OPEN ACCESS **MOLECULES** ISSN 1420-3049 www.mdpi.com/journal/molecules

Article

A New 5a,8a-Epidioxysterol from the Soft Coral Sinularia gaweli

Wei-Hsuan Yen ^{1,2,†}, Wu-Fu Chen ³, Ching-Hsiao Cheng ^{3,†}, Chang-Feng Dai ⁴, Mei-Chin Lu ^{1,2}, Jui-Hsin Su ^{1,2,5}, Yin-Di Su ^{2,5}, Yu-Hsin Chen ^{1,2}, Yu-Chia Chang ^{2,6}, Yung-Husan Chen ², Jyh-Horng Sheu ^{5,6}, Chan-Hsing Lin ^{5,6}, Zhi-Hong Wen ^{5,6,*} and Ping-Jyun Sung ^{1,2,5,7,*}

- ¹ Graduate Institute of Marine Biotechnology and Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan; E-Mails: xyz78714@hotmail.com (W.-H.Y.); jinx6609@nmmba.gov.tw (M.-C.L.); x2219@nmmba.gov.tw (J.-H.S.); kb5634@yahoo.com.tw (Y.-H.C.)
- ² National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan;
 E-Mails: gobetter04@yahoo.com.tw (Y.-D.S.); jay0404@gmail.com (Y.-C.C.);
 tony_chen72001@yahoo.com.tw (Y.-H.C.)
- ³ Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: ma4949@adm.cgmh.org.tw (W.-F.C.); ma4200@adm.cgmh.org.tw (C.-H.C.)
- ⁴ Institute of Oceanography, National Taiwan University, Taipei 112, Taiwan; E-Mail: corallab@ntu.edu.tw
- ⁵ Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 833, Taiwan; E-Mails: sheu@mail.nsysu.edu.tw (J.-H.S.); shinlin@mail.nsysu.edu.tw (C.-H.L.)
- ⁶ Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung 804, Taiwan
- ⁷ Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- [†] These authors contributed equally to this work.
- * Authors to whom correspondence should be addressed; E-Mails: wzh@mail.nsysu.edu.tw (Z.-H.W.); pjsung@nmmba.gov.tw (P.-J.S.); Tel.: +886-7-525-2021 (Z.-H.W.); +886-8-882-5037 (P.-J.S.); Fax: +886-7-525-5020 (Z.-H.W.); +886-8-882-5087 (P.-J.S.).

Received: 5 February 2013; in revised form: 27 February 2013 / Accepted: 28 February 2013 / Published: 4 March 2013

Abstract: A new sterol, (22R,23R,24R)-5 α ,8 α -epidioxy-22,23-methylene-24-methylcholest-6,9(11)-dien-3 β -ol (1), and two known sterols, (22R,23R,24R)-5 α ,8 α -epidioxy22,23-methylene-24-methylcholest-6-en-3 β -ol (2) and 24-methylenecholestane-1 α ,3 β ,5 α , 6 β ,11 α -pentol (3), were isolated from the soft coral *Sinularia gaweli*. The structure of sterol 1 was established by spectroscopic methods and by comparison of the spectral data with those of known analogues. The cytotoxicity of sterols 1–3 towards various tumor cells is reported.

Keywords: Sinularia; epidioxysterol; cytotoxicity

1. Introduction

Soft corals belonging to the genus *Sinularia* have been well-recognized as marine organisms containing various natural products that show interesting bioactivities [1–3]. A series of cytotoxic [4–12], anti-inflammatory [7,11–13] and antiviral [10] steroids have been isolated from *Sinularia* sp. octocorals collected off the waters of Taiwan. In continuation with our search for new natural substances, the organic extract of soft coral *Sinularia gaweli* (Figure 1) was studied, which displayed meaningful signals in NMR studies. Previous investigations of the chemical constituents of *S. gaweli* yielded two norcembranoidal diterpenes, 5-episinuleptolide acetate and scabrolide D [14]. In further studies of *S. gaweli*, a new sterol, $(22R,23R,24R)-5\alpha,8\alpha$ -epidioxy-22,23-methylene-24-methylcholest-6,9(11)-dien-3\beta-ol (1), and two known sterols, $(22R,23R,24R)-5\alpha,8\alpha$ -epidioxy-22,23-methylene-24-methylcholest-6-en-3\beta-ol (2) [4] and 24-methylenecholestane-1 $\alpha,3\beta,5\alpha,6\beta,11\alpha$ -pentol (3) [15,16], were isolated (Figure 1).

Figure 1. The soft coral *Sinularia gaweli* and the structures of $(22R,23R,24R)-5\alpha,8\alpha$ -epidioxy-22,23-methylene-24-methylcholest-6,9(11)-dien-3\beta-ol (1), $(22R,23R,24R)-5\alpha,8\alpha$ -epidioxy-22,23-methylene-24-methylcholest-6-en-3\beta-ol (2) and 24-methylenecholestane-1 α ,3 β ,5 α ,6 β ,11 α -pentol (3).

Sinularia gaweli

1: $\Delta^{9,11}$, **2**: 9,11-saturated

3

2. Results and Discussion

(22R,23R,24R)-5 α ,8 α -Epidioxy-22,23-methylene-24-methylcholest-6,9(11)-dien-3 β -ol (1) was isolated as a white powder. The molecular formula of 1 was established as C₂₉H₄₄O₃ (eight degrees of unsaturation) from a [M+Na]⁺ molecule at m/z 463.3192 in HRESIMS (calcd for C₂₉H₄₄O₃Na, 463.3188). The ¹³C-NMR and DEPT spectra of **1** showed this compound to have 29 carbons (Table 1), including six methyls, seven sp³ methylenes, eight sp³ methines, three sp² methines, four sp³ quaternary carbons and an sp² quaternary carbon. From the NMR spectra (Table 1), the presence of three oxygenated C atoms at $\delta_{\rm C}$ 82.7 (C-5), 78.4 (C-8) and 66.3 (CH-3) in the ¹³C-NMR spectrum and an oxymethine proton at $\delta_{\rm H}$ 4.02 (1H, m, H-3) in the ¹H-NMR spectrum was determined. This sterol was further recognized as a 5 α ,8 α -epidioxysterol by the presence of the characteristic signals for H-6 ($\delta_{\rm H}$ 6.60, J = 8.0 Hz) and H-7 ($\delta_{\rm H}$ 6.28, J = 8.0 Hz) in the ¹H-NMR spectrum [4,17]. Four protons appeared at $\delta_{\rm H}$ 0.14 (2H, m, H₂-29), 0.33 (1H, m, H-23) and 0.55 (1H, m, H-22), indicating the presence of a cyclopropyl moiety in **1**. Two singlets, which appeared at $\delta_{\rm H}$ 0.68 (3H) and 1.09 (3H), were attributed to Me-18 and Me-19, respectively. Four doublets at $\delta_{\rm H}$ 0.91 (3H, J = 6.4 Hz), 0.86 (3H, J = 6.8 Hz), 0.89 (3H, J = 6.8 Hz) and 0.92 (3H, J = 6.4 Hz) were due to the presence of Me-21, Me-26,

Me-27 and Me-28, respectively. The above data suggested that **1** is a peroxysteroid containing a 22,23-methylene-24-methyl moiety in the side chain.

Table 1. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz, CDCl₃) NMR data, ¹H–¹H COSY and HMBC correlations for sterol **1**.

Position	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, Mult.	¹ H– ¹ H COSY	HMBC (H→C)
1	2.11 m; 1.70 m	32.6, CH ₂	H ₂ -2	n.o.
2	1.91 m; 1.55 m	30.6, CH ₂	H ₂ -1, H-3	C-3
3	4.02 m	66.3, CH	H ₂ -2, H ₂ -4	n.o.
4	2.14 dd (13.6, 2.0); 1.92 dd (13.6, 11.6)	36.1, CH ₂	H-3	C-2, -3, -5, -10
5		82.7, C		
6	6.60 d (8.0)	130.8, CH	H - 7	C-4, -5, -8
7	6.28 d (8.0)	135.4, CH	Н-6	C-5, -8, -9, -14
8		78.4, C		
9		142.5, C		
10		37.9, C		
11	5.42 dd (6.0, 2.0)	119.8, CH	H ₂ -12	C-8, -10, -12, -13
12	2.28 dd (16.8, 6.0); 2.09 dd (16.8, 2.0)	41.2, CH ₂	H-11	C-9, -11, -13, -14, -17
13		44.1, C		
14	1.83 dd (12.0, 8.0)	47.8, CH	H ₂ -15	C-12, -15
15	1.75 m; 1.61 m	21.2, CH ₂	H-14, H ₂ -16	C-8, -13, -16
16	2.20 m	28.4, CH ₂	H ₂ -15, H-17	n.o.
17	1.49 m	57.4, CH	H ₂ -16, H-20	n.o.
18	0.68 s	12.6, CH ₃		C-12, -13, -14, -17
19	1.09 s	25.5, CH ₃		C-1, -5, -9, -10
20	0.88 m	39.7, CH	H-17, H ₃ -21, H-22	C-17
21	0.91 d (6.4)	19.0, CH ₃	H-20	C-20, -22
22	0.56 m	24.2, CH	H-20, H-23, H ₂ -29	n.o.
23	0.33 m	25.1, CH	H-22, H-24, H ₂ -29	n.o.
24	0.55 m	44.9, CH	H-23, H-25, H ₃ -28	n.o.
25	1.64 m	32.8, CH	H-24, H ₃ -26, H ₃ -27	C-24
26	0.86 d (6.8)	18.5, CH ₃	H-25	C-24, -25, -27
27	0.89 d (6.8)	20.7, CH ₃	H-25	C-24, -25, -26
28	0.92 d (6.4)	15.8, CH ₃	H-24	C-24, -25
29	0.14 m	10.5, CH ₂	H-22, H-23	C-20, -22, -24

From the ${}^{1}\text{H}{-}^{1}\text{H}$ COSY spectrum, several structural units, including H₂-1/H₂-2/H-3/H₂-4, H-6/H-7, H-11/H₂-12, H-14/H₂-15/H₂-16/H-17/H-20/H-22/H-23/H-24/H-25/H₃-26(H₃-27), H-20/H₃-21, H-22/H₂-29, H-23/H₂-29 and H-24/H₃-28, were identified (Table 1 and Figure 2). These data, together with the key HMBC correlations between protons and quaternary carbons, such as H₂-4, H-6, H-7, H₃-19/C-5; H-6, H-7, H-11, H₂-15/C-8; H-7, H₂-12, H₃-19/C-9; H₂-4, H-11, H₃-19/C-10; and H-11, H₂-12, H₂-15, H₃-18/C-13, permitted the elucidation of the main carbon skeleton of 1 (Table 1 and Figure 2). The ring junctions C-18 and C-19 methyl groups were positioned at C-13 and C-10 from the HMBC correlations between H₃-18/C-12, -13, -14, -17 and H₃-19/C-1, -5, -9, -10. An oxymethine unit at δ_{C} 66.3 correlated to the methine proton at δ_{H} 4.02 in the HMQC spectrum, proving the attachment of a hydroxy group at C-3.

Figure 2. The ${}^{1}H-{}^{1}H$ COSY and selective HMBC correlations (protons \rightarrow quaternary carbons) for sterol 1.

Because of the signals for protons H-22/H-24 and H-20/H₃-21, H₃-26, H₃-27 are overlapped in the ¹H spectrum of **1**, it is difficult to judge the relative configuration of the cyclopropyl moiety by their NOE effect in the NOESY spectrum. However, by comparison of the ¹H- and ¹³C-NMR chemical shifts of Me-21, Me-26, Me-27 and Me-28 with those of a known epidioxysterol, (22*R*,23*R*,24*R*)-5 α ,8 α -epidioxy-22,23-methylene-24-methylcholest-6-en-3 β -ol (**2**) [4,18] and four synthetic demethyl-gorgosterol isomers [19] (Figure 3), it was suggested that the stereochemistry of **1** at the side chain should be assigned as 22*R*, 23*R* and 24*R*, as per those of **2**. The assignment of the carbon shifts of **1** was based on the comparison of these data with those of the tetracyclic system of **2** [4]. In the HMQC spectrum of **1**, the doublet methyls appearing at $\delta_{\rm H}$ 0.86 (*J* = 6.8 Hz, H₃-26) and 0.92 (*J* = 6.4 Hz, H₃-28) showed ¹*J*-correlations with $\delta_{\rm C}$ 18.5 and 15.8, respectively; and the methine protons appearing at $\delta_{\rm H}$ 0.33 (m, H-23) and 0.56 (m, H-22) showed ¹*J*-correlations with $\delta_{\rm C}$ 25.1 and 24.2, respectively. We suggest that the partial ¹H and ¹³C-NMR chemical shifts for the side chain of steroid **2** that were reported previously should be re-examined [4,20]. Based on the above findings, the structure of **1** was tentatively established as (22*R*,23*R*,24*R*)-5 α ,8 α -epidioxy-22,23-methylene-24-methylcholest-6,9 (11)-dien-3 β -ol.

In previous studies, the $5\alpha,8\alpha$ -epidioxy sterols were supposed to have arisen from $\Delta^{5,7}$ -sterols by photooxidization during storage and/or chromatographic separation [21–23] with a self-perpetuating mechanism [23]. $\Delta^{5,7}$ -Sterol analogues were not obtained from *S. gaweli*; at this point it is difficult to infer whether epidioxysterol **1** from *S. gaweli* is a natural product or an artifact.

Sterols **2** and **3** were identified as (22R,23R,24R)- $5\alpha,8\alpha$ -epidioxy-22,23-methylene-24-methylcholest-6-en- 3β -ol and 24-methylenecholestane- $1\alpha,3\beta,5\alpha,6\beta,11\alpha$ -pentol, which have been previously isolated from a Formosan soft coral *Sinularia* sp. [4] and an Andaman Sea soft coral *Sinularia dissecta* [15,16], respectively. Their spectral data were in full agreement with those of previously reported.

The cytotoxicity of sterols 1-3 towards K562 (human erythromyeloblastoid leukemia), MOLT-4 (human acute lymphoblastic leukemia) and HL-60 (human promyelocytic leukemia) cells was studied, and the results are shown in Table 2. These data showed that sterol **3** exhibited significant cytotoxicity towards HL-60 cells.

	2				
	Cell lines IC ₅₀ (µg/mL)				
Compounds	K562	MOLT-4	HL-60		
1	NA	15.70	NA		
2	NA	NA	12.14		
3	9.71	6.91	3.39		
Doxorubicin ^{<i>a</i>}	0.20	0.01	0.03		

Table 2. Cytotoxic data of sterols 1–3.

^{*a*} Doxorubicin was used as the positive control. NA = not active at 20 μ g/mL for 72 h.

3. Experimental

3.1. General Procedures

Optical rotation values were measured with a Jasco-P1010 digital polarimeter. Infrared spectra were obtained on a Varian Diglab FTS 1000 FT-IR spectrophotometer. NMR spectra were recorded on a Varian Mercury Plus 400 FT-NMR at 400 MHz for ¹H and 100 MHz for ¹³C in CDCl₃ or C₅D₅N at 25 °C. ESIMS and HRESIMS data were recorded on a Bruker APEX II mass spectrometer. Column chromatography was performed on silica gel (230–400 mesh, Merck, Darmstadt, Germany). TLC was carried out on precoated Kieselgel 60 F_{254} (0.25 mm, Merck) and spots were visualized by spraying with 10% H₂SO₄ solution followed by heating. Normal phase HPLC (NP-HPLC) was performed using a system comprised of a Hitachi L-7110 pump, a Hitachi L-7455 photodiode array detector and a Rheodyne 7725 injection port. A normal phase column (Supelco Ascentis[®] Si Cat #:581515-U, 25 cm × 21.2 mm, 5 µm) was used for NP-HPLC. Reverse phase HPLC (RP-HPLC) was performed using a system comprised of a Hitachi L-7100 pump, a Hitachi L-2455 photodiode array detector and a Rheodyne 7725 injection port. A reverse phase column (Varian Polaris C18-A, 250 mm × 10 mm, 5 µm) was used for RP-HPLC.

3.2. Animal Material

Specimens of the soft coral *Sinularia gaweli* were collected by hand using scuba equipment off the coast of Sansiantai, Taitung County, Taiwan on Oct. 13, 2011, and stored in a freezer (-20 °C) until extraction. This organism was identified by comparison with previous descriptions [24]. A voucher specimen (NMMBA-TWSC-11007) was deposited in the National Museum of Marine Biology and Aquarium, Taiwan.

3.3. Extraction and Isolation

The freeze-dried and minced material of *Sinularia gaweli* (wet weight 1.30 kg, dry weight 328 g) was extracted with ethyl acetate (EtOAc) at 25 °C (2 L × 10). The EtOAc extract left after removal of the solvent (11.4 g) was separated by silica gel and eluted using *n*-hexane/EtOAc/acetone in a stepwise fashion to yield 14 fractions A–N. Fraction F was separated by NP-HPLC using a mixture of *n*-hexane and acetone (5:1) as the mobile phase to afford the subfractions F1–5. Subfraction F3 was further purified by RP-HPLC using a mixture of methanol (MeOH) and H₂O (97:3, flow rate: 1.0 mL/min) to afford sterols **1** (0.5 mg, $t_R = 40$ m) and **2** (0.5 mg, $t_R = 48$ m). Fraction N was separated by NP-HPLC

using a mixture of dichloromethane (CH₂Cl₂) and EtOAc as the mobile phase to afford the subfractions N1–10. Subfraction N9 was further purified by RP-HPLC using a mixture of MeOH and H₂O (9:1, flow rate: 1.0 mL/min) to afford sterol **3** (1.2 mg, $t_R = 31$ m).

(22R, 23R, 24R)-5 α , 8 α -Epidioxy-22, 23-methylene-24-methylcholest-6, 9(11)-dien-3 β -ol (1): $[\alpha]_{D}^{25}$ +158 (c 0.03, CHCl₃); m.p. 218–220 °C; IR (neat) v_{max} 3445, 1644 cm⁻¹; ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz, CDCl₃) NMR data, see Table 1; ESIMS *m/z* 463 [M+Na]⁺; HRESIMS: *m/z* 463.3192 (calcd for C₂₉H₄₄O₃Na, 463.3188).

(22R, 23R, 24R)-5 α , 8 α -Epidioxy-22, 23-methylene-24-methylcholest-6-en-3 β -ol (**2**): $[\alpha]_{D}^{25}$ +20 (*c* 0.02, CHCl₃) (Ref. [4], $[\alpha]_{D}^{26}$ +35 (*c* 0.1, CHCl₃)); IR (neat) v_{max} 3438, 1638 cm⁻¹; ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz, CDCl₃) NMR data were found to be in full agreement with those reported previously [4,18]; ESIMS *m/z* 465 [M+Na]⁺; HRESIMS: *m/z* 465.3347 (calcd for C₂₉H₄₆O₃Na, 465.3344).

24-Methylenecholestane-1 α , 3 β , 5 α , 6 β , 11 α -pentol (**3**): $[\alpha]_{D}^{25}$ -3 (*c* 0.06, CHCl₃) (Ref. [15], $[\alpha]_{D}^{25}$ -4 (*c* 1.60, CHCl₃)); IR (neat) v_{max} 3380, 1216 cm⁻¹; ¹H (400 MHz, C₅D₅N) and ¹³C (100 MHz, C₅D₅N) NMR data were found to be in full agreement with those reported previously [15]; ESIMS: *m/z* 487 [M+Na]⁺; HRESIMS: *m/z* 487.3402 (calcd for C₂₈H₄₈O₅Na, 487.3399).

3.4. Cytotoxicity Testing

The cytotoxicity of sterols **1–3** was assayed using a modification of the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric method. Cytotoxicity assays were carried out according to previously described procedures [25,26].

4. Conclusions

Steroid metabolites are major constituents of the extracts of *Sinularia* spp. octocorals distributed in the waters off Taiwan [4–13]. Our studies on the chemical constituents of *Sinularia gaweli* have led to the isolation of a new epidioxysterol, $(22R,23R,24R)-5\alpha,8\alpha$ -epidioxy-22,23-methylene-24-methyl-cholest-6,9(11)-dien-3\beta-ol (1), along with two known sterols, $(22R,23R,24R)-5\alpha,8\alpha$ -epidioxy-22,23-methylene-24-methylcholest-6-en-3\beta-ol (2) and 24-methylenecholestane-1 α ,3 β ,5 α ,6 β ,11 α -pentol (3). Sterol **3** was found to exhibit significant cytotoxicity against HL-60 tumor cells, and this result suggested that sterol **3** is worthy of further biomedical investigation. The soft coral *S. gaweli* has begun to be transplanted to culturing tanks with a flow-through sea water system located in the National Museum of Marine Biology and Aquarium, Taiwan for the extraction of additional natural products in order to establish a stable supply of bioactive material.

Acknowledgments

This work was supported by grants from the National Dong Hwa University; the National Museum of Marine Biology and Aquarium (Grant No. 1022002); the Division of Marine Biotechnology, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, (Grant No. 00C-0302-05); and

the National Science Council (Grant No. NSC 99-2313-B-110-003-MY3, 100-2325-B-291-001, 101-2325-B-291-001 and 101-2320-B-291-001-MY3), Taiwan, awarded to Z.-H.W. and P.-J.S.

References and Notes

- 1. Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* **2013**, *30*, 237–323.
- Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. *Mar. Drugs* 2011, 9, 1860–1886.
- 3. Chen, W.-T.; Li, Y.; Guo, Y.-W. Terpenoids of *Sinularia* soft corals: Chemistry and bioactivity. *Acta Pharm. Sin. B* **2012**, *2*, 227–237.
- 4. Sheu, J.-H.; Chang, K.-C.; Duh, C.-Y. A cytotoxic 5α,8α-epidioxysterol from a soft coral *Sinularia* species. *J. Nat. Prod.* **2000**, *63*, 149–151.
- 5. Ahmed, A.F.; Dai, C.-F.; Kuo, Y.-H.; Sheu, J.-H. 1α,3β,5β-Trihydroxy-24-methylenecholestan-6one: a novel steroid from a soft coral *Sinularia gibberosa*. *Steroids* **2003**, *68*, 377–381.
- Su, J.-H.; Tseng, Y.-J.; Huang, H.-H.; Ahmed, A.F.; Lu, C.-K.; Wu, Y.-C.; Sheu, J.-H. 9,11-Secosterols from the soft corals *Sinularia lochmodes* and *Sinularia leptoclados. J. Nat. Prod.* 2006, 69, 850–852.
- 7. Ahmed, A.F.; Hsieh, Y.-T.; Wen, Z.-H.; Wu, Y.-C.; Sheu, J.-H. Polyoxygenated sterols from the Formosan soft coral *Sinularia gibberosa*. *J. Nat. Prod.* **2006**, *69*, 1275–1279.
- 8. Ahmed, A.F.; Tai, S.-H.; Wu, Y.-C.; Sheu, J.-H. Sinugrandisterols A–D, trihydroxysteroids from the soft coral *Sinularia grandilobata*. *Steroids* **2007**, *72*, 368–374.
- 9. Chen, B.-W.; Su, J.-H.; Dai, C.-F.; Wu, Y.-C.; Sheu, J.-H. Polyoxygenated steroids from a Formosan soft coral *Sinularia facile*. *Bull. Chem. Soc. Jpn.* **2008**, *81*, 1304–1307.
- 10. Cheng, S.-Y.; Chen, H.-P.; Wang, S.-K.; Duh, C.-Y. Three new 9,11-secosterols from the Formosan soft coral *Sinularia leptoclados*. *Bull. Chem. Soc. Jpn.* **2011**, *84*, 648–652.
- 11. Chao, C.-H.; Chou, K.-J.; Huang, C.-Y.; Wen, Z.-H.; Hsu, C.-H.; Wu, Y.-C.; Dai, C.-F.; Sheu, J.-H. Steroids from the soft coral *Sinularia crassa*. *Mar. Drugs* **2012**, *10*, 439–450.
- 12. Huang, C.-Y.; Su, J.-H.; Duh, C.-Y.; Chen, B.-W.; Wen, Z.-H.; Kuo, Y.-H.; Sheu, J.-H. A new 9,11-secosterol from the soft coral *Sinularia granosa*. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 4373–4376.
- 13. Su, J.-H.; Lo, C.-L.; Wen, Z.-H.; Huang, C.-Y.; Dai, C.-F.; Sheu, J.-H. Anti-inflammatory polyoxygenated steroids from the soft coral *Sinularia* sp. *Bull. Chem. Soc. Jpn.* **2008**, *81*, 1616–1620.
- Yen, W.-H.; Hu, L.-C.; Su, J.-H.; Lu, M.-C.; Twan, W.-H.; Yang, S.-Y.; Kuo, Y.-C.; Weng, C.-F.; Lee, C.-H.; Kuo, Y.-H.; *et al.* Norcembranoidal diterpenes from a Formosan soft coral *Sinularia* sp. *Molecules* 2012, *17*, 14058–14066.
- Kobayashi, M.; Appa Rao, K.M.C.; Krishna, M.M.; Anjaneyulu, V. Marine sterols. Part 30. Isolation of 24-methylenecholestane-1α,3β,5α,6β,11α-pentol and its 11-monoacetate from the Andaman Sea soft coral *Sinularia dissecta*. J. Chem. Res. (S) **1994**, 180–181.
- 16. Anjaneyulu, A.S.R.; Venugopal, M.J.R.V.; Sarada, P. On the novel cembranoids of the soft coral *Sinularia granosa* of the Indian Ocean and their biogenesis. *Indian J. Chem.* **2000**, *39B*, 530–535.

- Gunatilaka, A.A.L.; Gopichand, Y.; Schmitz, F.J.; Djerassi, C. Minor and trace sterols in marine invertebrates. 26. Isolation and structure elucidation of nine new 5α,8α-epidioxy sterols from four marine organisms. *J. Org. Chem.* **1981**, *46*, 3860–3866.
- 18. The ¹H and ¹³C-NMR data of (22*R*,23*R*,24*R*)-5α,8α-epidioxy-22,23-methylene-24-methylcholest-6en-3β-ol (2) were reassigned in a later study. Please see Lin, Y.-C. Isolation and biological activities of secondary metabolites from the soft coral *Lobophytum sarcophytoides*. Master Thesis, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, July 2009.
- 19. Blanc, P.-A.; Djerassi, C. Isolation and structure elucidation of 22(*S*),23(*S*)-methylenecholesterol. Evidence for direct bioalkylation of 22-dehydrocholesterol. *J. Am. Chem. Soc.* **1980**, *102*, 7113–7114.
- Lu, Y.; Lin, Y.-C.; Wen, Z.-H.; Su, J.-H.; Sung, P.-J.; Hsu, C.-H.; Kuo, Y.-H.; Chiang, M.Y.; Dai, C.-F.; Sheu, J.-H. Steroid and cembranoids from the Dongsha atoll soft coral *Lobophytum sarcophytoides*. *Tetrahedron* 2010, *66*, 7129–7135.
- 21. Aknin, M.; Gros, E.; Vacelet, J.; Kashman, Y.; Gauvin-Bialecki, A. Sterols from the Madagascar sponge *Fascaplysinopsis* sp. *Mar. Drugs* **2010**, *8*, 2961–2975.
- Arreguín-Espinosa, R.; Arreguín, B.; Hernández-Santoyo, A.; Rodriguez-Romero, A. Sterol composition and biosynthesis in the sponge *Spheciospongia vesparia*. J. Chem. Technol. Biotechnol. 1998, 72, 245–248.
- Albro, P.W.; Bilski, P.; Corbett, J.T.; Schroeder, J.L.; Chignell, C.F. Photochemical reactions and phototoxicity of sterols: Novel self-perpetuating mechanism for lipid photooxidation. *Photochem. Photobiol.* 1997, 66, 316–325.
- Verseveldt, J. Alcyonaceans (Coelenterata: Octocorallia) from some Micronesian Islands. Zool. Meded. Leiden 1978, 53, 49–55.
- Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. *Cancer Res.* 1988, 48, 589–601.
- Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. *Cancer Res.* 1988, 48, 4827–4833.

Sample Availability: Samples of the sterols **1–3** are available from the authors.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).