Molecules 2013, 18(3), 3028-3040; doi:10.3390/molecules18033028
Article

Biotransformation of Isoflavone Using Enzymatic Reactions

Division of Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266, Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Korea
Received: 28 January 2013; in revised form: 25 February 2013 / Accepted: 4 March 2013 / Published: 6 March 2013
PDF Full-text Download PDF Full-Text [834 KB, uploaded 6 March 2013 11:26 CET]
Abstract: The roles of cytochrome P450 monooxygenases (CYPs) from Streptomyces spp. which are called the “treasure islands” for natural products for medicine and antibiotics are not well understood. Substrate specificity studies on CYPs may give a solution for elucidation of their roles. Based on homology sequence information, the CYP105D7 of a soluble cytochrome P450 known as heme protein from Streptomyces avermitilis MA4680 was expressed using the T7 promoter of the bacterial expression vector pET24ma, over-expressed in Escherichia coli system and characterized. An engineered whole cell system for daidzein hydroxylation was constructed using an exogenous electron transport system from ferredoxin reductase (PdR) and ferredoxin (Pdx). Also, an in vitro reaction study showed the purified CYP105D7 enzyme, using NADH-dependent-reducing equivalents of a redox partner from Pseudomonas putida, hydroxylated daidzein at the 3' position of the B ring to produce 7,3,'4' trihydroxyisoflavone. The hydroxylated position was confirmed by GC-MS analysis. The turnover number of the enzyme was 0.69 μmol 7,3,'4'-trihydroxyisoflavone produced per μmol P450 per min. This enzyme CYP105D7 represents a novel type of 3'-hydroxylase for daidzein hydroxylation. A P450 inhibitor such as coumarin significantly (ca.98%) inhibited the daidzein hydroxylation activity.
Keywords: enzyme; isoflavone; bioactive compound; hydroxylation; biocatalyst

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Roh, C. Biotransformation of Isoflavone Using Enzymatic Reactions. Molecules 2013, 18, 3028-3040.

AMA Style

Roh C. Biotransformation of Isoflavone Using Enzymatic Reactions. Molecules. 2013; 18(3):3028-3040.

Chicago/Turabian Style

Roh, Changhyun. 2013. "Biotransformation of Isoflavone Using Enzymatic Reactions." Molecules 18, no. 3: 3028-3040.

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert