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Abstract: Photocycloaddition, along with subsequent transformation of the 

photocycloadducts, provides expeditious ways to construct various structures. The photo-

induced reactions of α-diketones have been reported to proceed via different reaction 

pathways with the involvement of one or two of the carbonyl groups. Photoinduced 

reactions of cyclic α-diketones including N-acetylisatin, phenanthrenequinone and 

isoquinolinetrione with different C=C containing compounds could take place via [2 + 2], 

[4 + 2] or [4 + 4] photocycloaddition pathways. We have investigated the photoreactions of 

these cyclic α-diketones with different types of alkenes and alkynes, with a focus on the 

unusual cascade reactions initiated by the photocycloaddition reactions of these cyclic  

α-diketones and the applications of these photocycloaddition reactions along with the 

transformation of the photocycloadducts. In this paper, we discuss the diverse  

photo-cycloaddition pathways found in the photocycloaddition of o-diones leading to 

various photocycloadducts and the potential applications of these reactions via further 

transformation reactions of the adducts. 

Keywords: photocycloaddition; α-diketones; N-acetylisatin; phenanthrenequinone; 

isoquinolinetrione 

 

1. Introduction 

Photo-induced cycloaddition reactions combined with subsequent transformations of the 

photocycloadducts have played important roles in building diverse organic frameworks [1–4]. The 
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application of photocycloaddition as the key step in the synthesis of natural products [5–9] and other 

novel frameworks is of current research interest [10–15]. The photo-induced [2 + 2] cycloaddition of 

carbonyl groups with C=C or C≡C groups, also known as the Paterno-Büchi reaction, is the most 

common photocycloaddition reactions of carbonyl compounds [16]. However, with the presence of an 

adjacent C=O, the carbonyl groups in α-diketones were found to have diverse cycloaddition pathways 

upon photo-initiation and various photocycloadducts other than oxetanes could be obtained. We have 

systematically investigated the photo-induced reactions of α-diketones including N-acetylisatin [17–23], 

9,10-phenanthrenequinone [24,25] and 1,3,4-isoquinolinetrione [26–28] in the past decade. The 

photocycloadditions of these α-diketones, together with further transformations of the photo-cycloadducts 

have been demonstrated to be facile approaches to various polycyclic heterocycles which are otherwise 

hard to prepare. 

In this review we will summarize the photocycloaddition pathways, including [2 + 2], [4 + 2] and  

[4 + 4] photocycloaddition, found in the reactions of α-diketones, with an emphasis on examples based 

on our previous work. Various compounds containing C=C or C≡C moieties could react readily with 

α-diketones upon photo-irradiation and the pathway partition in these photocycloadditions gave 

different cycloadducts or cascade products. The pathway partitioning depends not only on the nature of 

the α-diketones, but also on the substituents on the C=C or C≡C moieties. The photocycloadditions of 

N-acetylisatin with two adjacent carbonyl groups on the indole ring could proceed exclusively via [2 + 2] 

cycloaddition pathway with simple alkenes or via [4 + 4] cycloaddition pathway with specific oxazoles. 

Complex photocycloadducts have also been obtained from the [4 + 2] photocycloaddition initiated 

cascade reactions of N-acetylisatin. Competition of different photocycloaddition pathways has also been 

observed in the photoreactions of N-acetylisatin. The photocycloadditions of 9,10-phenanthrenequinone 

showed stronger competition of the [4 + 2] cycloaddition pathway to the [2 + 2] pathway. Besides,  

[4 + 4] cycloadducts were also found in the reactions of 9,10-phenanthrenequinone with oxazoles. In 

contrast, the two carbonyl groups in 1,3,4-isoquinolinetriones showed distinct reactivity in 

photocycloadditions. The C-4 carbonyl group is the common reactive site for photocycloaddition and 

the C-3 carbonyl group seldom gets involved in photoreactions, except in those with special alkenes 

such as bicyclopropylidene. Photo-induced cycloadditions of other α-diketones such as di-substituted 

o-benquinones and benzil via different pathways will also be introduced. 

Transformations of photocycloadducts could provide facile ways to construct compounds with 

highly functionalized structures. Griesbeck et al. have reported that photocycloadditions of carbonyl 

compounds with oxazoles gave bicyclic oxetanes with highly regio- and diastereoselectivity and 

hydrolysis of the resulting adducts afforded β-hydroxy-α-amino acid derivatives. We found  

that hydrolytic cleavage of the bicyclic oxetanes formed by [2 + 2] cycloaddition between  

1,3,4-isoquinolinetrione and 5-methoxyoxazoles went through a consecutive transformation to give 

isoquinolineoxazolines. Moreover, we have developed a facile method to prepare biaryl-fused 

bislactones using the reaction of [4 + 2] photocycloadducts of phenanthrenequinone with alkenes. The 

clean and efficient transformations of photocycloadducts from α-diketones will be reviewed in the third 

part of this paper. 
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2. Photo-Induced Cycloaddition Reactions of α-Diketones 

2.1. N-Acetylisatin 

1H-Indole-2,3-dione (isatin) derivatives have various biological activities [29]. They are basic 

structural units and important synthetic precursors of many natural alkaloids [30]. With acetylation on 

the nitrogen atom, N-acetylisatin (IS) becomes a better electron acceptor and shows much higher 

reactivity in photoreactions than the parent isatin. IS has been found to easily undergo 

photocycloaddition reactions with a wide range of alkenes [17,21,22], alkynes [18,23] and heterocyclic 

compounds [20,21,24], and hydrogen abstraction reactions with compounds such as aldehydes [19]. 

For the two adjacent carbonyl groups on the indole ring, the C3 carbonyl group in IS is more reactive 

than the C2 amide carbonyl group in photoreactions because the α-alkoxy carbonyl radical is more 

stable when it is at C3 rather than at C2 [19]. Therefore, all the photoreactions we investigated are 

initiated at the C3 carbonyl group. However, any subsequent reactions are highly dependent on the 

structures of the alkenes and may involve the C-3 carbonyl only ([2 + 2] reaction) or involve both C-3 

and C-2 carbonyls ([4 + 2] and [4 + 4] reactions). 

2.1.1. [2 + 2] Photocycloadditions Involving IS 

Photoreactions of IS with ordinary alkenes or enol ethers are common Paterno-Büchi 

photocycloadditions with predictable regio- and diastereoselectivities. For example, the reaction of IS 

with styrene derivatives in benzene took place exclusively via the [2 + 2] pathway and gave the 

diastereoisomeric spiroxetane products via the nπ* triplet state of IS [22]. The regioselectivity and 

diastereoselectivity of the reactions depend on the reaction mechanism. In reactions with alkenes of 

high oxidation potential such as styrenes, the regioselectivity can be rationalized by the frontier 

molecular orbital (FMO) interactions of the excited IS with the ground state alkene and the formation 

of the most stable 1,4-diradical intermediate in the reaction. For example, the most stable benzyl  

1,4-diradical intermediate A in the photoreaction of IS with styrene led to the formation of 1 and 2 

(Scheme 1). 

Scheme 1. The photocycloaddition of IS and styrene. 

 

 

The diastereoselectivity can be accounted for by the “Griesbeck model” [31] of the Salem-Rowland 

rules [32–36] for intersystem crossing (ISC). Before the intermediary triplet 1,4-diradicals transit to 

closed-shell products, they must go through ISC to realize spin inversion. The rate of ISC is controlled 

by spin orbit coupling which depends on the geometries of the diradicals. For the sake of the most 

effective ISC and C-C bond formation, the axes of the p-orbit of the diradical should be vertical. There 

are four possible projections leading to trans- or cis- products formation (Figure 1 B–E), while there 
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are also other conformers (such as F) which are suitable for efficient ISC but are not suitable for bond 

formation because of the long distance between the two radical centers. As for the conformers C and 

E, there is strong steric hindrance between the phenyl and the carbonyl or phenyl of the isatin 

framework. Without steric hindrance between phenyl and the isatin framework, B and D are favorable 

conformers. Compared with B, there is a little steric hindrance in D between the hydrogen atom and 

the isatin ring. Therefore the formation of the syn-oxetane cycloadduct via B is the most favorable. For 

the more electron-rich alkenes such as stilbenes with electron-donating substituents, single electron 

transfer (SET) processes with 3IS* and ion-radical pair formation are energetically feasible. The 

regioselectivity of the photocycloaddition is dependent on the charge and spin-density distribution in 

the ion-radicals [22]. 

Figure 1. Possible projections of the1,4-diradicals formed in the photoreaction of IS with styrene. 
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Photoreactions of IS with cyclic or acyclic enol ethers also afforded the bicyclic spiroindoleoxetanes 

in high yields with high regio- and diastereoselectivity [21]. For example, irradiation of a benzene 

solution containing IS and benzofuran (λ > 400 nm) gave the two head-to-head isomers 3 and 4 with a 

ratio of 12:1 (Equation 1 in Scheme 2). Similar reaction between IS and n-butyl vinyl ether afforded  

head-to-tail product 5 and 6 with preference for the product 5 with syn- configuration (Equation 2 in 

Scheme 2). 

Scheme 2. The photoreactions of IS with enol ethers. 

 

The regio- and stereoselectivity can be explained by the classical 1,4-triplet biradical mechanism 

without SET involvement. In the photocycloaddition of IS with cyclic enol ethers like benzofuran, the 

1,4-diradical intermediate G with a benzyl radical is much more stable than the α-oxygen substituted 

1,4-diradical H (Figure 2). Therefore the head-to-head photocycloadducts 3 and 4 were found to be the 

predominant regioisomers. Meanwhile, a charge density calculation has shown that in the vinyl alkyl 

ether cation radical, the two vinyl carbon atoms have comparable positive charge density [37], which 
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indicates the 1,4-diradical I with an electon donor is much more stable than J (Figure 2). Therefore the 

formation of head-to-tail cycloadducts 5 and 6 via I was found to be predominant. The sterically more 

favorable 1,4-diradical conformers suitable for the efficient ISC and C-C bond formation resulted in 

the thermodynamically less stable syn-spirooxetanes as the main diastereoisomer. 

Figure 2. Different 1,4-diradical conformers. 

 

 

Except for the conventional photoreactions of IS with ordinary alkenes, enol ethers and enol ester, 

we have also investigated the uncommon photoreactions of IS with strained alkenes and special C=C 

containing species such as oxazoles. In these photoreactions, the [2 + 2] cycloadducts were formed in 

competition with other products via different light-initiated pathways which will be reviewed later in 

this paper. For example, we reported the photoreactions between IS and bicycloalkylidenes including 

bicyclopropylidene (BCP), cyclopropylidenecyclobutane (CPCB), cyclopropylidenecyclohexane 

(CPCH) and bicyclohexylidene (BCH) [17]. In these unconventional alkene species with unusual 

bonding properties [38–41], the extra strain led to unusual reactivities in their photoreactions with IS. 

Although spirooxetanes 7–10 derived from the [2 + 2] cycloaddition pathway can be isolated from the 

reaction mixture (Figure 3), their overall yields just account for less than 40% of the main products.  

It is noteworthy that the photoreactions of IS with asymmetric bicycloalkylidenes like CPCB or 

CPCH gave the regioisomers 8/8i and 9/9i respectively. The formation of 8 or 9 was found to be 

preferred over that of 8i and 9i, which might be explained by the fact that the steric hindrance for the 

1,4-diradical recombination in the former with cyclopropane is less than that in the latter with 

cyclobutane or cyclohexane. 

Figure 3. Spirooxetanes derived from [2 + 2] photocycloaddition of IS and bicycloalkylidenes. 

 

 

Photocycloadditions of carbonyl compounds with alkynes have not been as extensively explored as 

those with alkenes. It is known that the Paterno-Büchi reactions of ordinary carbonyl compounds with 

alkynes usually give α,β-unsaturated carbonyl compounds (the quinone methides) as a result of the 

spontaneous rearrangements of the thermally labile oxetenes formed by the [2 + 2] cycloaddition [42–50]. 

The electron-withdrawing acetyl group enables IS to react with a variety of alkynes including electron 

deficient terminal alkynes such as phenylacetylenes or cyclopropylacetylene [18,23] which seldom 
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took part in photocycloadditions with other carbonyl compounds. Photoreaction of IS with  

1,2-disubstituted acetylenes also proceeded via the [2 + 2] cycloaddition pathway followed oxetene 

ring opening to give the β,β-disubstituted 3-alkylideneoxindoles 11 (Scheme 3) [18,23]. 

Scheme 3. The photoreactions of IS with 1,2-disubstituted acetylene. 

 

 

On the other hand, photoreactions of IS with terminal alkynes such as phenylacetylenes were found 

to give complex polycyclic products like the dispiroindole[3,2']furan [3',3'']indole derivatives 12 via a 

complex tandem reaction course [18,19,23] (Scheme 4). We have investigated the mechanism of this 

cascade reaction. Firstly, triplet excited IS reacted with phenylacetylene to form quinone methide a. 

Intermediates b and c were produced via hydrogen abstraction between a and another triplet excited 

IS. In pathway A, an oxygenphilic attack of the carbonyl radical furnished radical d. An intramolecular 

radical cyclization in d followed by hydrogen abstraction results in the formation of 12. Alternatively, 

radical pair b and c may undergo an in-cage radical pair recombination after ISC to give the ketene 

product f (pathway 2 in Scheme 4).Aldol reaction and isomerization of f gave products 12. 

Scheme 4. The photoreactions of IS with phenylacetylene. 

 

 

2.1.2. Photoreaction of IS Initiated by [4 + 2] Cycloaddition 

With the two adjacent carbonyl groups, IS could also serve as 4π addend to take part in the higher 

ordered cycloadditions. The 1,4-diradical intermediate formed between the nπ* triplet excited IS and 
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the alkene has a delocalized spin density, which allows the presence of the 1,6-diradical intermediate. 

The [4 + 2] cycloadducts of IS with alkenes are usually highly reactive and can react rapidly with 

another C=O or subject to other fast transformations. In the photoreaction of IS with bicyclohexylidene 

under inert atmosphere, tiny amount of the [4 + 2] cycloadduct was isolated [17]. Although the yield of 

the [4 + 2] cycloadduct was as low as 2%, it did provide the direct evidence for the [4 + 2] cycloaddition 

pathway involved in the photoreaction of IS with strained alkenes. 

In the photoreaction of IS with bicyclopropylidene which is highly strained, the [4 + 2] cycloaddition 

pathway was involved in the formation of two type of final products via the [4 + 2] cycloadduct as 

intermediate (Scheme 5) [17]. When the reaction was conducted under an inert atmosphere with the 

least amount of oxygen, the highly reactive C=C in the [4 + 2] photocycloadduct could react with 

another excited IS via [2 + 2] pathway to give the final [4 + 2 + 2] cycloadducts, which could be 

obtained as two diastereoisomer 13/14 with a total yield of 10%. Meanwhile, the highly reactive [4 + 2] 

intermediate could also be photooxygenated under the action of the trace amount of oxygen in the 

reaction system to afford the oxoisochroman 15 (Scheme 5). It is observed that the formation of 13/14 

and 15 seemed to be competitive to each other and a higher concentration of dissolved O2 favored the 

formation of 15 [17]. 

Scheme 5. The photoreactions of IS and BCP. 

 

 

2.1.3. [4 + 4] Photocycloaddition of IS with Oxazoles 

Photoinduced [4 + 4] reactions represent the highest order photocycoadditions of -diketone known 

up to now. [4 + 4] Photocycloadditions have been found in some photoreactions of excited aromatic 

compounds with dienes [51–57]. In an isolated example, excited 1,2-naphthoquinone was reported to 

react with cycloheptatriene to give the [4 + 4] product as minor products [58]. In the photoreactions of 

IS with some oxazoles, we observed the involvement of [4 + 4] cycloaddition pathway in the formation 

of complex photocylcoadducts. 

As shown in Scheme 6, except for the common [2 + 2] photocycloaddition leading to the spirooxetanes, 

[4 + 4] cycloaddition of the O=C-C=O in IS and the C=C-C=N in oxazoles also happened when the 

oxazole was properly substituted. Substitution groups on the oxazole showed great influence on the 

preference of the [2 + 2] or [4 + 4] cycloaddition pathway. For example, the 2,4,5-trimethyloxazole 

reacted with IS via [2 + 2] cycloaddition pathway exclusively. However, in the reaction of IS with  

4-phenyloxazole, the product derived from the [4 + 4] cycloaddition initiated pathway could be 
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isolated with yield up to 97% [24]. The [4 + 4] photocycloadduct was also highly reactive and could 

react rapidly with another excited IS to give the final [4 + 4]/[2 + 2] product 18. 

Scheme 6. The photoreactions of IS and oxazoles. 

 

The reason for the dependence of chemoselectivity on the substitution groups on the oxazole ring 

has been rationalized. The steric hindrance from R1 group hampers the radical pair recombination in 

the corresponding 1,7-diradical to give the [4 + 4] cycloaddition intermediate 17 (Scheme 7), while the R2 

group may cause steric hindrance to the 1,4-diradical recombination and therefore disfavors the [2 + 2] 

cycloaddition to form 16. In accord with this, the 4-aryloxazoles without a substituent R3 at the C5 

atom in the oxazole ring give the [4 + 4] products 18 exclusively. The regio- and diastereoselectivity 

can also be explained by consideration of the most stable diradicals and the most favorable diradical 

conformation for the ISC and subsequent C-C bond formation events. 

Scheme 7. The chemo-selectivity in the photoreaction of IS and oxazoles. 

 

We have also investigated the photoreactions of IS with other aza-aryls such as imidazole and 

thiazole. Compared with oxazoles, both imidazole and thiazoles had much lower reactivity in the 

photoreaction with IS. The photocycloadducts obtained in these reactions were derived from the [2 + 2] 

cycloaddition pathway. Our exploration in the photoreactions of IS has demonstrated that IS is a 

special α-diketone species with diverse transformation pathways in photo-initiated cascade reactions. 

We are still putting efforts to discover more and more IS-involved photoreactions and found their 

applications in the synthesis of compounds with biological activities. 
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2.2. Phenanthrenequinone 

The photocycloaddition reactions of 9,10-phenanthrenequinone (PQ) as another common α-diketone 

have been studied by us and others. The photoreactions of PQ with olefins have been known for a long 

time and its synthetic applications and mechanism have been studied in detail for decades [59–62]. The 

photocyloaddition of PQ with C=C usually leads to two types of photocyloadducts, that is, the [2 + 2] 

keto oxetanes derived from [2 + 2] cycloaddition and the dihydrodioxines from the [4 + 2] cyclo-addition 

pathway. We will briefly review some of the photocycloadditions of PQ with high chemoselectivity, 

together with the unusual photocycloadditions happened via [4 + 4] pathway. 

2.2.1. [2 + 2] Photocycloaddition of PQ 

Photocycloaddition reactions of PQ with alicyclic olefins and bicyclic olefins upon irradiation with 

visible light (>420 nm) was examined by Maruyama et al. [59]. They found that the reaction of PQ 

with bicyclic olefins exclusively gave keto oxetanes via the [2 + 2] photocycloaddition pathway 

(Scheme 8). Other alicyclic olefins gave not only keto oxetanes but also dihydrodioxines and 

photoreducts. The differences of the chemoselectivity were elucidated in terms of the character of 

intermediary biradicals. 

Scheme 8. The photoreaction of PQ and bicyclic olefin. 

 

 

2.2.2. [4 + 2] Photocycloaddition of PQ 

The most widely reported photo-induced reactions between PQs and alkenes are the [4 + 2] 

photocycloadditions. Early in 1950s, Helferich and co-workers have already performed the UV-promoted 

cycloaddition of PQ to tri-O-acetyl-D-glucal to give the [4 + 2] cycloaddition product 20 in 50% yield. 

It is noteworthy that 20 has a phenanthrodioxenopyran with an -D-gluco-configuration at the pyran 

position and the reaction has been used to further prepare 3,4,6-tri-O-acetyl-D-glucose 21 through 

ozonolysis of 20 (Scheme 9) [63]. Later it was reported that other 2-hydroxyglucal esters similarly 

reacted with phenanthrenequinone to give the [4 + 2] cycloadduct 22 with high chemoselectivity [64]. 

Photocycloadditions of acenaphthenequinone with tri-O-acetyl-D-glucal exclusively gave the [2 + 2] 

cycloadduct. In our recent work, using the [4 + 2] photocycloaddition to generate dihydrodioxines for 

further photooxidation, we found that irradiation of PQ with strained alkenes such as BCP or BCH in 

benzene gave the [4 + 2] photocycloadducts with 80–90% yields [25]. A direct attack of the ketone 

diradical to the C=C bond leading to the 1,6-diradical intermediate was considered to be a preferred 

model of the [4 + 2] photocycloaddition [65]. 
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Scheme 9. The photoreaction between PQ and 3,4,6-tri-O-acetyl-D-glucal or 2-hydroxyl glucal esters. 

 

2.2.3. [4 + 4] Photocycloaddition of PQ 

The α-dicarbonyl functionality (O=C-C=O) in PQ could also serve as 4π addend to react with 

dienes or heterodienes via [4 + 4] cycloaddition [20,24]. In our group, we first reported the [4 + 4] 

cycloaddition between two heterodienes. Photocycloadditions of PQ and oxazoles gave [4 + 4] products 

23 with the 2-azadiene moiety in oxazole as another 4π addend, along with the [4 + 2] cycloadduct 24 

and the [2 + 2] cycloadducts 25 (Scheme 10). As we discussed before, the chemo-selectivity in the 

photoreactions between PQ and oxazoles depend highly on the substitution groups on the oxazoles. 

The effect of substituents on the oxazole ring on the pathway partitioning in the photocycloaddition of 

PQ with these oxazoles showed slight differences from that of IS with oxazoles. For example, the 

reaction of PQ with 2,4,5-trimethyloxazole gave the [4 + 4] photocycloadduct with yields up to 89%. 

Besides, the [4 + 4] photocycloadduct 23 did not undergo further photocycloaddition. 

Scheme 10. The photoreactions of PQ and oxazoles. 
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2.3. Isoquinoline-1,3,4-trione 

Isoquinolinetriones (IQT) are important biologically active compounds [66,67] and they have been 

used as building blocks in the synthesis of benzo[c]phenanthridine alkaloids [68,69]. Photoreactivity of 

IQT was not as high as that of IS or PQ since they could barely react with common alkenes upon 

photo-irradiation. It also took longer for the total conversion of IQT in their photoreactions with 

acetylenes or with special C=C containing species such as oxazoles or strained alkenes. In most of 

these photoreactions of IQT, the C4 carbonyl group on the isoquinoline ring was found to be the only 

reactive site. 

2.3.1. Photoreaction with C=C Containing Species 

We have studied the photoreactions between IQT and 2-methyl-5-methoxyoxazoles [27]. The 

reactions were found to proceed exclusively via a [2 + 2] cycloaddition pathway with excellent chemo-, 

regio- and diastereoselectivity. The chemoselectivity was much higher than that found in photoreactions 

of other o-quinones such as IS and PQ [20,24]. The resulting spiroisoquinolineoxetanes 26 were 

produced with exo-configuration exclusively (Scheme 11). The regioselectivity of the photocycloaddition 

is determined by the most stable 1,4-diradical intermediate. As shown in Scheme 11, two possible 

biradical intermediates K and L could be generated in the photocycloaddition of IQT with 2-methyl-5-

methoxyoxazoles. K is an allylic type radical while L only has an oxygen α to the radical center. 

Therefore the [2 + 2] cycloaddition proceeded exclusively via K to give the oxetane 26. 

Scheme 11. The photocycloaddition of IQT with 2-methyl-5-methoxyoxazoles. 

 

The diastereoselectivity can also be explained by the Salem-Rowland rule. There are four possible 

projections leading to trans- or cis- products formation (Figure 4). There is steric hinderance between 

C3 carbonyl group of IQT and the R group (N) or between the benzene ring of IQT and the R group 

(P). The steric hinderance makes the ISC process require much more energy. There is some hinderance 

between the benzene ring of IQT and the oxazole ring (O), while the steric hinderance in M is the 

weakest, which makes the yield of the trans- product be higher than that of the cis-product. 
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Figure 4. Possible projections in the formation of the [2 + 2] photocycloadducts of IQT 

with 2-methyl-5-methoxyoxazoles. 

 

By far, the only higher order photoreaction of IQT in which both the C3 and the C4 carbonyl 

groups were involved is the reaction between IQT and the highly strained bicycloalkylidenes. We 

found that in photo-induced reaction of IQT with CPCB in acetonitrile, three types of products were 

formed (Scheme 12). Except for the spirooxatane 27 from the [2 + 2] cycloaddition pathway, we also 

isolated small amounts of the [4 + 2] cycloadduct 28, which is thermally unstable and can be easily 

converted into 29 upon photoirridiation in the presence of O2 [17]. 

Scheme 12. The photoreaction between IQT and cyclopropylidenecyclobutane. 

 

 

2.3.2. Photoreactions with Acetylenes 

We have systematically studied the photoreactions of IQT with various acetylenes [26,28]. 

Compared with IS, IQT showed much lower reactivity in its photoreaction with acetylenes. Therefore 

photo-irradiation for much longer times was needed to achieve modest conversion of IQT if the 

acetylene was not substituted by electron-rich groups. For example, in the photoreaction of IQT with 

phenylacetylene (Equation 1 in Scheme 13), the conversion of IQT was less than 20%, even after 72 

hours’ irradiation. Electron-rich substitution group linked to the C≡C could greatly accelerate the 

cascade reaction. Photo-irradiation of IQT with ethoxyphenylacetylene or t-butylphenylacetylene for 

less than 12 hours could lead to complete conversion of IQT and the formation of the polycyclic 

products 31 and 32, respectively, in high yields (Equations 2 and 3 in Scheme 13). 
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Scheme 13. Photoreactions of IQT with differently substituted phenylacetylenes. 

 

 

In the photoinduced reactions of IQT with diphenylacetylene in acetonitrile, we found that the 

reaction proceeded smoothly and the product, which precipitated readily from the reaction mixture, 

was later confirmed to be the dibenz[de,g]-isoquinoline-4,6-dione derivatives 33. The reaction was 

proposed to proceed via a sequential [2 + 2] photocycloaddition, ring rearrangement of the oxetene and 

dehydrogenative cyclization, as shown in Scheme 14 [28]. Using the photo-tandem reactions of 

isoquinolinetrione with acetylenes substituted by different azaaryl rings including pyridine, pyrimidine, 

pyrazine, and quinoline, we were able to obtain diverse aza-polycyclic frameworks 34–39 with 

isoquinolinedione fused with naphthalene, quinoline or isoquinoline, quinazoline, and phenanthridine 

respectively, in yields up to 85% (Scheme 15). 

Scheme 14. The photoreaction between IQTs and diphenylacetylene. 

 

Scheme 15. The photoreaction between IQTs and aryl acetylenes 

 

hv
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2.4. Photocycloadditions of Other α-Diketones 

2.4.1. Cyclic α-Diketones 

There are several other types of cyclic α-diketones reported to react with C=C or C≡C compounds 

via photocycloaddition pathways. The photocycloadditions of 1,2-naphthoquinone with simple olefins 

such as styrene were reported to only give [4 + 2] cycloadducts [70], while in the photoreactions of  

o-benzoquinones, including 1,2-naphthoquinone, with electron-rich olefins such as vinyl ethers [71–73] 

and allylsilanes [10–15,74], [3 + 2] photocycloadducts with dihydrobenzofuran frameworks could also be 

formed in polar solvents. For example, irradiation of o-benzoquinone with ethyl vinyl ether in acetonitrile 

with light of λ > 450 nm gave dihydrobenzofuran 40 via regioselecive [3 + 2] photocycloaddition, 

whereas in benzene, the same photoreaction gave [4 + 2] cycloadducts 41 along with 40 via a 

competitive cycloaddition pathway (Scheme 16). The pathway partition depends not only on the 

substituent groups on the benzoquinone, but also on the solvents used for the photoreactions [71,72]. 

Scheme 16. The photocycloaddition between o-benzoquinone and ethyl vinyl ether. 

 

The photoreactions of the symmetric α-diketones such as tetrachloro-1,2-benzoquinone with 

acetylenes have been reported to be highly dependent on the light source. Photoreaction of tetrachloro-

1,2-benzoquinone with diphenylacetylene in acetone or acetonitrile irradiated with light of wavelength 

longer than 400 nm gave the 1:2 adduct 42 via a [4 + 2] cycloaddition pathway (Scheme 17  

Equation 1) [75], while two isomeric o-quinomethanes 43 (E-) and 44 (Z-) were formed when o-quinones 

were irradiated with diphenylacetylene in dichloromethane under 300 nm UV light. Irradiated at  

300 nm, the E-isomers could isomerize to the Z- form, but the Z- isomer could not. Novel p-quinomethanes 

45 and quinodimethanes 46 (at high concentration) were also formed through the initially produced  

o-quinomethanes with molecular oxygen (Scheme 17 Equation 2) [49,76]. 

Benzo[b]thiophene-2,3-dione is also known as thioisatin. Its photoreaction with alkenes has been 

reported to proceed exclusively via the [4 + 2] cycloaddition pathway to give the 1,4-dioxin  

type products [77]. Acenaphthenequinone has been compared with phenanthrenequinone in their 

photocycloadditions with 3,4,6-tri-O-acetyl-D-glucal. While phenanthrenequinone preferentially adds 

with both carbonyl oxygens to give the [4 + 2] cycloadduct, acenaphthenequinone reacted with only 

one carbonyl group to exclusively yield the [2 + 2] addition product [64]. In the photoreactions of 

acenaphthenequinone with silyl ketene acetals in benzene, the [4 + 2] photocycloadducts could be 

obtained with modest yield [78]. 
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Scheme 17. The photoreaction of tetrachloro-1,2-benzoquinone with diphenylacetylene. 

 

 

2.4.2. Acyclic α-Diketones 

Photocycloadditions of acyclic o-diones including biacetyl, benzil and 1,2-diketones conjugated 

with ene-yne have been reported. The photocycloaddition of biacetyl with olefins such as indene, 

furan, and enol ether gave oxetanes with higher orientational selectivity than in the case of 

monoketones [78,79]. The photoreaction of biacetyl with electron-deficient olefins did not give 

cycloadducts, indicating that the excited biacetyl was electrophilic in its reaction with olefins. Besides, 

the phosphorescence of biacetyl could be quenched by an olefin, indicating that the nπ* triplet state of 

biacetyl was involved in these reactions. Therefore the reaction mechanism was proposed to be an 

electrophilic attack of the nπ* triplet state of biacetyl on the olefins to give a biradical intermediate. 

It has been reported that photoirradiation of benzil promotes homolytic cleavage of the central C-C 

bond to generate benzoyl radicals and lead to products like benzoic acid and benzaldehyde [80]. In our 

work using benzil as the α-diketone to react with oxazoles, [2 + 2] photocycloadducts were obtained as 

the exclusive photocycloadducts [24]. However, in a recent work using benzil as the 1,2-diketone to 

react with silyl ketene acetals in benzene solution, production of the [4 + 2] cycloadduct 1,4-dioxene 

was observed [78]. 

Photocycloaddition of conjugated -diketones with alkenes has been found to be a clean approach 

to tetrasubstituted furans (Scheme 18, Equation 1). In the proposed mechanism, the nπ* excited triplet 

state of the -diketones conjugated with C≡C reacted with alkene to furnish an alkyl propargyl 

biradical, which further underwent 1,5-closure to give a vinyl carbene. Trapping of the carbene in 

nonprotic solvents by the adjacent carbonyl group led to the formation of the 2,2'-bifuran derivative 

47. The photocyclization of 1,2-diketones conjugated with ene-yne moieties to (2-furyl)carbene was 

employed as a carbene-generating system. For example, in aprotic solvents the photo-irradiation of the 

ene-yne conjugated 1,2-diketones which bear a biphenyl system as a carbene trapping unit could 

initiate tandem cyclizations via a carbene intermediate. The reaction led to the formation of 

fluorenylfuran derivative 48 in nearly quantitative yield (Scheme 18, Equation 2) [81]. 
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Scheme 18. The photoreactions of conjugated -diketones. 

 

 

3. Transformations of Photocycloadducts 

The photocycloadducts of α-diketones can be highly reactive and subject to sequential transformations 

under the same photoreaction conditions. As mentioned above, the [4 + 2] photocycloadducts of IS or 

IQT with strained alkenes could barely be isolated from the photoreaction mixtures. Transformation of 

this type of highly reactive photocycloadducts could not be controlled and applied in synthetic 

chemistry. However, there are moderately reactive photocycloadducts of α-diketones with various 

alkenes. These photocycloadducts are stable enough to be isolated and purified from the photoreaction 

mixture. Their transformation under specific conditions thus became controllable and could be 

developed into useful methods to construct special structural motifs. In this part we will summarize our 

efforts to develop useful synthetic protocols based on transformations of photocycloadducts of α-diketones. 

3.1. Transformations of Oxetanes 

The [2 + 2] photocycloadditions of cyclic α-diketones with alkenes provide a convenient access to 

spirooxetanes. The oxetanes are usually acid- or thermolabile products. It is reported that the oxetanes 

derived from the photoreactions between the carbonyl group in aldehydes or ketones and the double 

bond in heterocyclic rings such as furans or oxazoles could transform into the corresponding β-hydroxy 

ketones [82–89]. Griesbeck et al. have developed convenient methods to prepare α-amino-β-hydroxy 

carboxylic acid derivatives through acid catalyzed hydrolysis of oxetanes derived from photocycloaddition 

of 5-alkoxyoxazoles with aldehydes [90,91]. The oxetanes derived from α-diketones and alkenes can 

also undergo acid-mediated transformation reactions. For example, purging dry HCl gas into a solution 

of 3 derived gave two ring cleavage products 49 and 50 (Scheme 19) and can serve as an efficient 

approach to indole derivatization at C(3). 

Scheme 19. The acid-mediated transformation of spiroindoleoxetane 3. 
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In our work using 2-methyl-5-ethoxyoxazole to react with IS under photoirridiation, we observed 

the formation of two secondary products 52 (31%) and 53 (22%) along with the [4 + 4]/[2 + 2] adduct 

51 (12%). The formation of 52 was due to the lability of the corresponding oxetane product in the 

work-up process under mild acidic conditions, which was similar to that reported by Griesbeck et al. 

However, the formation of the spirooxazoline product 53 was unusual since it involved the intramolecular 

cyclization of 52 (Scheme 20) [24]. We then proposed that the acid-mediated transformation of 

spirooxetanes might involve cascade reactions leading to novel organic frameworks. Therefore we 

prepared a series of spirooxetanes through the highly regio- and diastereo-selective photocycloaddition 

of IQT with 2-methyl-5-methoxyoxazoles. The acid-mediated transformation of these spirooxetanes 

under different acid condition was studied in detail. 

Scheme 20. The transformation of spiroindoleoxetane derived from IS and 2-methyl-5-ethoxyoxazole. 

 

We found that acid-catalyzed transformation of the spiroisoquinolineoxetanes was highly related to 

the substituent groups on the oxetane rings as well as the type and amount of acid used. Novel 

spiroisoquinolineoxazoline products 55 could be obtained upon treatment of the spiroisoquinolineoxetanes 

with large excess amounts of concentrated HCl or with catalytic amounts of strong organic acids like 

TFA, MsOH or strong Lewis acids like BF3·Et2O and TiCl4 (Scheme 21) [27]. Bulky substituent  

groups on the oxetane ring showed favorable steric effects on the transformation from 26 to 

spiroisoquinolineoxazolines 55. When R was H in 26, the consecutive transformation from 54 to 55 

did not happen under mild acidic conditions, but when R was an isopropyl group in 26, the 

transformation could not stop upon generation of the 54 type product and the spiroisoquinoline-oxazoline 

type product 55 was the only product obtained. Large excess amount of HCl also favored transformation 

from 26 to 55. Strong Brönsted acids and Lewis acids could catalyze direct transformation from 26 to 

55 efficiently, but via different pathways leading to different ratios of diastereoisomers. 

We proposed two reaction pathways to explain the acid-mediated transformation. In pathway A, 

there was no stereogenic center involved, so the configuration was conserved. In pathway B, the C–O 

bond between the isoquinoline and the oxetane O underwent bond cleavage, leading to the carbocation 

as an intermediate. Nucleophilic attack of the carbonyl group to the carbocation could proceed from 

different directions to give 55 and 55i, respectively. 
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Scheme 21. The sequential transformation of 26 under acid catalysis. 

 

 

Reaction of 26 catalyzed by different types and amounts of acids proceeded simultaneously and 

competitively via pathways A and B, which resulted in different ratios of 55 and 55i in the final 

products (Scheme 22). Meanwhile, the diastereoselectivity of the transformation was highly dependent 

on the group R. Bulky substituents like benzoyl were apt to form spiroisoquinolineoxazolines with 

single configuration, while small ones like methyl led to spiroisoquinolineoxazolines with isomers. 

Based on the photocycloaddition of IQT with 5-methoxyoxazoles and this novel acid-catalyzed 

transformation of the photocycloadducts, facile syntheses of spiroisoquinolines could be realized. For 

the spiroisoquinolineoxetanes obtained from photocycloaddition of IQT with, their acid-mediated 

transformation reactions were found to be adjustable through the type and amount of acid used. 

Scheme 22. Proposed pathway for the formation of 55 and 55i. 

 

3.2. Transformations of 1,4-Dioxins 

The [4 + 2] photocycloaddition of some -diketone such as PQ and C=C containing species gave 

1,4-dioxins which are relatively stable. Therefore the transformation of 1,4-dioxins has rarely been 

investigated. Recently we developed a facile photochemical approach to biaryl-containing medium-ring 

bislactones with easily available reactants via a concise photocycloaddition-photooxidation sequence 

through the 1,4-dioxin intermediate [25]. Starting from PQ or 1,10-phenanthroline-5,6-dione (PN) 

with C=C-containing compounds, we were able to prepare ten-membered bislactones containing 

biphenyl or bipyridine in a highly atom-economic way (Scheme 23). The first step in the reaction 

sequence was the photoinduced [4 + 2] cycloaddition of the dione with the C=C bond to form the 

dioxinophenanthrene or dioxinophenanthroline. Further transformation of the dioxinophenanthrene or 
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dioxinophenanthroline into the biaryl-containing medium-ring bislactones 56 happened rapidly upon 

photoirradiation under oxygen atmosphere with yields up to 90%. 

Scheme 23. The photo-oxygenations of the [4 + 2] cycloadducts between PQ and alkenes. 

 

 

4. Conclusions 

In this paper we have summarized the photo-induced reactions of α-diketones with C=C or C≡C- 

containing compounds with focus on those that have been the subject of our continued interest in the 

past decade, namely the photoreactions of three type of α-diketones: IS, PQ and IQT. The 

photocycloaddition pathways, including [2 + 2], [4 + 2] and [4 + 4] photocycloadditons, were 

explained in detail with representative examples from our work and others. The photocycloadditions of 

IS proceed exclusively via a [2 + 2] cycloaddition pathway with simple alkenes or via [4 + 4] 

cycloaddition pathways with specific oxazole. Complex photocycloadducts have also been obtained 

from the [4 + 2] photocycloaddition-initiated cascade reactions of IS. The photocycloadditions of PQ 

showed stronger competition of the [4 + 2] cycloaddition pathway to the [2 + 2] pathway. Besides,  

[4 + 4] cycloadducts were also found in the reactions of PQ with oxazoles. In contrast, the two 

carbonyl groups in IQT showed distinct reactivity in photocycloadditions. The C-4 carbonyl group is 

the common reactive site for photocycloadditions and the C-3 carbonyl group seldom gets involved in 

photoreactions, except in those with special alkenes such as bicyclopropylidene. The pathway 

partitioning depends not only on the nature of the α-diketones, but also on the substituent groups on the 

C=C or C≡C moieties. Chemo-, regio- and stereoselectivity in the photocycloadditions were also 

rationalized. Transformations of photocycloadducts were also briefly reviewed, since they could provide 

facile ways to construct compounds with highly functionalized structures. 

Acknowledgments 

Financial support the National Science Foundation of China (20972067) and the Natural Science 

Foundation of Jiangsu Province (BK2012012) was acknowledged. 

References 

1. Churruca, F.; Fousteris, M.; Ishikawa, Y.; von Wantoch Rekowski, M.; Hounsou, C.; Surrey, T.; 

Giannis, A. A Novel Approach to Indoloditerpenes by Nazarov Photocyclization: Synthesis and 

Biological Investigations of Terpendole E Analogues. Org. Lett. 2010, 12, 2096–2099. 

2. Fleck, M.; Bach, T. Total Synthesis of Punctaporonin C by a Regio- and Stereoselective  

[2 + 2]-Photocycloaddition. Chem. Eur. J. 2010, 16, 6015–6032. 



Molecules 2013, 18 2961 

 

 

3. Selig, P.; Herdtweck, E.; Bach, T. Total synthesis of meloscine by a [2 + 2]-photocycloaddition/ring- 

expansion route. Chem. Eur. J. 2009, 15, 3509–3525. 

4. Morwenna, S.M.P.; David, R.C. Studies toward the photochemical synthesis of functionalized 

[5]- and [6]carbohelicenes. J. Org. Chem. 2009, 74, 5320–5325. 

5. Lajkiewicz, N.J.; Roche, S.P.; Gerard, B.; Porco, J.A. Enantioselective photocycloaddition of  

3-hydroxyflavones: Total syntheses and absolute configuration assignments of (+)-ponapensin 

and (+)-elliptifoline. J. Am. Chem. Soc. 2012, 134, 13108–13113. 

6. Lu, P.; Herdtweck, E.; Bach, T. Intramolecular [2 + 2] photocycloaddition reactions as an entry to 

the 2-oxatricyclo[4.2.1.04,9]nonan-3-one skeleton of lactiflorin. Chem. Asian J. 2012, 7, 1947–1958. 

7. Lu, P.; Bach, T. Total Synthesis of (+)-Lactiflorin by an Intramolecular [2 + 2] Photocycloaddition. 

Angew. Chem. Int. Ed. Engl. 2012, 51, 1261–1264. 

8. Hehn, J.P.; Herdtweck, E.; Bach, T. A Photocycloaddition/fragmentation approach toward the 

3,12-dioxatricyclo[8.2.1.06,13]tridecane skeleton of terpenoid natural products. Org. Lett. 2011, 13, 

1892–1895. 

9. White, J.; Li, Y.; Ihle, D.C. Tandem Intramolecular Photocycloaddition-Retro-Mannich 

Fragmentation as a Route to Spiro[pyrrolidine-3,3'-oxindoles]. Total synthesis of (±)-coerulescine, 

(±)-horsfiline, (±)-elacomine, and (±)-6-deoxyelacomine. J. Org. Chem. 2010, 75, 3569–3577. 

10. Fort, D.A.; Woltering, T.J.; Nettekoven, M.; Knust, H.; Bach, T. Synthesis of Fluorinated 

Tricyclic Scaffolds by Intramolecular [2 + 2] Photocycloaddition Reactions. Angew. Chem. Int. 

Ed. Engl. 2012, 51, 10169–10172. 

11. Muller, C.; Bauer, A.; Maturi, M.M.; Cuquerella, M.C.; Miranda, M.A.; Bach, T. Enantioselective 

intramolecular [2 + 2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a 

chiral sensitizer with a hydrogen-bonding Motif. J. Am. Chem. Soc. 2011, 133, 16689–16697. 

12. Pares, S.; de March, P.; Font, J.; Alibes, R.; Figueredo, M. [2 + 2] Photocycloaddition of 

Symmetrically Disubstituted Alkenes to 2(5H)-Furanones: Diastereoselective Entry to 1,2,3,4-

Tetrasubstituted Cyclobutanes. Eur. J. Org. Chem. 2011, 2011, 3888–3895. 

13. Mondal, S.; Yadav, R.N.; Ghosh, S. Unprecedented influence of remote substituents on reactivity 

and stereoselectivity in Cu(I)-catalysed [2 + 2] photocycloaddition. An approach towards the 

synthesis of tricycloclavulone. Org. Biomol. Chem. 2011, 9, 4903–4913. 

14. Kulyk, S.; Dougherty, W.G.; Kassel, W.S.; Zdilla, M.J.; Sieburth, S.M. Intramolecular 

pyridone/enyne photocycloaddition: Partitioning of the [4 + 4] and [2 + 2] pathways. Org. Lett. 

2011, 13, 2180–2183. 

15. Yu, W.B.; Han, Y.F.; Lin, Y.J.; Jin, G.X. Construction of tetranuclear macrocycles through C-H 

activation and structural transformation induced by [2 + 2] photocycloaddition reaction.  

Chem. Eur. J. 2011, 17, 1863–1871. 

16. D’Auria, M. CRC Handbook of Organic Photochemistry and Photobiology, 3rd ed.; Griesbeck, A.G., 

Oelgemoller, M., Ghetti, F., Eds.; CRC Press: Boca Raton, FL, USA, 2012; Chapter 1, 653–681. 

17. Wu, D.D.; He, M.T.; Liu, Q.D.; Wang, W.; Zhou, J.; Wang, L.; Fun, H.K.; Xu, J.H.; Zhang, Y. 

Photoinduced reactions of bicycloalkylidenes with isatin and isoquinolinetrione. Org. Biomol. Chem. 

2012, 10, 3626–3635. 



Molecules 2013, 18 2962 

 

 

18. Wang, L.; Zhang, Y.; Hu, H.Y.; Fun, H.K.; Xu, J.H. Photoreactions of 1-acetylisatin with alkynes: 

Regioselectivity in oxetene formation and easy access to 3-alkylideneoxindoles and 

dispiro[oxindole[3,2']furan[3',3'']oxindole]s. J. Org. Chem. 2005, 70, 3850–3858. 

19. Zhang, Y.; Wang, L.; Zhu, Y.; Xu, J.-H. Mechanism of photoinduced reactions between 1-acetylisatin 

and aldehydes. Eur. J. Org. Chem. 2004, 2004, 527–534. 

20. Zhang, Y.; Wang, L.; Zhang, M.; Fun, H.-K.; Xu, J.-H. Photoinduced [4 + 4] Cycloadditions of  

o-Quinones with oxazoles. Org. Lett. 2004, 6, 4893–4895. 

21. Zhang, Y.; Xue, J.; Gao, Y.; Fun, H.-K.; Xu, J.-H. Photoinduced [2 + 2] cycloadditions (the 

Paterno-Büchi reaction) of 1-acetylisatin with enol ethers - regioselectivity, diastereoselectivity 

and acid catalyzed transformations of the spirooxetane products. J. Chem. Soc. Perkin Trans. 1 

2002, 2002, 345–353. 

22. Xue, J.; Zhang, Y.; Wu, T.; Fun, H.-K.; Xu, J.-H. Photoinduced [2 + 2] cycloadditions (the 

Paterno-Büchi reaction) of 1H-1-acetylindole-2,3-dione with alkenes. J. Chem. Soc. Perkin Trans. 1 

2001, 2001, 183–191. 

23. Xue, J.; Zhang, Y.; Wang, X.-L.; Fun, H.-K.; Xu, J.-H. Photoinduced Reactions of 1-Acetylisatin 

with Phenylacetylenes. Org. Lett. 2000, 2, 2583–2586. 

24. Wang, L.; Huang, Y.-Z.; Liu, Y.; Fun, H.-K.; Zhang, Y.; Xu, J.-H. Photoinduced [4 + 4], [4 + 2], 

and [2 + 2] cycloadditions of o-Quinones with oxazoles: Chemo-, regio-, and diastereoselectivity.  

J. Org. Chem. 2010, 75, 7757–7768. 

25. Wu, D.D.; Wang, L.; Xu, K.; Song, J.; Fun, H.K.; Xu, J.-H.; Zhang, Y. A facile and highly  

atom-economic approach to biaryl-containing medium-ring bislactones. Chem. Commun. 2012, 

48, 1168–1170. 

26. Yu, H.-T.; Li, J.-B. Kou, Z.-F.; Du, X.-W.; Wei, Y.; Fun, H.-K.; Xu, J.-H.; Zhang, Y. 

Photoinduced tandem reactions of isoquinoline-1,3,4-trione with alkynes to build aza-polycycles.  

J. Org. Chem. 2010, 75, 2989–3001. 

27. Huang, C.-M.; Yu, H.-T.; Miao, Z.-R.; Zhou, J.; Wang, S.; Fun, H.-K. ; Xu, J.-H.; Zhang, Y. 

Facile synthesis of spiroisoquinolines based on photocycloaddition of isoquinoline-1,3,4-trione 

with oxazoles. Org. Biomol. Chem. 2011, 9, 3629–3631. 

28. Zhang, Y.; Qian, S.-P.; Fun, H.-K.; Xu, J.-H. Photoinduced reactions of 1,3,4(2H)-isoquinolinetriones 

with diphenylacetylenes-an efficient one pot syntheses of dibenz[de,g]-(2H)-isoquinoline-4,6-

dione derivatives. Tetrahedron Lett. 2000, 41, 8141–8145. 

29. Bieck, P.R.; Antomin K.H.; Schulz, R. In Monoamine Oxidase; Yasuhara, H., Ed.; VSP: Utrecht, 

The Netherlands, 1993; pp. 177–196. 

30. Popp, F.D. Chemistry of isatin. Adv. Heterocycl. Chem. 1975, 18, 1–58. 

31. Greisbeck, A.G.; Stadtmueller, S. Photocycloaddition of benzaldehyde to cyclic olefins: Electronic 

control of endo stereoselectivity. J. Am. Chem. Soc. 1990, 112, 1281–1283. 

32. Salem, L.; Rowland, C. The Electronic Properties of Diradicals. Angew. Chem. Int. Ed. Engl. 

1972, 11, 92–111. 

33. Salem, L. Diradicals. Pure Appl. Chem. 1973, 33, 317–328. 

34. Shaik, S.S.; Epiotis, N.D. Spin inversion in triplet Diels-Alder reactions. J. Am. Chem. Soc. 1980, 

102, 122–131. 



Molecules 2013, 18 2963 

 

 

35. Doubleday, C., Jr.; Turro, N.J.; Wang, J.F. Dynamics of flexible triplet biradicals. Acc. Chem. Res. 

1989, 22, 199–205. 

36. Adam, W.; Grabowski, S.; Wilson, R.M. Localized cyclic triplet diradicals. Lifetime 

determination by trapping with oxygen. Acc. Chem. Res. 1990, 23, 165–172. 

37. Turro, N.J.; Lee, C.; Schore, N.; Barltrop J.; Carless, H.A.J. Molecular photochemistry. XLV. 

Structure-reactivity correlations for the quenching of acetone fluorescence by enol ethers and by 

conjugated unsaturated nitriles. J. Am. Chem. Soc. 1971, 93, 3079–3080. 

38. De Meijere, A.; Nüske, H.; Es-Sayed, M.; Labahn, T.; Schroen, M.; Bräse, S. Cyclopropyl 

building blocks in organic synthesis. Part 54. Nitrogen-based linkers. Part 6. New efficient 

multicomponent reactions with C-C coupling for combinatorial application in liquid and on solid 

phase. Angew. Chem. Int. Ed. Engl. 1999, 38, 3669–3672. 

39. De Meijere, A.; von Seebach, M.; Kozhushkov, S.I.; Boese, R.; Bläser, D.; Cicchi, S.; Dimoulas, T.; 

Brandi, A. Cyclopropyl building blocks for organic synthesis, 72. Cyclobutylidenecyclopropane: 

New synthesis and use in 1,3-dipolar cycloadditions—A direct route to spirocyclopropane-

annulated azepinone derivatives. Eur. J. Org. Chem. 2001, 3789–3795. 

40. Nakamura, I.; Saito, S.; Yamamoto, Y. Hydrofurylation of Alkylidenecyclopropanes Catalyzed by 

Palladium. J. Am. Chem. Soc. 2000, 122, 2661–2662. 

41. Rele, S.; Chattopadhyay, S.; Nayak, S.K. Highly active salted low-valent titanium reagents for 

various SET induced reactions. Tetrahedron Lett. 2001, 42, 9093–9095. 

42. Zimmerman, H.E.; Craft, L. Photochemical reaction of benzoquinone with tolan. Tetrahedron Lett. 

1964, 1964, 2131–2136. 

43. Bryce-Smith, D.; Fray, G.I.; Gilbert, A. Photo adduct of p-benzoqninone and diphenylacetylene. 

Tetrahedron Lett. 1964, 1964, 2137–2139. 

44. Bryce-Smith, D.; Gilbert, A.; Johnson, M.G. Photoadditions of diphenylacetylene, cycloocta-1,3-

diene, and cyclooctene to anthraquinone. Tetrahedron Lett. 1968, 1968, 2863–2866. 

45. Farid, S.; Kothe, W.; Pfundt, G. Competitive photoadditions of acetylenes to the C:C and C:O 

bonds of p-quinones. Tetrahedron Lett. 1968, 1968, 4147–4150. 

46. Barltrop, J.A.; Hesp, B. Organic photochemistry. Part V. The illumination of some quinones in the 

presence of conjugated dienes and other olefinic systems. J. Chem. Soc. C. 1967, 1967, 1625–1635. 

47. Pappas, S.P.; Portnoy, N.A. Substituent effects on the photoaddition of diphenylacetylene to  

1,4-naphthoquinones. J. Org. Chem. 1968, 33, 2200–2203. 

48. Bos, H.J.T.; Polman, H.; van Montfort, P.F.E. Photoaddition of phenanthraquinone to  

alkyl-substituted alkoxyacetylenes. Formation of 1,3-dioxoles. J. Chem. Soc. Chem. Commun. 

1973, 1973, 188. 

49. Kim, A.R.; Mah, Y.J.; Shim, S.C.; Kim, S.S. Photochemical formation of isomeric quinone 

methides from o-quinones and one-way isomerization. J. Photosci. 1997, 4, 49–52. 

50. Bosch, E.; Hubig, S.M.; Kochi, J.K. Paterno-Büchi Coupling of (Diaryl)acetylenes and Quinone 

via Photoinduced Electron Transfer. J. Am. Chem. Soc. 1998, 120, 386–395. 

51. Noh, T.; Jeong, Y.; Kim, D. Low-temperature irradiation of 1-substituted naphthalenes. J. Chem. 

Soc. Perkin Trans. 1 1998, 1998, 2501–2504. 



Molecules 2013, 18 2964 

 

 

52. Kohmoto, S.; Kobayashi, T.; Minami, J.; Ying, X.; Yamaguchi, K.; Karatsu, T.; Kishikawa, K.; 

Yamamoto, M. Trapping of 1,8-Biradical Intermediates by Molecular Oxygen in Photocycloaddition 

of Naphthyl-N-(naphthylcarbonyl)carboxamides; Formation of Novel 1,8-Epidioxides and 

Evidence of Stepwise Aromatic Cycloaddition. J. Org. Chem. 2001, 2001, 66–73. 

53. Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.; Lapouyade, R. Photodimerization of 

anthracenes in fluid solution: Structural aspects. Chem. Soc. Rev. 2000, 29, 43–55. 

54. Mak, K.T.; Srinivasachar, K.; Yang, N.C. Syntheses of cycloadducts of benzene and naphthalene. 

J. Chem. Soc. Chem. Commun. 1979, 1979, 1038–1040. 

55. Albini, A.; Fasani, E.; Giavarini, F. Photochemical reaction between naphthalenecarbonitriles and 

dienes. J. Org. Chem. 1988, 53, 5601–5607. 

56. Kimura, M.; Kura, H.; Nukada, K.; Okamoto, H.; Satake, K.; Morosawa, S. Synthesis and 

photochemistry of 3,6-difluoro-10,11-benzopentacyclo [6,4,0.0,0.0]dodeca-4,10-diene. J. Chem. 

Soc. Perkin Trans. 1. 1988, 1988, 3307–3310. 

57. McSkimming, G.; Tucker, J.H.R.; Bouas-Laurent, H.; Desvergne, J.-P. An anthracene-based 

photochromic system that responds to two chemical inputs. Angew. Chem. Int. Ed. Engl. 2000, 39, 

2167–2169. 

58. Takeshita, H.; Mori, A.; Funakura, M.; Mametsuka, H.B. Synthetic photochemistry. VII. The 

addition reaction of acenaphthenequinone and 1,2-naphthoquinone to cycloheptatriene. Bull. Chem. 

Soc. Jpn. 1977, 50, 315–316. 

59. Maruyama, K.; Muraok, M.; Naruta, Y. Keto oxetanes produced from photocycloaddition of  

o-quinone and their thermolysis. Reaction of 9,10-phenanthrenequinone with internally highly 

strained cyclic olefins. J. Org. Chem. 1981, 46, 983–989. 

60. Maruyama, K.; Iwai, T.; Naruta, Y. Products and modes of photocycloaddition of  

9,10-phenanthraquinone with cyclic olefins. Chem. Lett. 1975, 1975, 1219–1222. 

61. Sasaki, T.; Kanematsu, K.; Ando, I.; Yamashita, O. Molecular design by cycloaddition reactions. 

30. Photochemical cycloadditions of quadricyclane to aromatic hydrocarbons and o-quinones. 

First example of photochemical pericyclic [4π + 2σ + 2σ] addition. J. Am. Chem. Soc. 1977, 99, 

871–877. 

62. Chow, Y.-L.; Joseph, T.C.; Quon, H.H.; Tam, J.N.S. Photoaddition of α-diketones to olefins. 

Stereospecificity of the addition reaction. Can. J. Chem. 1970, 48, 3045–3052. 

63. Helferich, B.; Mulcahy, E.N.; Ziegler, H. The addition of phenanthrenequinone to D-glucal. II. 

Chem. Ber. 1954, 87, 233–237. 

64. Lichtenthaler, F.W.; Weimer, T.; Immel, S. [4 + 2] and [2 + 2] Photocycloadditions of 1,2-diketones 

to glycal and hydroxyglycal esters. Tetrahedron Asymmetry. 2004, 15, 2703–2709. 

65. Ho, J.-H.; Ho, T.-I.; Chen, T.-H.; Chow, Y.L. Efficient photocycloaddition of phenanthroquinones 

with simple olefins. J. Photochem. Photobiol. A Chem. 2001, 138, 111–122. 

66. Du, J.Q.; Wu, J.; Zhang, H.J.; Zhang, Y.H.; Qiu, B.Y.; Wu, F.; Chen, Y.H.; Li, J.Y.; Nan, F.J.; 

Ding, J.P.; et al. Isoquinoline-1,3,4-trione derivatives inactivate caspase-3 by generation of 

reactive oxygen species. J. Biol. Chem. 2008, 283, 30205–30215. 

67. Chen, Y.H.; Zhang, Y.H.; Zhang, H.J.; Liu, D.Z.; Gu, M.; Li, J.Y.; Wu, F.; Zhu, X.Z.; Li, J.; Nan, F.J. 

Design, synthesis, and biological evaluation of isoquinoline-1,3,4-trione derivatives as potent 

caspase-3 inhibitors. J. Med. Chem. 2006, 49, 1613–1623. 



Molecules 2013, 18 2965 

 

 

68. Pollers-Wieers, C.; Vekemans, J.; Toppet, S.; Hoornaert, G. The use of isoquinolinetriones in the 

synthesis of benzo[c]phenanthridine alkaloids. Tetrahedron 1981, 37, 4321–4326. 

69. Malamas, M.S.; Hohman, T.C.; Millen, J. Novel Spirosuccinimide Aldose Reductase Inhibitors 

Derived from Isoquinoline-1,3-diones: 2-[(4-Bromo-2-fluorophenyl)methyl]-6-fluorospiro[isoquinoline- 

4(11H),3'-pyrrolidine]-1,2',3,5'(2H)-tetrone and Congeners. 1. J. Med. Chem. 1994, 37, 2043–2058. 

70. Takuwa, A. Evidence for a remarkable difference in the electrophilicity of two carbonyl groups in 

photoexcited 1,2-naphthoquinone. Photocycloaddition reaction of 1,2-naphthoquinone with olefins. 

Chem. Lett. 1989, 1989, 5–8. 

71. Takuwa, A.; Kai, R.; Kawasaki, K.; Nishigaichi, Y.; Iwamoto, H. New formal [3 + 2] 

photoaddition of vinyl ethers to o-benzoquinones. Chem. Commun. 1996, 1996, 703–704. 

72. Takuwa, A.; Sumikawa, M. Solvent effect on the product distributions in the photocycloaddition 

of electron-rich olefins to 1,2-naphthoquinone. Chem. Lett. 1989, 1989, 9–12. 

73. Suginome, H.; Sakurai, H.; Sasaki, A.; Takeuchi, H.; Kobayashi, K. Photoinduced molecular 

transformation. Part 151. One-pot synthesis of 1H-benz[g]indole-4,5-diones by a regioselective  

[3 + 2] photoaddition of 4-amino-1,2-naphthoquinones with alkenes. Tetrahedron 1994, 50, 

8293–8300. 

74. Takuwa, A.; Sasaki, T.; Iwamoto, H.; Nishigaichi, Y. Regioselective allylation of 1,2-naphthoquinones 

using photoaddition reaction with allylsilanes: Synthesis of 3-allyl-1,2-naphthoquinones. Synthesis 

2001, 2001, 63–68. 

75. Brace-Smith, D.; Gilbert, A. Photochemical and thermal cycloadditions of cis-stilbene and tolan 

(diphenylacetylene) to tetrachloro-o-benzoquinone. Photodecarbonylation of an α-diketone. 

Chem. Comm. 1968, 1968, 1702–1703. 

76. Kim, A.R.; Mah, Y.J.; Kim, S.S. Formation of o-/p-Quinomethanes and p-Quinodimethanes from 

the photoaddition of diphenylacetylene to o-quinones. Bull. Korean Chem. Soc. 1998, 19, 1295–1297. 

77. Verma, S.; Srivastava, B.; Sharma, K.; Joshi, R.; Pardasani, P.; Pardasani, R.T. Photoinduced [4 + 2] 

cycloaddition reactions of benzo[b]thiophene-2,3-dione with alkenes. Res. Chem. Intermediat. 

2012, 38, 723–731. 

78. Cho, D.W.; Lee, H.Y.; Oh, S.W.; Choi, J.H.; Park, H.J.; Mariano, P.S.; Yoon, U.C. Photoaddition 

Reactions of 1,2-Diketones with Silyl Ketene Acetals. Formation of β-Hydroxy-γ-ketoesters.  

J. Org. Chem. 2008, 73, 4539–4547. 

79. Gersdorf, J.; Mattay, J.; Görner, H. Radical cations. 3. Photoreactions of biacetyl, benzophenone, 

and benzil with electron-rich alkenes. J. Am. Chem. Soc. 1987, 109, 1203–1209. 

80. Maruyama, K.; Ono, K.; Osugi, J. Photochemical reaction of α-diketones. Bull. Chem. Soc. Jpn. 

1972, 45, 847–851. 

81. Nakatani, K.; Adachi, K.; Tanabe, K.; Saito, I. Tandem cyclizations involving carbene as an 

intermediate: Photochemical reactions of substituted 1,2-diketones conjugated with Ene-Yne.  

J. Am. Chem. Soc. 1999, 121, 8221–8228. 

82. Schreiber, S.L.; Porco, J.A., Jr. The Paterno-Büchi reaction. In Comprehensive Organic Synthesis; 

Trost, B.M., Fleming, I., Paquette, L.A., Eds.; Pergamon Press: New York, NY, USA, 1991; 

volume 5, p. 168. 

83. Ninomiya, I.; Naito, T. Photochemical Synthesis; Academic Press: London, UK, 1989; Chapter 7, 

p. 135. 



Molecules 2013, 18 2966 

 

 

84. Schreiber, S.L.; Satake, K. Application of the furan carbonyl photocycloaddition reaction to the 

synthesis of the bis(tetrahydrofuran) moiety of asteltoxin. J. Am. Chem. Soc. 1983, 105, 6723–6724. 

85. Schreiber, S.L.; Satake, K. Total synthesis of (±)-asteltoxin. J. Am. Chem. Soc. 1984, 106, 4186–4188. 

86. Schreiber, S.L. [2 + 2] Photocycloadditions in the synthesis of chiral molecules. Science 1985, 

227, 857–863. 

87. Griesbeck, A.G.; Bondock, S. Photocycloaddition of 5-methoxyoxazoles to aldehydes and  

α-keto esters: A comprehensive view on stereoselectivity, triplet biradical conformations, and 

synthetic applications of Paterno-Büchi adducts. Aust. J. Chem. 2008, 61, 573–580. 

88. Bondock, S.; Griesbeck, A.G. Diastereoselective photochemical synthesis of α-amino-β-hydroxy 

ketones by photocycloaddition of carbonyl compounds to 2,5-dimethyl-4-isobutyloxazole 

Monatshefte für Chemie 2006, 137, 765–777. 

89. Griesbeck, A.G.; Bondock, S.; Lex, J. Synthesis of erythro-α-Amino β-Hydroxy Carboxylic Acid 

Esters by Diastereoselective Photocycloaddition of 5-Methoxyoxazoles with Aldehydes. J. Org. 

Chem. 2003, 68, 9899–9906. 

90. Griesbeck, A.G.; Fiege, M.; Lex, J. Oxazole-Carbonyl photocycloadditions: Selectivity pattern 

and synthetic route to erythro α-amino, β-hydroxy ketones. Chem. Commun. 2000, 2000, 589–590. 

91. Schreiber, S.L.; Hoveyda, A.H.; Wu, H.-J. A photochemical route to the formation of threo aldols. 

J. Am. Chem. Soc. 1983, 105, 660–661. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


