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Abstract: D-Glucopyranose-derived and L-idopyranose-derived piperidine nitrones were 

synthesized in good overall yields through six-step reaction sequence starting from readily 

available 2,3,4,6-tetra-O-benzyl-D-glucopyranose. The method is efficient and could be 

general for the synthesis of aldohexose-derived piperidine nitrones which are precursors of 

piperidine iminosugars. 
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1. Introduction 

Because of their remarkable biological activities [1–3], iminosugars, the ‘nitrogen-in-the-ring’ 

analogues of pyranoses and furanoses, have attracted considerable attention from synthetic organic 

chemists [4–7]. Over the last 40 years, a very large number of azapyranose sugars, i.e., piperidine 

iminosugars, have been isolated from various plants and animal sources (Figure 1). Nearly all these 

naturally-occurring iminosugars, as well as the majority of synthetic azapyranose sugars, elicit some 

sort of biological response [6]. Although great efforts have been made and numerous synthetic 

procedures have been developed for the synthesis of iminosugars [8–22], efficient methods for the 

rapid generation of azapyranoses with the structural diversity necessary for in-depth structure-activity 

studies are still lacking. Due to the versatile reactivities of the nitrone functionality, synthetic methods 

based on sugar-derived cyclic nitrones have emerged as a potentially powerful strategy for the 

diversity-oriented synthesis of iminosugars among the existing approaches [23–33]. 
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Figure 1. Some naturally occurring azapyranose alkaloids. 

 

As a result of their capability of undergoing a variety of synthetically useful reactions, such as  

1,3-dipolar cycloadditions [34–40], nucleophilic additions [39,41–48], and pinacol-type coupling 

reactions [49–56], etc., nitrones [57,58] have been shown to be powerful synthetic intermediates for 

the construction of structurally complex molecules [59–61]. Polyhydroxylated cyclic nitrones or sugar-

derived cyclic nitrones, which have been widely used in the synthesis of various natural and 

biologically active nitrogen-containing compounds [27,28,32,33,62–65], are especially valuable in 

organic synthesis. The piperidine nitrones, may serve as the powerful synthons or precursors for the 

synthesis of naturally-occurring piperidine iminosugars, especially for the diversity-oriented synthesis. 

Although, methods for the synthesis of cyclic nitrones have been well documented [66], including 

oxidation of hydroxylamine [67–69], amines [70–73], and imines [74,75], condensation of ketones 

with hydroxylamines [76,77], and N-alkylation of oximes [78–80], efficient synthetic methods for the 

preparation of pyranose-derived nitrones are still lacking. Several syntheses of pentopyranose-derived 

piperidine nitrones have been reported before [81–83], however, to the best of our knowledge, the only 

synthesis of a hexopyranose-derived piperidine nitrone so far has been reported in 1996 by van den 

Broek and co-workers [84] who described the preparation of pyranose-derived nitrones by oxidation of 

2,3,4,6-O-benzyl-DNJ 6 employing 2,2-dimethydioxirane (DMDO) as oxidizing agent (Scheme 1). 

This method, however, has obvious drawbacks in that the regioselectivity of the oxidation was poor 

and the oxidation of the piperidine resulted in the formation of an inseparable mixture of two  

regio-isomers, i.e., the aldo and keto nitrones 7 and 8. 

Scheme 1. van den Broek’s synthesis of pyranose-derived nitrone.  

 

In the context of our ongoing projects on the synthesis and application of sugar-derived cyclic 

nitrones [80], herein we report an efficient synthesis of D-glucopyranose- and L-idopyranose-derived 

piperidine nitrones. We intend to develop a general and efficient method for the synthesis of 

aldohexose-derived piperidine nitrones, which could be powerful synthons for the synthesis of 

iminosugars containing a piperidine moiety in the molecules. 
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2. Results and Discussion 

2.1. The Unsuccessful N-alkylation Strategy  

Intramolecular N-alkylation, the most widely used strategy in cyclic nitrone synthesis, was not 

applicable here. Oxime 10, prepared from D-glucose-derived aldehyde 9, failed under various conditions to 

undergo the predicted intramolecular N-alkylation to give the desired hexopyranose-derived piperidine 

nitrone 11 (Scheme 2). It seems that intramolecular nucleophilic substitution to form hexopyranose-type 

piperidine rings is less favorable than for furanose- or pentopyranose rings, possibly due to the 

relatively poor reactivity of the leaving group at C5 of the hexopyranose. 

Scheme 2. Unsuccessful intramolecular N-alkylation strategy. 

 

In order to avoid the low regioselectivity and ring formation problems of the method of oxidation 

and intramolecular N-alkylation, we turned to a less employed strategy in sugar-derived cyclic nitrone 

synthesis—the intramolecular condensation of aldehydes with hydroxylamines [76,77,85,86]—which has 

been successfully applied in the synthesis of aldohexose-derived azepane nitrones. 

2.2. The Preparation of Diethyl Dithioacetal 

The readily available 2,3,4,6-tetra-O-benzyl-D-glucopyranose (12) was chosen as the starting 

material for our investigation on the synthesis of aldohexose-derived piperidine nitrones, which is expected 

to give two nitrones, i.e., a D-glucopyranose-derived nitrone and an L-idopyranose-derived nitrone. 

Table 1. Screening of conditions of preparing diethyl dithioacetal. 

 
Entry Additives  Eq. Solvent Tem. (°C) Yield a (%) 

1 TMSCl 0.2 CHCl3 RT - 
2 BF3⋅Et2O 0.2 CHCl3 RT - 
3 AcCl 0.2 CH2Cl2 RT - 
5 conc. HCl excess MeOH RT - 
6 HCl (g) excess Dioxane RT 56 
7 BDMS 0.2 CH3CN 0- RT trace 
8 BDMS 0.2 CH2Cl2 0- RT trace 
9 BDMS 0.2 EtSH RT 84 b 

a Isolated yield. b Reference [82]. 
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First of all, in order to find the optimal reaction conditions for the synthesis of the key intermediate, 

the alcohol 13, through the pyranose hemiacetal ring opening by ethanethiol, various reagents  

and reaction conditions has been screened (Table 1). It turned out that the method using 

bromodimethylsulfonium bromide (BDMS), reported by Khan’s group [87], gave the best result. 

2.3. Completion of the Synthesis 

Oxidation of the resulting alcohol 13 using tetrapropylammonium perruthenate (TPAP) [88] gave 

the corresponding ketone 14 in 81% yield (Scheme 3). Other methods of oxidation, such as the Swern 

oxidation, Corey-Suggs oxidation (PCC), and Dess-Martin oxidation (DMP), all failed to oxidize 13 

into the desired ketone 14. To transform the diethyl dithiolacetal protecting group of 14 into more  

acid-labile dimethyl acetal protecting group, the ketone 14 was treated with mercury salts in the 

presence of methanol to form the dimethyl acetal protected ketone 15 in 81% yield.  

Scheme 3. Completion of the synthesis of D-glucopyranose-derived and  

L-idopyranose-derived piperidine nitrones.  

 

Then, condensation of ketone 15 with NH2OH, followed by reduction of the resulting oxime with 

sodium cyanoborohydride gave the hydroxylamine 16 as an inseparable mixture of two C5 isomers in 

73% yield. A pure analytical sample of the major C5 isomer of 16 was obtained by flash column 

chromatography and its structure was determined by NMR (see Supporting Information). Finally, 

acidic hydrolysis of the dimethyl acetal 16 by CH3CN/6 N HCl and subsequent intramolecular 

condensation of the hydroxylamine and aldehyde produced a mixture of two products, the D-gluco-

pyranose-derived piperidine nitrone 7 and L-idopyranose-derived piperidine nitrone 17, in 81% total 

yield, which are easily separated by column chromatography on silica gel with a ratio of 2:1. The 

structures of the two nitrones have been determined undoubtedly by NMR and NOESY experiments 

(see Supplementary Materials). It is worth noting that the D-glucopyranose-derived piperidine nitrone 

7 was found to be quite stable, even at room temperature, rather than unstable as has been reported 

before [84], while the L-idopyranose-derived piperidine nitrone 17 is less stable, and gradually 

decomposed at room temperature, although it was stable at low temperature when stored in a fridge. 
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3. Experimental  

3.1. General Methods 

All reagents were used as received from commercial sources without further purification or 

prepared as described in the literature. Reactions were stirred using Teflon-coated magnetic stirring 

bars. Analytical TLC was performed with 0.20 mm silica gel 60F plates with 254 nm fluorescent 

indicator. TLC plates were visualized by ultraviolet light or by treatment with a spray of Pancaldi 

reagent [(NH4)6MoO4, Ce(SO4)2, H2SO4, H2O]. Chromatographic purification of products was carried 

out by flash column chromatography on silica gel (200–300 mesh). Infrared spectra were recorded on a 

JASCO FT/IR-480 plus Fourier transform spectrometer. NMR spectra were measured in CDCl3 (with 

TMS as internal standard) on a Bruker AV300 (1H at 300 MHz, 13C at 75 MHz) magnetic resonance 

spectrometer. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hz. The 

following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet,  

q = quartet, m = multiplet. High-resolution mass spectra (HRMS) were recorded on a Thermo 

Scientific LTQ/FT mass spectrometer or a GCT mass spectrometer. Polarimetry was carried out using 

an Optical Activity AA-10R polarimeter and the measurements were made at the sodium D-line with a 

0.5 dm pathlength cell. Concentrations (c) are given in gram per 100 mL. 

3.2. Synthesis 

(2R,3R,4S,5R)-1,3,4,5-Tetrakis(benzyloxy)-6,6-bis(ethylthio)hexan-2-ol (13). A catalytic amount (7 mg, 

0.03 mmol) of bromodimethylsulfonium bromide (BDMS) was added to a stirred mixture of 2,3,4,6-

tetra-O-benzyl-D-glucopyranose (12, 500 mg, 1 mmol) and ethanethiol (5 mL) at room temperature. 

The mixture was stirred for 2 h, and the mixture gradually became clear. TLC indicated the 

disappearance of starting material, then the excess ethanethiol was removed in vacuo. The residual 

products were dissolved in ethyl acetate, and washed with aq. NaHCO3 (3 × 10 mL). Removal of the 

solvent in vacuo after dried over MgSO4, the crude product was purified by column chromatography on 

silica gel (petroleum ether-ethyl acetate = 40:1–20:1) to give compound 13 (552 mg, 84%) as a colourless 

oil. 1H-NMR (CDCl3) δ 7.48–7.25 (m, 20H), 4.95 (d, J = 11.1 Hz, 1H), 4.86 (d, J = 11.2 Hz, 1H), 4.85 

(d, J = 11.2 Hz, 1H), 4.73 (d, J = 11.2 Hz, 1H), 4.64–4.54 (m, 4H), 4.33 (dd, J = 6.6, 3.6 Hz, 1H), 4.20 

(dd, J = 6.6, 3.7 Hz, 1H), 4.13 (dt, J = 10.1, 4.9 Hz, 1H), 3.98 (d, J = 3.7 Hz, 1H), 3.77 (dd, J = 7.0, 3.6 Hz, 

1H), 3.71 (d, J = 3.8 Hz, 1H), 3.69 (d, J = 5.5 Hz, 1H), 3.15 (d, J = 4.7 Hz, 1H), 2.72 (q, J = 7.4 Hz, 

2H), 2.67–2.53 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.6 Hz, 3H). 13C-NMR (CDCl3) δ 138.5, 

138.1, 137.9, 128.5, 128.4, 128.4, 128.3, 128.2, 127.9, 127.9, 127.78, 127.75, 127.5, 82.7, 80.0, 75.3, 

74.9, 73.5, 72.8, 71.4, 70.9, 53.8, 25.5, 25.3, 14.5. [lit. [82] 1H-NMR (400 MHz; CDCl3) δ 7.38–7.23 

(m, 20H), 4.89 (d, J = 11.2 Hz, 1H), 4.80 (d, J = 11.2, 1H), 4.79 (d, , J = 11.6, 1H), 4.67 (d, J = 11.6 Hz, 

1H), 4.59–4.49 (m, 4H), 4.27 (dd, J = 6.8, 3.6 Hz, 1H), 4.14 (dd, J = 6.8, 4.0 Hz, 1H), 4.15–4.03 (m, 

1H), 3.93 (d, J = 4.0 Hz, 1H), 3.71 (dd, J = 6.8, 3.6 Hz, 1H), 3.66 (dd, J = 10.0, 4.0 Hz, 1H), 3.61 (dd, 

J = 10.0, 5.6 Hz, 1H), 3.08 (d, J = 5.2 Hz, 1H), 2.66 (q, J = 7.6 Hz, 2H), 2.60–2.50 (m, 2H), 1.18 (t,  

J = 7.2 Hz, 3H), 1.17 (t, J = 7.6 Hz, 3H); 13C-NMR (100 MHz; CDCl3) δ 138.7, 138.4, 138.1, 128.6, 

128.4, 128.3, 128.2, 128.03, 128.0, 127.96, 127.9, 127.6, 82.9, 80.3, 77.5, 75.5, 75.1, 73.7, 73.0, 71.6, 

71.1, 54.0, 25.7, 25.5, 14.6.] 
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(3S,4S,5R)-1,3,4,5-Tetrakis(benzyloxy)-6,6-bis(ethylthio)hexan-2-one (14). Solid TPAP (68 mg,  

0.19 mmol) was added portionwise to a stirred mixture of dithioacetal 13 (2.49 g, 3.85 mmol),  

4-methylmorpholine N-oxide (NMO) (676 mg, 5.77 mmol) and powdered 4 Å molecular sieves (2 g) 

in dry CH2Cl2 (8 mL) at 0 °C under nitrogen. The mixture was stirred for 45 min at room temperature, 

filtered through a short pad of silica and eluted with ethyl acetate. The filtrate was concentrated  

in vacuo to give a yellow oil. Column chromatography (petroleum ether-ethyl acetate = 6:1) provided 

ketone 14 (2.07 g, 81%) as a colourless oil. 1H-NMR (CDCl3) δ 7.43–7.13 (m, 20H), 4.81 (d, J = 10.9 Hz, 

1H), 4.73 (d, J = 11.2 Hz, 1H), 4.70 (s, 1H), 4.66 (s, 1H), 4.51 (d, J = 11.2 Hz, 1H), 4.41–4.32 (m, 

4H), 4.23 (d, J = 17.5 Hz, 1H), 4.16 (d, J = 4.2 Hz, 1H), 4.11 (d, J = 17.6 Hz, 1H), 4.03 (dd, J = 5.8, 

4.6 Hz, 1H), 3.75 (d, J = 4.4 Hz, 1H), 2.69–2.60 (m, 2H), 2.55 (dd, J = 14.9, 7.8 Hz, 2H), 1.18 (t,  

J = 7.2 Hz, 3H,), 1.17 (t, J = 7.6 Hz, 3H). 13C-NMR (CDCl3) δ 206.5, 138.3, 137.8, 137.4, 136.9, 

128.6, 128.43, 128.38, 128.35, 128.24, 128.21, 128.0, 127.9, 127.8, 127.5, 81.7, 81.4, 80.8, 75.2, 75.1, 

74.4, 73.4, 73.3, 53.4, 25.3, 14.4. [lit. [89] 1H-NMR (300 MHz; CDCl3) δ 7.43–7.18 (20H, m), 4.82 (d, 

J = 11.0 Hz, 1H), 4.74 (d, J = 11.0 Hz, 1H), 4.70 (d, J = 11.0 Hz, 1H), 4.69 (d, J = 11.0 Hz, 1H), 4.52 

(d, J = 11.0 Hz, 1H), 4.41–4.33 (m, 4H), 4.24 (d, J = 18.0 Hz, 1H), 4.16 (d, J = 4.0 Hz, 1H), 4.12 (d,  

J = 18.0 Hz, 1H), 4.04 (dd, J = 6.0, 4.5 Hz, 1H), 3.75 (d, J = 4.5 Hz, 1H), 2.64 (m, 2H), 2.56 (m, 2H), 

1.19 (t, J = 7.5 Hz, 3H), 1.18 (t, J = 7.5 Hz, 3H); 13C-NMR (75 MHz; CDCl3) δ 206.5, 138.3, 137.7, 

137.3, 136.8, 128.6, 128.46, 128.43, 128.38, 128.35, 128.25, 128.21, 127.9, 127.87, 127.85, 127.5, 

81.6, 81.4, 80.7, 75.2, 75.1, 74.3, 73.34, 73.31, 53.3, 25.2, 14.4]. 

(3S,4R,5R)-1,3,4,5-Tetrakis(benzyloxy)-6,6-dimethoxyhexan-2-one (15). Mercuric oxide (HgO; 

yellow) (1.06 g, 4.90 mmol) was added to a solution of ketone 14 (790 mg, 1.22 mmol) in boiling 

MeOH (33 mL). The hot solution was stirred vigorously while a solution of HgCl2 (1.00 g, 3.67 mmol) 

in dry MeOH (4 mL) was added over a period of 1 min, and stirring was continued while the 

suspension was refluxed for 15 min. The hot solution was filtered, the solid matter washed with 

MeOH, and the combined solutions concentrated in vacuo to give a syrup, which was dissolved in 

CH2Cl2 (25 mL). A white solid was filtered off and the filtrate washed successively with water, 10% 

aqueous KI (2 × 10 mL) and water (3 × 10 mL). The solution was dried over MgSO4 and the solvent 

was removed in vacuo to give a colorless oil. Column chromatography (petroleum ether-ethyl acetate 

= 5:1) provided ketone 15 (577 mg, 81%) as a colourless oil. 1H-NMR (CDCl3) δ 7.32–7.07 (m, 20H), 

4.64 (d, J = 10.8 Hz, 1H), 4.56 (d, J = 11.8 Hz, 1H), 4.54 (d, J = 11.3 Hz, 1H), 4.49–4.42 (m, 2H), 4.35 

(d, J = 5.9 Hz, 1H), 4.28 (d, J = 11.9 Hz, 1H), 4.22 (d, J = 11.9 Hz, 1H), 4.12 (s, 2H), 4.07 (d, J = 4.9 Hz, 

1H), 3.93 (t, J = 4.5 Hz, 1H), 3.65 (dd, J = 5.9, 4.3 Hz, 1H), 3.31 (s, 3H), 3.22 (s, 3H). 13C-NMR 

(CDCl3) δ 206.3, 138.5, 137.8, 137.7, 137.4, 128.5, 128.5, 128.43, 128.41, 128.38, 128.2, 128.0, 127.9, 

127.8, 127.5, 105.5, 80.9, 80.0, 77.7, 74.8, 74.3, 74.3, 73.3, 73.2, 56.0, 54.7. [lit. [89] 1H-NMR (300 MHz; 

CDCl3) δ 7.50–7.15 (m, 20H), 4.72 (d, J = 11.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 11.0 Hz, 

1H), 4.53 (m, 2H), 4.46 (d, J = 12.0 Hz, 1H), 4.43 (d, J = 6.3 Hz, 1H), 4.37 (d, J = 12.0 Hz, 1H), 4.31 

(d, J = 12.0 Hz, 1H), 4.21 (s, 2H), 4.15 (d, J = 4.7 Hz, 1H), 4.00 (dd, J = 4.5, 4.7 Hz, 1H), 3.73 (dd,  

J = 4.5, 6.3 Hz, 1H), 3.40 (s, 3H), 3.31 (s, 3H); 13C-NMR (75 MHz; CDCl3) δ 206.3, 138.4, 137.7, 

137.6, 137.3, 128.5, 128.45, 128.43, 128.39, 128.36, 128.2, 128.0, 127.8, 127.7, 127.5, 105.4, 80.8, 

79.9, 77.6, 74.7, 74.3, 74.2, 73.3, 73.2, 56.0, 54.7]. 
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N-((3R,4S,5R)-1,3,4,5-Tetrakis(benzyloxy)-6,6-dimethoxyhexan-2-yl)hydroxylamine (16). A stirred 

solution of ketone 15 (592 mg, 1.01 mmol), hydroxylamine hydrochloride (211 mg, 3.03 mmol), 

pyridine (327 mL, 4.05 mmol) and EtOH (2.5 mL) was heated at 60 °C for 20 min. The solvent was 

removed in vacuo and the residue taken up in Et2O and washed with water. The organic layer was 

dried over MgSO4, filtered and the solvent was removed in vacuo. Column chromatography 

(petroleum ether-ethyl acetate = 3:1 containing 1% Et3N) provided oxime (546 mg, 90%) as a 

colourless oil and as a 1:1 mixture of Z and E isomers. The oxime (200 mg, 0.33 mmol) was 

redissolved in methanol (10 mL) and sodium cyanoborohydride (42 mg, 0.66 mmol) was added. 4 

drops of methyl orange was added as the indicator. The resulting solution was carefully treated at room 

temperature with concentrated HCl/methanol (v/v = 1/10) to maintain the pH value between 3 and 4. 

After the completion of the reaction, the resulting solution was concentrated in vacuo. The residue was 

dissolved in CH2Cl2 (10 mL) and washed with 1 N NaOH (1 × 10 mL) and then brine (2 × 10 mL). 

After dried (MgSO4) and condensed under reduced pressure, the crude product was purified by column 

chromatography on silica gel (petroleum ether-ethyl acetate = 3:1 to 1:1) to afford isomers of 

hydroxylamine 16 (181 mg, 73% for 2 steps) as a colorless oil. 1H-NMR (CDCl3) δ 7.49–7.12  

(m, 20H), 5.14 (br, 1H), 4.87 (d, J = 10.7 Hz, 2H), 4.83–4.71 (m, 3H), 4.64 (d, J = 10.5 Hz, 3H), 4.59 

(s, 2H), 4.50 (d, J = 11.0 Hz, 2H), 4.38 (s, 3H), 4.08 (s, 1H), 3.99 (s, 1H), 3.70 (s, 2H), 3.64–3.52  

(m, 2H), 3.46 (s, 3H), 3.36 (s, 2H), 3.25 (s, 3H), 3.20 (d, J = 7.0 Hz, 2H). 13C-NMR (CDCl3) δ 138.8, 

138.5, 138.1, 128.4, 128.3, 128.1, 127.8, 127.6, 127.4, 105.4, 79.5, 78.3, 78.2, 75.0, 74.8, 73.9, 73.3, 

68.4, 62.0, 56.0, 54.1. ESI-MS: m/z 602.96 [M+H]+ 

(2R,3R,4S,5S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-2,3,4,5-Tetrahydropyridine 1-oxide  

(D-Glucopyranose-Derived Piperidine Nitrone (7) and (2S,3R,4S,5S)-3,4,5-tris(benzyloxy)-2-

((benzyloxy)methyl)-2,3,4,5-Tetrahydropyridine 1-oxide (L-Idopyranose-Derived Piperidine Nitrone (17). 

To a solution of hydroxylamine 16 (180 mg, 0.3 mmol) in CH3CN (6 mL) was added concentrated HCl 

(2 mL) and the resulting solution was stirred at room temperature for 2 h. The solution was diluted 

with EtOAc (10 mL) and then washed with H2O (2 × 20 mL) and saturated NaHCO3 solution (1 × 10 mL). 

The organic phase was dried (MgSO4) and concentrated under reduced pressure. The residue was 

purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 1:1 to ethyl acetate) 

to afford D-glucopyranose-type nitrone 7 (87 mg, 54%) and L-idopyranose-type nitrone 17 (44 mg, 

27%) as yellow oils.  

D-Glucopyranose-derived piperidine nitrone (7). [α]D
14 = +33.33° (c 1.2, CH2Cl2). IR (KBr, cm−1): 

3031, 2870, 1454. 1H-NMR (CDCl3) δ 7.41–7.22 (m, 17H), 7.17 (d, J = 3.5 Hz, 2H), 7.16 (s, 1H), 7.06 

(s, 1H), 4.86 (d, J = 4.1 Hz, 2H), 4.81 (s, 1H), 4.68 (s, 2H), 4.56 (d, J = 12.0 Hz, 1H), 4.47 (d, J = 11.0 Hz, 

1H), 4.38 (s, 1H), 4.35 (d, J = 4.1 Hz, 1H), 4.26 (dd, J = 5.5, 2.2 Hz, 1H), 4.17–4.08 (m, 1H), 3.85 (dd, 

J = 9.5, 7.9 Hz, 1H), 3.76 (d, J = 8.3 Hz, 1H), 3.63 (d, J = 10.0 Hz, 1H). 13C-NMR (CDCl3) δ 137.9, 

137.8, 137.6 137.0, 135.3, 128.7, 128.5, 128.4, 128.3, 128.1, 128.0, 128.0, 127.8, 81.0, 76.1, 75.1, 

73.8, 73.3, 73.2, 72.4, 64.6. HRMS-ESI (m/z): calcd for C34H36NO5 [M+H]+ 538.25880, found 

538.25879. 
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L-Idopyranose-derived Piperidine Nitrone (17). [α]D
14 = −0.1° (c 1.0, CH2Cl2). IR (KBr, cm−1): 3031, 

2825, 1454. 1H-NMR (CDCl3) δ 7.40–7.33 (m, 12H), 7.32–7.28 (m, 6H), 7.26 (d, J = 6.9 Hz, 2H), 7.10 (d, 

J = 2.7 Hz, 1H), 4.89 (d, J = 11.3 Hz, 1H), 4.80 (t, J = 12.4 Hz, 2H), 4.67 (d, J = 11.6 Hz, 2H), 4.60 (t, 

J = 10.4 Hz, 2H), 4.53 (d, J = 12.0 Hz, 1H), 4.51–4.48 (m, 1H), 4.30 (s, 1H), 4.17 (dd, J = 9.9, 3.4 Hz, 

1H), 4.14 (d, J = 8.6 Hz, 1H), 4.02 (s, 1H), 4.01–3.97 (m, 1H). 13C-NMR (CDCl3) δ 138.1, 137.8, 

137.43, 135.6, 128.6, 128.5, 128.5, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 77.0, 76.4, 75.1, 74.4, 

73.7, 73.6, 71.7, 70.0, 65.2. HRMS-ESI (m/z): calcd for C34H36NO5 [M+H]+ 538.25880, found 538.25879. 

4. Conclusions  

In summary, D-glucopyranose- and L-idopyranose-derived piperidine nitrones have been 

synthesized in good overall yields through six-step reaction sequence starting from the readily 

available 2,3,4,6-tetra-O-benzyl-D-glucopyranose . The method is efficient and could be general for the 

synthesis of aldohexose-derived piperidine nitrones which are precursors of piperidine iminosugars. 

Based on this procedure, many other hexopyranose-derived cyclic nitrones can be prepared, therefore 

this method should prove significant for future work on the design, synthesis and discovery of 

glycosidase inhibitors with better selectivity and potency. 
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