Supplementary Materials

NMR Studies

a) ¹*H*-*NMR Study of Imine* **3** *Formation:*

Experimental details:

Amine **2** (10 mg) in 580 μ L of CDCl₃ were mixed with a stock solution of 2-pyridinecarboxaldehyde (20 μ L, 22 μ L of 2-pyridinecarboxaldehyde + 218 μ L of CDCl₃) in an NMR tube. ¹H-NMR spectra were recorded 3, 5, 15, 30, 45, 60, and 120 min after mixing the components.

Time after	Peak area	% Aldobydo	Peak area	% Imine
	(aldenyde proton)	Aldeliyue	(initie proton)	
3	0.8068	80.68	0.1759	17.59
5	0.6398	63.98	0.3626	36.26
10	0.4999	49.99	0.4954	49.54
15	0.3643	36.43	0.6348	63.48
20	0.2938	29.38	0.7052	70.52
30	0.2241	22.41	0.7770	77.70
45	0.1754	17.54	0.8245	82.45
60	0.1413	14.13	0.8436	84.36
120	0.1048	10.48	0.8795	87.95

Table S1. Conversion of imine 3 in CDCl₃ over time.

Figure S1. ¹H-NMR study of imine 3 formation in CDCl₃ over time.

b) ¹H-NMR Study of Imine **3** Hydrolysis:

Experimental details:

Imine **3** (40.9 mol/mL) was dissolved in CDCl₃ (0.6 mL). Then a catalytic amount (<1 mg) of p-MeC₆H₄SO₃H was added. ¹H-NMR spectra were recorded after 3, 5, 15, 30, 45, and 60 min.

Figure S2. ¹H-NMR study of imine 3 hydrolysis by *p*-MeC₆H₄SO₃H in CDCl₃ over time.

c) ¹H-NMR Dilution Study of Imine **3**:

Figure S3. Aromatic region of the ¹H-NMR spectra of imine **3** in CDCl₃ at a concentration of (**a**) 1.4×10^{-3} M; (**b**) 2.7×10^{-3} M; (**c**) 5.5×10^{-3} M; (**d**) 1.1×10^{-2} M; (**e**) 2.2×10^{-2} M; (**f**) 2.8×10^{-2} M.

Molecules 2013, 18

d) $VT^{1}H$ -NMR Spectra of Imine **3**:

Figure S4. ¹H-NMR spectra of imine **3** in DMSO- d_6 at non-gelling concentration (0.2% w/v, bottom spectrum) and as a DMSO- d_6 gel (2.5% w/v) at different temperatures (30–120 °C).

Figure S5. ¹H-NMR subspectra of imine **3** in DMSO- d_6 at non-gelling concentration (0.2% w/v, bottom spectrum) and as a DMSO- d_6 gel (2.5% w/v) at different temperatures (30–120 °C).

e) VT¹H-NMR Spectra of Imine 3 and Pyrazinecarboxamide:

Figure S6. ¹H-NMR spectra of gel of imine **3** and pyrazinecarboxamide (1:1) in DMSO- d_6 (2.8% w/v) at different temperatures (30–120 °C).

Figure S7. ¹H-NMR subspectra of gel of imine **3** and pyrazinecarboxamide (1:1) in DMSO- d_6 (2.8% w/v) at different temperatures (30–120 °C).

e) ¹³C CPMAS NMR Spectra:

Figure S8. ¹³C-NMR spectrum of (**a**) imine **3**, and ¹³C CPMAS NMR spectra of (**b**) xerogel of imine **3** from propan-1-ol; (**c**) xerogel of imine **3** from pentan-1-ol; (**d**) xerogel of imine **3** and pyrazinecarboxamide (1:1) from propan-1-ol; and (**e**) pyrazinecarboxamide recrystallized from propan-1-ol.

Note: Corresponding signals of the spectra of xerogels closely resemble to each other suggesting that imine **3** behaves very similarly in the xerogel state. The samples of the xerogels from propan-1-ol show relatively sharp signals indicating that they are more crystalline in nature than the sample of the xerogel from pentan-1-ol. Moreover, some signals reveal a double resonance pattern which means that the sample is either (i) a mixture of different polymorphic forms; or (ii) composed of a form having two non-equivalent molecules present in an asymmetric unit.

Photos of Gels

Figure S9. Photographs of gels (2 % w/v) of imine 3 in (a) propan-1-ol; (b) pentan-1-ol, and (c) DMSO; and of imine 3 and pyrazinecarboxamide (1:1) in (d) pentan-1-ol; and (e) DMSO.

Figure S10. Photographs of gel of imine **3** in propan-1-ol (2% w/v) after addition of 25 μ L of 0.1 M aqueous solution of *p*-MeC₆H₄SO₃H.

Additional SEM Micrographs

Figure S11. SEM micrographs of xerogels of imine 3 in (a) pentan-1-ol and (d) DMSO; of imine 3+PC in (b) pentan-1-ol and (e) DMSO; and of imine 3+AP in (c) pentan-1-ol and (f) DMSO.

In Situ Gelation Study

Experimental details:

Total volume and the amount of imine **3** (experiments in Table S2) or amine **1** (experiments in Table S3) remained constant during the tests.

Molar ratio (amine 1 : aldehyde 2)	3:1	2:1	1:1	1:2	1:3
Gelation tests (after a heat/cool cycle)	Р	Р	G	G	G
Weight/volume percentage of <i>in situ</i> formed imine 3	2.00 %	2.00 %	2.00 %	2.00 %	2.00 %
Total weight/volume percentage	5.42 %	3.71 %	2.00 %	2.35 %	2.70 %

Table S2. Results of in situ gelation in propan-1-ol.

Molar ratio (amine 1 : aldehyde 2)	1:0	1:0.2	1:0.4	1:0.6	1:0.8	1:0.9	1:1	1: 2	1:3
Gelation tests (after a heat/cool cycle)	S	S	Ρ	Р	Р	pG	G	G	G
Weight/volume percentage of <i>in situ</i> formed imine 3	0%	0.40 %	0.80 %	1.20 %	1.60 %	1.80 %	2.00 %	2.00 %	2.00 %
Total weight/volume percentage	1.71 %	1.77 %	1.82 %	1.88 %	1.94 %	1.97 %	2.00 %	2.35 %	2.70 %

Table S3. Results of *in situ* gelation in propan-1-ol.

Note: S – solution upon cooling, P – partly precipitate upon cooling, pG – partial gel, G – gel.

Drug Release Experiments

Experimental details:

The gels of imine **3** and pyrazinecarboxamide (2.8% w/v), prepared in a 1:1 ratio in 0.5 mL of pentan-1-ol ($n_{PC} = 0.0195$ mmol), were stabilised overnight. Then water (0.5 mL) either without or with p-toluenesulfonic acid (0.0053 mmol) was added. The samples stayed without any shaking or other type of disturbance. Water layers (0.4 mL) were separated off at certain times (after 0.5, 1, 2, 4 and 24 h), and after solvent evaporation in the open air, solid residues were dissolved in D₂O (0.6 mL) and analysed by NMR with succinic acid (0.0042 mmol) as an internal standard. As control experiments (A and B), pyrazinecarboxamide (0.0195 mmol) was dissolved in pentan-1-ol (0.5 mL), and the samples were treated in the same way as the gel samples (adding of 0.5 mL of water either without or with 0.0053 mmol of p-toluenesulfonic acid, and then analysed by NMR with 0.0085 mmol of succinic acid as an internal standard). To check the drug release under non-calm conditions, the samples were treated by ultrasonic for 10 min and after one hour of standing without any additional disturbance, the water layers were analysed by NMR in the same way like in the other drug release experiments. The percentage of the released drug was calculated from the peak area of drug signals of a sample to the peak area of drug signals of a reference sample which was prepared by dissolving pyrazine-carboxamide (0.0195 mmol) in 0.6 mL of D₂O with succinic acid (0.0085 mmol) as an internal standard. Results are summarised in Table S4.

	Peak are	a of drug si	gnals	Peak a	rea calculat	ted for	Peak area calculated for the whole					Average	
	I	П	Ш	0.0085 n	nmol of succ	cinic acid	sample (0.4 mL -> 0.5 mL)		Fercent of released drug			%	
Reference	1.7883	1.8702	1.8686		а			b = 5/4 x a		с =	b/referer	ice	
Control exp	eriment A (ne	utral condi	tions)	(used 0.00	(used 0.0085 mmol of succinic acid)								
0.5 h	0.5856	0.6191	0.6165	0.5856	0.6191	0.6165	0.7320	0.7739	0.7706	40.9327	41.3793	41.2408	41.18
1 h	0.6023	0.6329	0.6350	0.6023	0.6329	0.6350	0.7529	0.7911	0.7938	42.1000	42.3016	42.4783	42.29
2 h	0.6341	0.6739	0.6747	0.6341	0.6739	0.6747	0.7926	0.8424	0.8434	44.3228	45.0420	45.1341	44.83
4 h	0.7315	0.7636	0.7671	0.7315	0.7636	0.7671	0.9144	0.9545	0.9589	51.1310	51.0373	51.3152	51.16
24 h	0.8082	0.8333	0.8265	0.8082	0.8333	0.8265	1.0103	1.0417	1.0332	56.4922	55.6973	55.2887	55.83
shaking	0.9410	1.0267	1.0382	0.9410	1.0267	1.0382	1.1763	1.2834	1.2978	65.7748	68.6223	69.4504	67.95
Control exp	eriment B (aci	dic conditio	ons)	(used 0.00	85 mmol of su	ccinic acid)							
0.5 h	0.5836	0.6164	0.6251	0.5836	0.6164	0.6251	0.7295	0.7706	0.7814	40.7901	41.2015	41.8147	41.27
1 h	0.6676	0.7042	0.7009	0.6676	0.7042	0.7009	0.8345	0.8802	0.8762	46.6616	47.0645	46.8880	46.87
2 h	0.6952	0.7307	0.7309	0.6952	0.7307	0.7309	0.8690	0.9134	0.9137	48.5908	48.8370	48.8949	48.77
4 h	0.8197	0.8597	0.8497	0.8197	0.8597	0.8497	1.0247	1.0746	1.0622	57.2974	57.4591	56.8420	57.20
24 h	0.8950	0.9400	0.9397	0.8950	0.9400	0.9397	1.1187	1.1750	1.1747	62.5566	62.8248	62.8626	62.75
shaking	0.9908	1.0546	1.0570	0.9908	1.0546	1.0570	1.2386	1.3182	1.3212	69.2585	70.4844	70.7053	70.15
Gel (neutral conditions) (used 0.0042 mmol of succinic acid)													
0.5 h	0.7879	0.8119	0.8163	0.3940	0.4060	0.4082	0.4924	0.5074	0.5102	27.5366	27.1328	27.3032	27.32
1 h	0.9801	1.0548	1.0446	0.4901	0.5274	0.5223	0.6126	0.6593	0.6529	34.2539	35.2502	34.9393	34.81
2 h	1.0862	1.2139	1.1787	0.5431	0.6070	0.5894	0.6789	0.7587	0.7367	37.9620	40.5672	39.4246	39.32
4 h	1.2233	1.3161	1.3072	0.6117	0.6580	0.6536	0.7646	0.8225	0.8170	42.7536	43.9809	43.7226	43.49
24 h	1.3878	1.4876	1.4135	0.6939	0.7438	0.7068	0.8674	0.9298	0.8834	48.5028	49.7139	47.2780	48.50
shaking	1.5848	1.6963	1.7025	0.7924	0.8482	0.8513	0.9905	1.0602	1.0641	55.3878	56.6885	56.9444	56.34
Gel (acidic conditions) (used 0.0042 mmol of succinic acid)													
0.5 h	1.1465	1.2065	1.2110	0.5733	0.6033	0.6055	0.7166	0.7541	0.7569	40.0695	40.3199	40.5049	40.30
1 h	1.2896	1.3815	1.3923	0.6448	0.6908	0.6962	0.8060	0.8634	0.8702	45.0707	46.1682	46.5690	45.94
2 h	1.3840	14553	1.4602	0.6920	0.7277	0.7301	0.8650	0.9096	0.9126	48.3700	48.6345	48.8400	48.61
4 h	1.5483	1.6310	1.6777	0.7742	0.8155	0.8389	0.9677	1.0194	1.0486	54.1121	54.5062	56.1149	54.91
24 h	1.7223	1.8358	1.8598	0.8612	0.9179	0.9299	1.0764	1.1474	1.1624	60.1933	61.3504	62.2057	61.25
shaking	1.9434	2.0451	2.0747	0.9717	1.0226	1.0374	1.2146	1.2782	1.2967	67.9207	68.3450	69.3935	68.55

Table S4 Results of drug release experiment.

Figure S12. ¹H-NMR spectra of drug release experiment in D_2O after 0.5, 1, 2, 4 and 24 h: (a) control experiment A (under neutral conditions); (b) control experiment B (under acidic conditions); (c) drug release from the gel under neutral conditions; (d) drug release from the gel under acidic conditions.

a)			b)	
	<u></u>	0.51		0.5 h
	۱	1h		1 <u>1b</u>
	_L_A	2 h		2h
		4h		4h
<u>. </u>	.L. N	24 h		24 b
	9 8 7 6 5	4 3 2 1 ppm	98765 	4 3 2 1 ppm.
c)	. I. M	0.51	d)	0.5 h
	h,	<u>1h</u>		1 h
	.l	2h		2 h
	1.6	4 հ	in the l	4 h
		1		· · · · · · · · · · · · · · · · · · ·
		24h		24 h