd, \(J = 9.9, 3.4\) Hz, 1H), 4.14 (d, \(J = 8.6\) Hz, 1H), 4.02 (s, 1H), 4.01–3.97 (m, 1H). \(^{13}\)C-NMR (CDCl\(_3\)) \(\delta\) 138.1, 137.8, 137.43, 135.6, 128.6, 128.5, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 77.0, 76.4, 75.1, 74.4, 73.7, 73.6, 71.7, 70.0, 65.2. HRMS-ESI (\(m/z\)) : calcd for C\(_{34}\)H\(_{36}\)NO\(_5\) [M+H]\(^+\) 538.25880, found 538.25879.

4. Conclusions

In summary, D-glucopyranose- and L-idopyranose-derived piperidine nitrones have been synthesized in good overall yields through six-step reaction sequence starting from the readily available 2,3,4,6-tetra-O-benzyl-D-glucopyranose. The method is efficient and could be general for the synthesis of aldohexose-derived piperidine nitrones which are precursors of piperidine iminosugars. Based on this procedure, many other hexopyranose-derived cyclic nitrones can be prepared, therefore this method should prove significant for future work on the design, synthesis and discovery of glycosidase inhibitors with better selectivity and potency.

Supplementary Materials

Acknowledgments

Financial support from National Basic Research Program of China (No. 2012CB822101 and 2011CB808603), and The Natural Science Foundation of China (No. 21272240 and 21102149) is gratefully acknowledged.

Conflict of Interest

The authors declare no conflict of interest.

References

Sample Availability: Samples of the compounds 7 and 13–16 are available from the authors.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).