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Abstract: Single-chain polymeric nanoparticles are artificial folded soft nano-objects of 

ultra-small size which have recently gained prominence in nanoscience and nanotechnology 

due to their exceptional and sometimes unique properties. This review focuses on the current 

state of the investigations of click chemistry techniques for highly-efficient single-chain 

nanoparticle construction. Additionally, recent progress achieved for the use of well-defined 

single-chain nanoparticles in some promising fields, such as nanomedicine and catalysis,  

is highlighted. 

Keywords: click chemistry; controlled polymerization; folding/collapse; single-chain 

nanoparticles; nanomedicine; catalysis  

 

  

OPEN ACCESS



Molecules 2013, 18 3340 

 

 

1. Introduction 

Single-chain nanoparticles (SCNPs) are the smallest unimolecular nano-objects (size < 15 nm) that 

can be prepared starting from a linear polymer chain through intrachain folding/collapse [1]. It is 

worth mentioning that the controlled folding/collapse process during SCNP formation is reminiscent of 

protein folding to the native functional state, although single-chain nanoparticles mimic the globular 

structure of biomacromolecules only in a very rough, primitive manner. This is a consequence of the 

polydisperse nature (in size and composition) of current synthetic polymers showing a distribution of 

molar mass when compared to the perfectly monodisperse nature and precise chemical sequence of 

natural biomacromolecules. Even so, due to their exceptional properties, unimolecular polymeric 

nanoparticles have been evaluated as rheology agents [2,3], enzyme mimics [4,5], drug/siRNA/peptide 

nanocarriers [6–9], image contrast agents [3,10–12], sensors [13], catalytic systems in water [14], and 

smart gels [15]. As illustrated in Figure 1, synthesis of single-chain nanoparticles relies on the use of a 

combination of three main different techniques [3]. The first one is controlled polymerization, allowing 

the development of well-defined single-chain polymeric precursors of controlled molar mass and 

narrow size distribution to guarantee as much as possible the uniformity of the resulting unimolecular 

nanoparticles. Of the several controlled polymerization methods described in next section, reversible 

addition fragmentation chain transfer (RAFT) polymerization allows an exquisite control of the 

molecular weight distribution of the single-chain nanoparticle precursor and is a tolerant technique to 

monomers having a broad range of functional groups, without involving any metal catalyst.  

Figure 1. Illustration of the different techniques involved in the construction of single-chain 

nanoparticles (SCNPs): controlled polymerization, polymer functionalization and polymer 

folding/collapse. In red color are indicated highly-efficient procedures for SCNP 

construction (see Section 1.1. for acronyms). 

 

The second technique involved is polymer functionalization, allowing the decoration of the uniform 

polymeric precursor chains with appropriate functional groups for the corresponding folding step to 

collapsed single-chain nanoparticles. Under certain circumstances, the use of this second technique can 

SCNPs

Controlled
Polymeriza‐
tion

Intrachain
Folding / Collapse

Polymer
Functionali‐

zation

RAFT
NMP
ATRP

CLICK CHEMISTRY
NONCOVALENT BONDING

METAL BINDING

AZIDATION
ALKYNATION
VINYLATION



Molecules 2013, 18 3341 

 

 

be avoided through the preparation of well-defined copolymer precursors containing both inert and 

reactive functional groups distributed along the individual chains (often in a random, statistical 

fashion). A typical example of polymer functionalization step is the facile and quantitative 

transformation of the chloromethyl functional groups in poly(4-chloromethyl styrene-co-3-

trimethylsilyl-propyn-1-yl methacrylate) copolymers to azidomethyl moieities via azidation with 

sodium azide [3].  

The third fundamental technique involved is intrachain folding/collapse being used for the efficient 

transformation of the precursor coils to folded unimolecular nanoparticles. Obviously, when compared 

to the long evolution of proteins to their current functional status in living organisms, the field of single 

polymer folding to functional nanoparticles is still in its infancy. A nice example of highly-efficient 

folding/collapse method is certainly that based on intrachain click chemistry which has been used  

for robust, permanent single-chain nanoparticle construction via copper-catalyzed azide alkyne 

cycloaddition (CuAAC) [3]. 

1.1. Controlled Polymerization  

The development of controlled radical polymerization (CRP) processes allowing the facile 

construction of polymers approaching the polydispersity values of well-defined anionic “living” 

polymers with controlled architectures (stars, combs, dendrimers) and good tolerance towards the 

presence of a broad range of monomer functional groups has given rise to an exponential use of 

specialty polymers synthesized via CRP in nanoscience and nanotechnology applications [16]. 

Currently, the most common CRP techniques employed are reversible addition fragmentation chain 

transfer (RAFT) polymerization [17], atom transfer radical polymerization (ATRP) [18] and nitroxide 

mediated radical polymerization (NMP) [19]. A common feature of the variants of CRP is the 

existence of equilibrium between active free radicals and dormant, deactivated species. The exchange 

between active, growing radicals and dormant species allows the slow, but nearly simultaneous, 

growth of all chains (see Figure 2) while keeping the concentration of radicals low enough to minimize 

bimolecular termination reactions leading to dead polymer (P).  

Figure 2. Equilibrium between dormant (Rn-X, Rm-X) and active (Rn
, Rm

) species in 

controlled radical polymerization (M: monomer; P: dead polymer by secondary reaction). 

 

Recently, ring opening metathesis polymerization (ROMP) using second generation of Grubbs 

catalysis has gained significant interest as a relatively new controlled polymerization technique [20]. A 

summary of the controlled polymerization techniques employed for the synthesis of single-chain 
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nanoparticle precursors is provided in Table 1. I agree with the suggested changes, that can be made 

easily by the editorial office. 

Table 1. Controlled polymerization techniques in the synthesis of SCNP precursors. 

Polymerization Technique Abbreviation Nature of the SCNP Polymeric Precursors * 

Reversible addition fragmentation 
chain transfer polymerization 

RAFT  

Poly(alkyl methacrylates) [5–7,10,15,21–27],  
poly(alkyl acrylates) [7,22,28,29], poly(styrene) 
[3,22,23,30–32], poly(haloalkyl styrene) [3,33], 

poly(4-N-Boc-vinylaniline) [33],  
poly(sodium 4-styrenesulfonate) [22],  
poly(N-alkyl acrylamide) [22,34,35] 

Atom transfer radical 
polymerization 

ATRP 
Poly(alkyl methacrylates) [14], poly(alkyl acrylates) 

[11,12], poly(styrene) [36], poly(N-hydroxyethyl 
acrylamide) [37] 

Nitroxide mediated radical 
polymerization 

NMP 
Poly(alkyl methacrylates) [9,38–40],  

poly(alkyl acrylates) [40], poly(styrene) [2,38,40], 
poly(haloalkyl styrene) [40], poly(fluorene) [41] 

Ring opening metathesis 
polymerization 

ROMP 
Poly(-caprolactone) [38], poly(carbonates) [42] 

poly(norbornenes) [13,43,44] 

* For SCNP copolymer and terpolymer precursors, only the nature of the main component is indicated. 

1.2. Polymer Functionalization  

Polymer functionalization aims at the quantitative and selective modification of a given polymer 

using relatively mild conditions without any side reactions. Polymer functionalization is also known as 

post-polymerization modification or polymer analogous modification and it has a long history in 

polymer science [45]. For natural polymers, the first report of sulfur-modified natural rubber was made 

independently about 1840 by Hancock, Ludersdorf and Goodyear [46]. Concerning synthetic polymers, 

the functionalization of butadiene polymers via thiol-ene addition was reported by Serniuk et al. [47] in 

1948. Chlorinated polystyrene-divinylbenzene beads for ion exchange were developed by Pepper et al. [48] 

in 1953 and resins for solid-state peptide synthesis by Merrifield [49] on 1963. Systematic studies on 

the post-modification of epoxide-containing polymers were initiated by Iwakura et al. [50–52] in the 

early 1960s. The variety of chemical reactions available for post-polymerization modification 

increased significantly since the middle 1990s due to the emergence of controlled/living radical 

polymerization techniques (RAFT, ATRP, NMP) showing improved functional group tolerance when 

compared to classical living anionic or cationic polymerization processes.  

The most efficient and used polymer functionalization reactions are [45]: (1) thiol-ene/thiol-yne 

additions (click reactions), (2) modification of epoxides, anhydrides, oxazolines and isocyanates by 

reaction with amines/alcohols/thiols (click reactions), (3) modification of active esters by reaction with 

amines, (4) thiol-disulfide exchange, (5) Diels-Alder reaction (click reaction), (6) Michael-type 

addition, (7) Copper-catalyzed azide alkyne cycloaddition (CuAAC) (click reaction) and (8) Modification 

of ketones and aldehydes with amines / alkoxyamines / hydrazines. A summary of the different groups 

needed for the preparation of functionalized polymers via the above post-polymerization modification 

reactions is shown in Table 2.  
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Table 2. Highly-efficient reactions available for the preparation of functionalized polymers 

via post-polymerization modification.  

Polymer Functionalization 
Technique 

Functional Groups 
Involved 

Functionalizable Polymers 

Thiol-ene / thiol-yne additions * Thiol/alkene, alkyne 
Polymers bearing alkene-, alkyne- or  

thiol-groups 
Modification of epoxides, 

anhydrides, oxazolines and 
isocyanates by reaction with 
amines / alcohols / thiols * 

Epoxide, anhydride, 
oxazoline, isocyanate/ 
amine, alcohol, thiol 

Polymers containing epoxide-, anhydride-, 
oxazoline-, isocyanate-, amine-, alcohol- or 

thiol-groups [23] 

Modification of active esters by 
reaction with amines 

N-Hydroxysuccinimide, 
pentafluorophenyl ester/ 

amine 

Polymers bearing N-hydroxy-succinimide-, 
pentafluorophenyl ester- or amine-groups 

Thiol-disulfide exchange Pyridyl disulfide/thiol 
Polymers containing pyridyl disulfide- or 

thiol-groups [6] 
Diels-Alder reaction * Diene/alkene  Diene- or alkene-bearing polymers [28,40,53] 

Michael-type addition 
Acrylate, N-substituted-

maleimide, vinyl sulfone/ 
thiols 

Polymers bearing acrylate-,  
N-substituted-maleimide-, vinyl sulfone- or 

thiol-groups 
Copper-catalyzed azide alkyne 

cycloaddition (CuAAC) * 
Azide / alkyne 

Azide- or alkyne-bearing polymers 
[3,10,21,22,30,34] 

Modification of ketones and 
aldehydes with amines/ 

alkoxyamines/hydrazines 

Ketone, aldehyde / amine, 
alkoxyamine, hydrazine 

Polymers containing ketone-, aldehyde-, 
amine-, alkoxyamine- or hydrazine- groups 

* Click chemistry techniques. 

1.3. Intrachain Folding / Collapse 

Notably, covalent bonding and non-covalent/dynamic-covalent bonding interactions have been used 

during controlled folding of linear polymeric precursors to permanent and reversible/stimuli-responsive 

single-chain nanoparticles as summarized in Tables 3 and 4, respectively.  

Table 3. Covalent bonding interactions employed during SCNP construction for permanent 

polymer folding/collapse.  

Reactive functional groups Covalent bonding interactions 

Vinyl [33,38,39,42] Radical coupling & Cross-Metathesis 
Benzocyclobutene [40,53] Diels-Alder reaction * 

Benzosulfone [9,28,41] Diels-Alder reaction *  
Azide + Protected alkyne [3,10,21,22,30,34] Copper-catalyzed [3+2] cycloaddition ** 

Carboxilic acid [54]  Amide formation 
Isocyanate [23] Urea formation ** 

Enediyne [11,12,24,29] Bergman & Photo-Bergman cyclization 
Sulfonyl azide [31] Nitrene-mediated cross-linking 
Benzoxazine [36] Ring opening polymerization 

Alkyne [25] Glaser-Hay coupling * 

* C-C click chemistry. ** N-C click chemistry.  
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Table 4. Non-covalent (NC) and dynamic-covalent (DC) bonding interactions in SCNP construction.  

Reactive functional groups NC/DC bonding interactions 

Benzamide [26]  Benzamide hydrogen bonding * 
2-Ureido-Pyrimidone (UPy) [43] UPy dimerization * 

Coumarin [35] Coumarin photo-dimerization ** 
Benzaldehyde [32] Acylhydrazone formation ** 
-Ketoester [27] Enamine formation ** 

Methyl viologen + Naphtyl [37] Cucurbit[n]uril complexation * 
L-Phenylalanine (Phe) [55] Hydrophobic Phe-Phe interactions * 
Aminophenyl disulfide [44] Disulfide formation ** 

* NC bonding interactions. ** DC bonding interactions.  

In the present review article, we will focus on intrachain folding/collapse via click chemistry 

reactions leading to permanent single-chain nano-objects synthesized by starting from appropriate 

click chemistry precursors (see Table 3). 

2. Single-Chain Nanoparticle Construction via Click Chemistry 

The independent discovery in 2002 by Sharpless et al. [56] and Meldal et al. [57] that Huisgen  

1,3-dipolar cycloaddition reactions between azides and alkynes can be carried out under very mild 

conditions and in a regioselective fashion when copper(I) is employed as catalyst inaugurated the click 

chemistry era. Nowadays, copper-catalyzed azide alkyne cycloaddition (CuAAC) has evolved into a 

common coupling technique in organic synthesis, polymer chemistry and materials science. In 

particular, the click chemistry concept [58] imposes specific requirements for a reaction to be classified 

as click chemistry such as: (1) to have a single-reaction trajectory, (2) to be chemoselective, (3) to be 

wide in scope (i.e., applicable under a broad range of conditions with a multitude of starting 

substrates), (4) modular, (5) to give stable compounds, and (6) to show high yields. Additional 

requirements for reactions involving one or more polymeric reagents [59] to be classified as click 

reactions are: (7) to operate in fast time-scales, (8) to allow large-scale purification, and (9) to proceed 

with equimolarity. Three different methods have been developed for single-chain nanoparticle 

construction via click chemistry: (1) intrachain homocoupling, (2) intrachain heterocoupling, and  

(3) crosslinker-induced collapse. 

2.1. Intrachain Homocoupling via Click Chemistry 

First use of a click chemistry reaction for single-chain nanoparticle construction was reported by 

Harth et al. [40] in 2002, relying on the use of a Diels-Alder-type reaction (i.e., metal-free C-C click 

chemistry) involving benzocyclobutene (BCB) functional groups that were activated at very high 

temperature (250 °C, see Figure 3). The BCB group was selected by these authors due to its wide use 

as a latent Diels-Alder reagent in organic synthesis and in the formulation of thermosetting materials. 

Upon heating the BCB group above 200 °C, an extremely reactive o-quinoid structure was formed 

which reacted via an irreversible dimerization reaction to form a dibenzocyclooctadiene derivative as 

the major product. By using BCB -bearing polymer precursors, the direct result of the intrachain BCB 
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homocoupling was the formation of intramolecular cross-linked single-chain nanoparticles under 

appropriate reaction conditions using a special continuous addition technique [40]. 

Figure 3. Illustration of single-chain nanoparticle construction through metal-free C-C 

click chemistry via Diels-Alder reaction in benzyl ether (BE) at high temperature (250 °C) 

involving benzocyclobutene (1) or benzosulfone (2) functional groups. 

 

The size of the resulting nanoparticles was accurately controlled by either the initial degree of 

polymerization of the polymeric precursor or the level of incorporation of BCB groups. Although the 

efficiency of this technique was certainly recognized, the synthesis at 250 °C in a high boiling point 

solvent (benzyl ether, BE) and its later removal were demanding procedures that limited their broad 

use. Further refinements of this technique were performed by Croce et al. [28] in 2007 by introducing 

benzosulfone reactive groups instead of BCB moieties (see Figure 3) and by Dobish et al. [53] in 2012 

by developing substituted BCB functional groups reactive at lower temperatures (150 °C) (see Figure 4).  

Figure 4. Single-chain nanoparticle formation through metal-free C-C click chemistry via 

Diels-Alder reaction in dimethyl formamide (DMF) at moderate temperature (150 °C) 

involving modified benzocyclobutene (3) functional groups.  
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A very recent breakthrough in intrachain homocoupling for single-chain nanoparticle formation has 

been the use of Glaser-Hay coupling (i.e., alkyne homocoupling) by Sanchez-Sanchez et al. [25] 

involving naked, self-clickable alkyne functional groups that were activated in a rapid and highly 

efficient manner at RT, under oxygen atmosphere, in tetrahydrofuran (see Figure 5). This metal-catalyzed 

C-C click chemistry technique was possible thanks to the successful synthesis via redox-initiated 

RAFT polymerization of single-chain nanoparticle precursors containing well-defined amounts of 

naked acetylenic functional groups available for intrachain metal-catalyzed C-C coupling. Accurate 

control over the molecular weight, polydispersity and composition of the linear poly(methyl 

methacrylate-co-propargyl acrylate), poly(MMA-co-PgA), precursor was demonstrated by working up 

to a maximum polymerization time of 20 h (i.e., corresponding to a monomer conversion lower than 

30%) and a maximum PgA monomer content in the feed of 35 mol%.  

Figure 5. Synthesis of single-chain nanoparticles via Glaser-Hay coupling (metal-catalyzed  

C-C click chemistry) in tetrahydrofuran (THF) at RT under oxygen atmosphere involving 

unprotected alkyne (4) functional groups. 

 

2.2. Intrachain Heterocoupling via Click Chemistry 

Copper-catalyzed azide alkyne cycloaddition, CuAAC (i.e., metal-catalyzed N-C click chemistry), 

was used for the first time for the highly-efficient RT synthesis of bioconjugable poly(methyl 

methacrylate)-based single-chain nanoparticles by Ruiz de Luzuriaga et al. [21] in 2008 (see Figure 6).  

By using the intrachain heterocoupling method, bioconjugable polymeric nanoparticles were 

synthesized from poly(methyl methacrylate-co-3-azidopropyl methacrylate-co-3-trimethylsilyl-

propyn-1-yl methacrylate) terpolymers synthesized by RAFT polymerization using a one-pot 

procedure and the continuous addition technique introduced by Harth et al. [40]. To illustrate the 

versatility of the technique, SCNPs containing an excess of azide groups were decorated with 

aminoacid moieties by performing a second CuAAC reaction in the presence of proparglyl glycine 

leading to amino acid-substituted single-chain nanoparticles. The method was further implemented by 

Oria et al. [3] by using a versatile click chemistry precursor of polystyrene single-chain nanoparticles 

involving poly(4-chloromethyl styrene-co-3-trimethylsilyl-propyn-1-yl methacrylate) copolymers that 

were transformed into poly(4-chloromethyl styrene-co-4-azidomethyl styrene-co-3-trimethylsilyl-

propyn-1-yl methacrylate) terpolymers by a controlled and highly-efficiently azidation step with 

sodium azide in DMF.  
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Figure 6. Illustration of single-chain nanoparticle construction through copper-catalyzed 

azide (5) alkyne (6) cycloaddition (CuAAC) (metal-catalyzed N-C click chemistry) in 

DMF at RT. 

 

As a result, multifunctional polystyrene-based nanoparticles with diameters in solution of close to 

4.2 nm were obtained showing improved rheology behavior (when mixed with elastomeric polymers) 

and useful fluorescence emission (when aromatic conjugation was maximized). More recently, this 

method has been employed by Ormategui et al. [34] to synthesize thermoresponsive poly(N-isopropyl 

acrylamide) single-chain nanoparticles with different intrachain cross-linking degree, showing a broad 

thermal coil-to-globule phase transition at neutral pH that was shifted to higher temperatures when 

compared to that of the SCNP precursor. 

2.3. Crosslinker-Induced Collapse via Click Chemistry 

Facile preparation of single-chain nanoparticles by working under strict absence of water via urea 

formation from isocyanates and diamines (metal-free N-C click chemistry) as schematically depicted 

in Figure 7 was demonstrated by Beck et al. [23] in 2009. 

Figure 7. Synthesis of single-chain nanoparticles in dried THF at RT via metal-free N-C 

click chemistry involving intrachain bisurea cross-linking formation from isocyanate (7) 

groups and external diamine (8) cross-linker units. 

 

Nanoparticles with diameters ranging from 8 to 20 nm were synthesized with these materials 

showing physical properties (e.g., intrinsic viscosity, hydrodynamic radius) fully consistent with a 

=

=
=

METAL‐CATALYZED
N‐C CLICK CHEM.

DMF, RT

5

6

=

=
=

METAL‐FREE
N‐C CLICK CHEM.

8, THF(dry), RT

7

8



Molecules 2013, 18 3348 

 

 

collapsed, three-dimensional structure. More efficient and reproducible collapse was observed when 

the isocyanate copolymer was added to a solution of the diamine, by maintaing the total chain 

concentration below 0.1 mM. It was found that only about 75 mol% of the available isocyanate 

functional groups along the backbone underwent cross-linking with the remaining 25 mol% being 

available for further reaction with monofunctional amines. A similar volume reduction and cross-linking 

extend was observed for both styrenic and methacrylate based materials illustrating the efficiency and 

orthogonality of the urea-based intramolecular cross-linking reaction. Nanoparticle diameter was tuned 

either by controlling the molecular weight or the mole percentage of isocyanate functional groups. 

The high versatility of the cross-linker induced collapse method via intrachain CuAAC was 

demonstrated by Ruiz de Luzuriaga et al. [22] in 2010 during the facile synthesis of single-chain 

nanoparticles of very different chemical nature (Figure 8). 

Figure 8. Illustration of single-chain nanoparticle construction in DMF at RT through 

CuAAC (metal-catalyzed N-C click chemistry) involving azide (5) functional groups and 

external dialkyne (9) cross-linking molecules. 

 

With the assistance of this method, polystyrene, poly(alkyl (metha)acrylate), polymethacrylic acid, 

poly(sodium styrenesulfonate) and poly(N-isopropyl methacrylate) single-chain nanoparticles were 

synthesized in the 3–20 nm size range by starting with well-defined statistical copolymers with 

pending Cl- groups along the backbone that were transformed to N3- functional groups by treatment 

with NaN3 prior to cross-linker induced collapse. The generality of the method was illustrated by 

synthesizing single-chain nanoparticles of different chemical structure, solubility, functionality, 

physico-chemical properties and hence potential applications, covering from unconventional 

polyelectrolytes, melt rheology additives, drug delivery nanocarriers, fluorescent nanoprobes and 

magnetic resonance image agents [22].  

Very recently, this method has been employed by Cengiz et al. [30] for the synthesis of polystyrene 

single-chain nanoparticles showing a 10-fold reduction in solution viscosity at 250 s−1 of shear rate 

when compared to the precursor polymer. This difference, that was even higher at very low shear rate, 

was attributed to the particle-like nature of the collapsed chains. 
  

=

=
=

METAL‐CATALYZED
N‐C CLICK CHEM.

9, DMF, RT

5

9



Molecules 2013, 18 3349 

 

 

3. Applications of Single-Chain Nanoparticles 

3.1. Nanomedicine  

3.1.1. Peptide/Drug/siRNA Controlled Delivery 

Molecular dendritic transporter nanoparticle vectors based on hydrophilic single-chain 

nanoparticles post-modified via amide coupling reactions with dendritic molecular transport units 

(Newkome dendrimers) were synthesized in a pionnering work by Hamilton et al. [9] in 2009 for the 

delivery of peptidic molecules into cells. The rapid transport of multiple copies of peptide units per 

particle across the cellular barrier into the cytoplasm of NIT 3T3 mouse fibroblast cells using this 

novel nanoscopic (5–10 nm in size) delivery system was demonstrated by confocal microscopy by 

using Alexa Fluor 568 dye as the label of the nanoparticle backbone and fluorescein as the marker of 

the peptide. 

Facile hydrophobic guest (e.g., doxorubicin, Dox) encapsulation capabilities of biocompatible 

surface-functionalizable single-chain nanogels showing a diameter of 16 nm was demonstrated by  

Ryu et al. in 2010 [6]. Cell viability investigated by treating 293T human kidney cell lines with such 

nanogels showed high cell viability and no concentration-dependent toxicity, pointing to a nontoxic 

material for potential application in nanomedicine.  

Ultra-fine (7.4 nm in size) L-phenylalanine  anilide-imprinted polymer single-chain nanoparticles 

have been synthesized by Njiang et al. [7] in 2012. Interestingly, the L-phenylalanine anilide-imprinted 

nanoparticles showed a higher sorption capacity for L-phenylalanine anilide (238 mol/g) than for  

D-phenylalanine anilide (132 mol/g) and the rate constant for L-phenylalanine anilide release was 

found to be inversely proportional to the squared radius of the particles. 

As demonstrated by Tamura et al. [8] in 2009, nanosized (<100 nm) pH-sensitive polyamine 

nanogels containing poly(ethylene glycol) tethered chains are able to form spontaneously a polyion 

complex with negative charged siRNA through electrostatic interaction under physiological pH 

conditions. When combined a siRNA that knocks down the firefly luciferase gene, the nanogel/siRNA 

complex showed a remarkable enhancement of gene-silencing activity against firefly luciferase gene 

expressed in HuH-7 cells. Within certain confidence limits, similar results are expected for single-chain 

nanogels of lower size (<20 nm). 

3.1.2. Image Contrast Agents 

Certain stable paramagnetic metal ion complexes, such as Gd3+ ones, enhance water proton 

relaxivity during image contrast in magnetic resonance imaging, MRI, of body tissues and fluids. 

Gd3+-containing nanoparticles were reported by Perez-Baena et al. [10] in 2010 by using a dialkyne 

crosslinker which was able to complex Gd3+ ions. The relaxivity value of the Gd3+-loaded single-chain 

nanoparticles on a per Gd basis was 6.78 mM−1 s−1, representing a modest 2-fold increase over a 

reference commercial low-molecular-weight Gd3+ chelate. 

Very recently, water soluble single-chain nanoparticles containing ZnS nanocrystals (4.1 nm in 

size) have been reported by Zhu et al. [12] by using the single-chain nanoparticles as nanoreactors. 

Fast in situ growth of ZnS crystalline nuclei, leading to ZnS quantum dot formation was performed by 



Molecules 2013, 18 3350 

 

 

treating directly Zn2+-containing single-chain nanoparticles with a sodium sulfite solution. The 

maximum photoluminescence intensity at 362 nm and the corresponding quantum yield were found to 

increase from 25 to 135 and from 2 to 17%, respectively, upon decreasing the size of the single-chain 

nanoparticles. Single-chain nanoparticles containing CdS quantum dots were also synthesized by these 

authors exhibiting bright fluorescence centered at 450 nm with a quantum yield of 45%. 

As illustrated by Oria et al. [3] in 2010 poly(styrene)-based single-chain nanoparticles in which the 

intrachain cross-linking points consisted in triazole-benzene-triazole segments show a high level of 

fluorescence, that could be used for potential in vivo imaging applications. These single-chain 

nanoparticles present, after excitation at 350 nm, two maxima located at 391 and 407 nm respectively, 

in the fluorescence spectrum as well as a small shoulder at 424 nm. Control experiments in which the 

triazole-benzene-triazole conjugation was disturbed or absent failed to show this fluorescence pattern. 

3.2. Catalysis 

First report on the use of catalytic single-chain nanoparticles for carbonate hydrolysis was due to 

Wulff et al. [4]. Soluble single-molecule nanogels with molecular imprinted internal structure and 

containing just one active site per particle were reported by these authors in 2006. These single-chain 

nanoparticles showing 40 kDa in molecular weight were soluble in water/acetonitrile mixtures and 

displayed Michaelis-Menten kinetics in close analogy to natural enzymes, but with a very low turnover 

frequency (TOF) value of only 4.4 × 10−3 h−1. Recently, chiral nano-objects exhibiting catalytic 

activity towards carbonyl reductions in water without showing catalyst decomposition or hydrolysis 

have been reported by Terashima et al. [14]. These catalytic single-chain nanoparticles were prepared 

by folding through hydrogen-bonding interactions and helical self-assembly of a water-soluble 

amphiphilic precursor terpolymer containing both chiral and ruthenium-bonded units. The formation of 

a ruthenium-protecting hydrophobic compartment inside the single-chain nanoparticles was observed. 

Quantitative reduction of cyclohexanone to cyclohexanol in 18 h was demonstrated by using 0.5 mol% 

of supported Ru catalyst, corresponding to a turnover frequency of TOF = 11 h−1. Following the 

compartmentalization concept, Huerta et al. [5] have reported very recently a new family of single-chain 

nanoparticles which catalyze the aldol reaction in water with a turnover frequency of TOF = 125 h−1 by 

using only 0.5 mol% of supported L-proline organocatalyst.  

3.3. Other Uses  

Additional use of single-chain nanoparticles for different applications has been proposed, such as 

rheology-improving agents for melts of thermoplastics [2], elastomeric polymers [3], nanocomposites [60] 

or paints [23,30], polyelectrolytes with unconventional behavior [22], compartmentalised sensors for 

metal ions [13], templates for the preparation of photoluminiscent carbon nanodots [12] and 

thermoresponsive hydrogels [15].  

4. Conclusions  

Different click chemistry methods have been implemented for efficient single-chain nanoparticle 

construction since the first one developed in 2002 based on Diels-Alder-type reactions taking place at 
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250 °C (metal-free C-C click chemistry). Recent refinement of this click technique allows one to carry 

out the synthesis at 150 °C that is still far from ideal RT conditions.  

Two significant breakthroughs in the field are worth mentioning: (1) the synthesis of single-chain 

nanoparticles at RT via intrachain CuAAC (metal-catalyzed N-C click chemistry) introduced in 2008, 

and (2) the construction of single-chain nanoparticles at RT under normal oxygen atmosphere via 

intrachain Glaser-Hay coupling (metal-catalyzed C-C click chemistry) developed in 2012. The 

requirement for a severe anhydrous reaction medium clearly limits the scope of the current version of 

metal-free N-C click chemistry via intrachain bisurea formation for single-chain nanoparticle 

preparation at RT.  

Undoubtedly, with the introduction/rediscovery of alternative click chemistry reactions (e.g., 

thiol/ene and thiol/yne additions) new advances in single-chain nanoparticle construction via intrachain 

click chemistry are expected to occur in the very near future, allowing the use of these versatile, 

artificial folded nano-objects of ultra-small size in a growing number of emerging applications. 
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