Molecules 2013, 18(5), 5611-5647; doi:10.3390/molecules18055611
Review

Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications

Received: 1 April 2013; in revised form: 2 May 2013 / Accepted: 6 May 2013 / Published: 15 May 2013
(This article belongs to the Special Issue Chitins and Chitosans)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.
Keywords: chitosan; gene therapy; pDNA; siRNA; tissue engineering; gene-activated matrices
PDF Full-text Download PDF Full-Text [1180 KB, uploaded 18 June 2014 20:05 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Raftery, R.; O'Brien, F.J.; Cryan, S.-A. Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications. Molecules 2013, 18, 5611-5647.

AMA Style

Raftery R, O'Brien FJ, Cryan S-A. Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications. Molecules. 2013; 18(5):5611-5647.

Chicago/Turabian Style

Raftery, Rosanne; O'Brien, Fergal J.; Cryan, Sally-Ann. 2013. "Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications." Molecules 18, no. 5: 5611-5647.

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert