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Abstract: The aim of the present study was to optimize a chromatographic method for the 

analysis of atorvastatin (acid and lactone forms), ortho- and para-hydroxyatorvastatin by 

using an experimental design approach. Optimization experiments were conducted through 

a process of screening and optimization. The purpose of a screening design is to identify 

the factors that have significant effects on the selected chromatographic responses, and for 

this purpose a full 23 factorial design was used. The location of the true optimum was 

established by applying Derringer’s desirability function, which provides simultaneously 

optimization of all seven responses. The ranges of the independent variables used for the 

optimization were content of acetonitrile in mobile phase (60–70%), temperature of column 

(30–40 °C) and flow rate (0.8–1.2 mL min−1). The influences of these independent variables 

were evaluated for the output responses: retention time of first peak (p-hydroxyatorvastatin) 

and of last peak (atorvastatin, lactone form), symmetries of all four peaks and relative 

retention time of p-hydroxyatorvastatin. The primary goal of this investigation was 

establishing a new simple and sensitive method that could be used in analysis of biological 

samples. The method was validated and successfully applied for determination of 

atorvastatin (acid and lactone forms) and its metabolites in plasma. 
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1. Introduction 

Atorvastatin, (3R,5R)-7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-propan-2-yl-pyrrol-1-yl]- 

3,5-dihydroxyheptanoic acid (abbreviated as ATO), is a member of the drug class known as statins 

which are used for lowering blood cholesterol. Like all statins, atorvastatin works by inhibiting  

HMG-CoA reductase, an enzyme found in liver tissue that plays a key role in production of cholesterol 

in the body. Atorvastatin is administered as the calcium salt of its active acid form. The primary 

proposed mechanism of atorvastatin metabolism is through cytochrome P450 3A4 hydroxylation to 

form active ortho- and para-hydroxylated metabolites [1]. About 70% of the total plasma HMG-CoA 

reductase inhibitory activity is accounted for by active metabolites (Scheme 1), adapted from [2]. 

Scheme 1. Structures of atorvastatin and its metabolites and the metabolic pathways of atorvastatin [2]. 

 

To date, several methods have been published for quantification of atorvastatin and its metabolites 

in a biological matrix (plasma or serum), bulk drug, pharmaceuticals products, and aqueous samples. 

Various techniques employed include a derivative spectrophotometric method [1], UV spectroscopy [3,4], 

HPTLC [5], enzyme inhibition [6] with radioactivity detection [7], as well as a number of HPLC methods. 

Some published papers have dealt with HPLC determination of atorvastatin alone [8], or in the 

presence of aspirin [9], ramipril and aspirin [10], nicotinic acid [11], amlodipine besylate [12], 

ezetimibe [13], ezetimibe and fenofibrate [14] and other statins [15,16]. For separation and quantification 

of atorvastatin and its impurities, a liquid chromatography method was also proposed [17]. A stability 

indicating method for simultaneous determination of atorvastatin, fenofibrat and their degradation 

products has been described by Kadav and Vora [18]. 
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Rapid, sensitive and effective methods for determination of drugs and metabolites in biological 

fluids are desirable [19]. A literature survey revealed that the most often used method for the 

determination plasma levels of atorvastatin and its active and inactive metabolites is LC-MS/MS [20,21]. 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is suitable since MS/MS detection is 

sensitive and enables effective elimination of interferences from endogenous components. For this 

reason most published methods for determination of ATO or both metabolites in biological fluids 

require a method of LC-MS/MS [22–24], especially because of the limitations of all previously 

mentioned instrumental methods. 

High-performance liquid chromatography with ultra-violet or electrochemical detection methods 

typically has a higher limit of quantification and is usually time-consuming. Gas chromatography 

meets the required of limit of quantification but it needs complex derivatization steps. Enzyme 

inhibition assays are sensitive and easy to implement but are non-specific and do not provide any 

information on the metabolite concentrations. 

To the best of our knowledge, currently there is no HPLC method employing optimization techniques 

for determination of atorvastatin and its metabolites in biological sample. This work is an attempt of 

establishing an HPLC method which would be simple and sensitive and could be an alternative method 

to LC/MS/MS. 

The goal was conducted by using the optimization step accomplished by Derringer’s desirability 

function. The main advantage of such approach is simultaneous optimization of influencing factors and 

response variables which enables prediction of chromatographic retention and postulation of optimum 

conditions for separation. 

2. Results and Discussion 

The presence of aromatic functional groups in the molecular structure of atorvastatin, such as 

phenyl and pyrol, makes a RP-HPLC method with PDA detection suitable for the determination. Since 

the RP-HPLC method is based on using a polar mobile phase, a complete description of the ionization 

profile of atorvastatin and its metabolites have been used for the evaluation of retention behavior and 

solubility. Considering the chemical structures and using MarvinSketch software, it is possible to 

establish a number of proton acceptor and donor groups (Figure 1a–d) at physiological pH (7.4) and to 

calculate Log P. 

Figure 1. Proton acceptor (A) and proton donor groups (D) of atorvastatin (a), ortho- 

hydroxylated metabolite (b), para-hydroxylated metabolite (c) and atorvastatin lactone (d). 

(a) 
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Figure 1. Cont. 

(b) 

 

(c) 

 

 

(d) 

According to the obtained results, pKa values are: 4.33 (p-ATO); 4.33 and 8.76 (o-ATO), which 

makes these compounds soluble in a mixture of acetonitrile (ACN) and water, while ATO-l does not 

have an ionisable group and is soluble in acetonitrile. The degree of ionization of the drug strongly 

affects solubility and retention. 

In accordance with pKa values, acetate buffer pH 4.6 was used for dilution of these compounds. At 

this pH, compounds are presented in ionisable and unionisable forms (approximately 50:50). By 

applying MarvinSketch software logP values were calculated: 5.39 for ATO; 5.08 for o-ATO and 6.05 

for ATO-l. ATO acid is more lipid-soluble than its hydroxylated metabolites and less than the lactone 

form. Considering this fact, the order of elution was predictable: p-ATO; o-ATO, ATO; ATO-l. 

Developing and optimizing isocratic HPLC methods is a complex procedure that requires 

simultaneous determination of several factors. An HPLC method could be optimized by trial and error 

methodology, but this approach is time consuming and concerns the influence of one factor at time on 

response, while the information about other factors as well as interaction between factors is not 

available. In order to optimize more than one response at a time the chemometric methods which 

includes factorial design [25] and response surface methodology [26] should be applied. 

This paper deals with multiple response simultaneous optimizations using the Derringer’s desirability 

function for the development of a reversed-phase HPLC method for the simultaneous determination 

atorvastatin (acid and lactone forms), o- and p-hydroxyatorvastatin. 

The selection of key factors examined for optimization was based on preliminary experiments and 

prior knowledge from literature. The factors selected for optimization process were: content of 
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acetonitrile in the mobile phase (x1); temperature of column (x2) and flow rate (x3). The variations of 

these parameters affect chromatographic behavior of substances: changing in a composition of the 

mobile phase induces a variation of the degree of ionization, and column temperature as well as flow 

rate affects retention behavior. Retention factor of first peak (p-hydroxyatorvastatin; Rt p-ATO); last 

peak (atorvastatin, lactone forms; Rt ATO-l); symmetry of four compounds (Sym p-ATO, Sym o-ATO, 

Sym ATO, Sym ATO-l) and relative retention time of first peak (RRt p-ATO) were selected as 

responses (see Table 1 for symbols). 

Table 1. Experimental design of the face-centered central composite design and 

experimentally obtained responses; x1-content of acetonitrile in the mobile phase, x2, 

temperature of column and x3, flow rate, Rt, retention time, Sym, symmetry of compounds, 

RRt, relative retention time. 

Factor levels Responses 

x1  

(%) 

x2  

(C) 

x3  

(mL min−1) 

Rt  

p-ATO 

Rt  

ATO-l 

Sym 

p-ATO 

Sym 

o-ATO

Sym 

ATO

Sym  

ATO-l 

RRt  

p-ATO 

65  35 1 2.851 6.982 1.183 1.122 1.132 1.102 1.102 

65 35 1 2.856 7.089 1.146 1.098 1.107 1.121 1.126 

65 30 1 3.158 7.445 0.753 0.779 0.872 0.979 1.213 

65 35 1 2.874 7.251 1.128 1.168 1.232 1.246 1.207 

65 35 1 3.214 7.861 1.047 1.119 1.206 1.123 1.143 

70 30 1.2 2.905 7.652 0.441 0.503 0.427 0.913 0.556 

60 35 1 2.134 7.128 1.148 1.204 0.986 0.998 1.162 

65 35 0.8 2.302 7.636 0.897 0.962 1.165 0.946 1.237 

65 35 1 2.826 7.241 1.147 1.201 1.136 1.121 1.145 

70 30 0.8 2.342 8.359 0.595 0.436 0.661 0.626 1.362 

60 40 0.8 1.764 6.352 0.432 0.553 0.614 0.661 1.245 

60 30 0.8 2.089 6.452 0.559 0.651 0.801 0.867 1.268 

60 30 1.2 2.453 7.753 0.982 0.812 0.806 0.995 0.585 

70 40 1.2 1.472 6.152 1.284 0.993 0.898 0.962 0.565 

65 40 1.0 1.976 6.573 1.112 1.085 0.903 1.011 1.082 

60 40 1.2 2.543 8.459 1.052 1.021 0.984 0.924 0.581 

70 35 1.0 1.752 6.561 1.064 1.011 1.006 0.922 1.151 

65 35 1.0 2.847 7.139 1.152 1.117 1.127 1.098 1.142 

70 40 0.8 0.472 6.083 1.109 0.595 0.685 0.538 1.365 

65 35 1.2 3.367 8.124 1.203 1.206 1.167 1.121 0.536 

In the preliminary study, resolutions were satisfactory (Rs > 2) and were not considered as critical 

factors, but the problem was elution of the first peak (p-hydroxyatorvastatin) which was too close to the 

peak of the mobile phase. That is why relative retention time of the first peak was selected as response. 

The elution time of the last peak (ATO-l) determined the time of analysis (which is very important 

from a practical point of view), and was included as one of the responses for the global optimization. 

The preliminary screening step was carried out according to a 23 full factorial design with center 

point in order to identify the significant factors affecting the response. Three repetitions are generally 

carried out in order to know the experimental error variance and to test the predictive validity of the 
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model. ANOVA generated for 2k Factorial design shows that curvature is significant for all the 

responses since the p-value is less than 0.05. 

Optimum chromatographic conditions were estimated by a face-centered central composite design 

using Derringer’s desirability function global optimization approach. Face-centered CCD is chosen 

due to its flexibility and high efficiency. The design required 2k + 2k + n = 20 runs, where k is the 

number of parameters studied (k = 3) and n the number of central points (n = 6). Replicates of the 

central points were performed to estimate the experimental error. 

All experiments were conducted in randomized order to minimize the effects of uncontrolled 

variables that may introduce a bias on the measurements. Table 1 summarizes the conducted experiments 

and responses. Appropriate calculations were done with the Design-Expert 7.0 software (Stat-Ease Inc. 

Minneapolis, MN, USA). The quadratic mathematical model for three independent factors was used to 

describe the response surface (Equation 1): 

y = b0 +  

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iji
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ii
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where y is the single response (Rt p-ATO, Rt ATO-l….) to be modeled, b is the regression coefficient, 

and xi, xj represent factors. Calculated coefficients of the response model and obtained p-values  

(rows below) are given in Table 2. 

In order to get more realistic model, insignificant terms with corresponding p-value  0.05 at 95% 

confidence level, were eliminated from the model by a “backward elimination” process. 

Table 2. Response models with p-value and statistical parameter (R2) obtained from ANOVA. 

 b0 b1 b2 b3 b12 b13 b23 b11 b22 b33 R2 
R2 

Adjusted 

Rt  

p-ATO 

2.84 

0.0001 a 

−0.20 

0.0043 

−0.47 

0.0001 

0.38 

0.0001 

−0.38

0.0001 

−0.053

0.4182 

0.11 

0.1175 

−0.79

0.0001 

−0.17 

0.1429 

−0.099 

0.3732 
0.9665 0.9363 

Rt 

ATO-l 

7.27 

0.0001 

−0.13 

0.1042 

−0.40 

0.0003 

0.33 

0.0014 

−0.55

0.0001 

−0.51

0.0001 

0.20 

0.0397 

−0.44

0.0121 

−0.27

0.0862 

0.6 

0.0018 
0.9409 0.8878 

Sym 

p-ATO 

1.14 

0.0001 

0.032 

0.0834 

0.17 

0.0001 

0.14 

0.0001 

0.18 

0.0001 

−0.13

0.0001 

0.066

0.0054 

−0.033

0.3236 

−0.21

0.0001 

−0.089 

0.0187 
0.9794 0.9608 

Sym 

o-ATO 

1.16 

0.0001 

−0.070 

0.0013 

0.11 

0.0001 

0.13 

0.0001 

0.067

0.0036 

−0.020

0.2755 

0.080

0.0012 

−0.086

0.0180 

−0.26

0.0001 

−0.11 

0.0048 
0.9799 0.9618 

Sym 

ATO 

1.16 

0.0001 

−0.051 

0.0130 

0.052 

0.0126 

0.036 

0.0632 

0.063

0.0079 

−0.049

0.0266 

0.1 

0.0003 

−0.16

0.0006 

−0.27

0.0001 

- 

(0.7937) 
0.9698 0.9426 

Sym 

ATO-l 

1.12 

0.0001 

−0.048 

0.0165 

−0.028 

0.1222 

0.13 

0.0001 

0.030

0.1448 

0.040

0.0593 

0.034

0.1007 

−0.14

0.0013 

−0.11

0.0077 

−0.068 

0.0600 
0.9546 0.9138 

RRt 

p-ATO 

1.14 

0.0001 

0.016 

0.2247 

−0.015 

0.2593 

−0.37 

0.0001 

0.005

0.7284 

−0.032

0.0391 

0.003

0.8235 

0.026

0.2831 

0.017

0.4718 

−0.24 

0.0001 
0.9907 0.9823 

a p-value. 

Since the residuals of model describing RRt p-ATO were not distributed with constant variance, the 

software recommended mathematical transformation. For this purpose the Box Cox plot was used as 

tool which helps determination of the most appropriate power transformation that can be applied to 
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response data. In this, case reciprocal square root (with lambda = −0.5) was recommended. The 

obtained statistical data are presented in Table 3. 

Table 3. Reduced response models and statistical data obtained from ANOVA (after 

backward elimination). 

Response Reduced response models * R2 Adj. R2 Pred. R2 
Adequate 

precision 

RSD 

(%) 

Rt p-ATO 2.83 − 0.02x1 − 0.47x2 + 0.38x3 − 0.38x1x2 − 0.83x1
2 0.9454 0.9258 0.8786 26.388 7.88 

Rt ATO-l 
7.23 − 0.40x2 + 0.33x3 − 0.55x1x2 − 0.051x1x3 +  

0.20 x2x3 − 0.54x1
2 + 0.50 x3

2 
0.9007 0.8428 0.7602 12.984 3.88 

Sym p-ATO 
1.13 + 0.17x2 + 0.14x3 + 0.18x1x2-0.13x1x3 + 

0.066x2x3 − 0.22x2
2 − 0.1x3

2 
0.9695 0.9517 0.8050 22.114 6.01 

Sym o-ATO 
1.16 − 0.07x1 + 0.11x2 + 0.13x3 + 0.067x1x2 +  

0.08 x2x3 − 0.086x1
2 − 0.26x2

2 − 0.11 x3
2 

0.9772 0.9606 0.9108 22.759 5.47 

Sym ATO 
1.16 − 0.051x1 + 0.052x2 + 0.063x1x2 − 0.049 x1x3 + 

0.1x2x3 − 0.16x1
2 − 0.27x2

2 
0.9564 0.9310 0.7508 19.841 6.25 

Sym ATO-l 1.11 + 0.13x3 − 0.17x1
2 − 0.13x2

2 0.8370 0.8064 0.7443 15.555 8.27 

RRt p-ATO ** 

0.94 − 1.5 × 10−3 x1 + 5.4x10−3x2 + 0.23x3 + 3.0 × 

10−3x1x2 + 0.015x1x3 − 1.68 × 10−3x2x3 − 0.016x1
2 − 

0.11x2
2 + 0.19x3

2 

0.9960 0.9925 0.9806 45.543 1.59 

* Coefficients with p < 0.05 are included. Factors are in coded value;** Mathematical transformation to 

reciprocal square root. 

The qualities of the fitted mathematical models were examined by the coefficient of correlation R2. 

But, this coefficient always decreases when a variable is eliminated from a regression model. Because 

of that, the adjusted R2 (which takes the number of selected variables) was taken into account. The 

obtained adjusted R2 were within acceptable limits of (R2 ≥ 0.80), indicating that the experimental 

data were a good fit to the equations. 

All the reduced models have p values < 0.05, implying the models were significant. “Adeq 

Precision” measures the signal (response) to noise (deviation) ratio and a value greater than 4 is 

desirable, indicating the signal is adequate and, therefore, the model is significant. The relative 

standard deviation (RSD) is a measure of the reproducibility of the model and a model can be regarded 

as reasonably reproducible if the RSD is <10% [26]. 

It is obvious from Table 3 that different responses were affected by different factors. The content of 

acetonitrile in the mobile phase (x1) is the most significant factor (the largest absolute coefficients) for 

retention of para- and ortho-hydoxyatorvastatin and symmetry of atorvastatin lactone. Symmetries of 

other peaks were affected mostly by temperature of the column (x2), while relative retention time of the 

para isomer was under the influence of flow rate (x3). A positive sign indicates direct correlation 

between response and factor, while a minus shows decreasing response with increasing factor. For 

example: increasing acetonitrile in the mobile phase reduces retention of ATO-l (−0.54, desirable 

effect), but reduces symmetries of peaks of o-ATO (−0.086) and ATO (−0.16) which is undesirable. 

Since the selected responses were not affected in the same manner, an additional optimization 

procedure was needed. 
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In order to get the best chromatographic performance, the multicriteria methodology [27,28] 

developed by Derringer and Suich [29] was employed. The method involves transformation of each 

predicted response, ŷ, to a dimensionless partial desirability function, di, which includes the 

researcher’s priorities and desires when building the optimization procedure. There are several ways 

for calculating the desirability function, depending on whether each of the n responses has to be 

maximized or minimized, or has a target value. If the response i is to be maximized the quantity di is 

defined by Equation (2): 

wi

i yy

yy
d






















minmax

min , ymin ≤ ŷ ≤ ymax… (2)

di = 1, ŷ  ymax; di = 0, ŷ < ymin 

where ymax, ymax are the lowest and the highest values obtained for the response i, and wi is the weight. 

Individual desirability functions di range from 0 (undesired response) to 1 (a fully desired response). 

In both cases, di will vary non-linearly while approaching the desired value. But with a weight of 1, 

di varies linearly. In this work we chose weights equal to 1 for all responses. The partial desirability 

functions are then combined into a single composite response, the so-called global desirability function 

D, defined as the geometric mean of the different di-values: 

 (3)

where n is the number of responses, and pn is the weight of the responses. Weight of the response is the 

relative importance of each of the individual functions di. The relative importance pi is a comparative 

scale for weighting each of the resulting di in the overall desirability product and it varies from the 

least important (pi = 0.1) to the most important (pi = 10). 

A value of D close to 1 means that the combination of different criteria is globally optimal. If any of 

the responses or factors falls outside their desirability range, the overall function becomes zero. The 

goals of multicriteria optimization for seven responses are shown in Table 4. 

Table 4. Criteria for multivariate optimization of the individual responses. 

Response Goal Weight Lower limit Upper limit Importance

Acetonitrile range 1 60 70 3 
Temperature range 1 30 40 3 

Flow rate range 1 0.8 1.2 3 
Rt p-ATO range 1 0.472 3.367 3 
Rt ATO-l target = 7 1 6.083 8.459 4 

Sym p-ATO target = 1 1 0.432 1.284 3 
Sym o-ATO target = 1 1 0.436 1.206 3 
Sym ATO target = 1 1 0.427 1.232 3 

Sym ATO-l target = 1 1 0.538 1.246 3 
RRt p-ATO range 1 0.856 1.366 3 

  np
n

pp nddd
1

21
21 ...D 
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The optimization procedure was conducted under listed conditions and restrictions. The partial 

desirability functions (di) of each of the responses, and the calculated geometric mean as the maximum 

global desirability function (D = 0.919) are presented in Figure 2. 

Figure 2. Bar graph showing individual desirability values (di) of various objective responses. 

 

Desirability function calculations were performed using Design-Expert 7.0. Obtained results are 

graphically presented (Figure 3). 

Figure 3. Graphical representation of the constraints accepted fot the determination of 

global desirabilty and obtained optimal conditions. 
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For better visualization of the results, the global desirability function D is presented in a form of a 

3D plots (Figure 4a–c). The third factor was set up at the optimum constant level. 

Figure 4. Three-dimensional graph: (a) D = f(temperature, ACN) with factor x3 (flow rate) 

held at 1.03 mL min−1; (b) D = f(temperature, flow rate) with factor x1 (content of 

acetonitrile in the mobile phase) held at 61.93%; (c) D = f(flow rate, ACN) with factor x2 

(temperature of column) held at 31.44 C. 

 
(a) (b) (c) 

The coordinates related to the functions maximum are selected as the best operating conditions. The 

best chromatographic conditions are achieved with 61.93% of ACN, temperature of column 31.44 C 

and flow rate 1.03 mL min−1. A representative chromatogram is shown in Figure 5. The method has 

been successfully applied for determination of atorvastatin (acid and lactone form) and its metabolites 

in plasma (Figure 6). 

Figure 5. LC-PDA chromatogram of para-hydroxyatorvastatin (a), ortho-hydroxyatorvastatin 

(b), atorvastatin (c) and atorvastatin lactone (d) taken under optimized experimental conditions. 

 

Figure 6. LC-PDA chromatogram of para-hydroxyatorvastatin (a), ortho-hydroxyatorvastatin 

(b), atorvastatin (c) and atorvastatin lactone (d) in plasma. 
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3. Experimental 

3.1. Chemical and Reagents 

Atorvastatin, para-hydroxyatorvastatin, ortho-hydroxyatorvastatin and atorvastatin lactone reference 

standards were donated by Nobel Ilaç (Istanbul, Turkey). Rosuvastatin, used as Internal Standard (IS) 

was donated by the Medicines and Medical Devices Agency (Belgrade, Serbia). HPLC-grade 

acetonitrile were purchased from Sigma Aldrich (Steinheim, Germany) and ammonium acetate used 

for preparation of buffers was purchased from Merck (Darmstadt, Germany). Ultrapure water was 

obtained by means of a TKA Water purification system (Niederelbert, Germany). 

3.2. Standard Solutions 

Stock solutions of atorvastatin, o-hydroxyatorvastatin and p-hydroxyatorvastatin were prepared by 

dissolving standards (5 mg) in a mixture of acetonitrile and water (10 mL, 90:10, v/v) and atorvastatin 

lactone (5 mg) in acetonitrile (5 mL). These stock solutions were divided into 0.5 mL portions and 

stored at −8 °C. Before using, 0.5 mL portions of all solutions (except atorvastatin lactone) were 

freshly diluted to 50 mL with 100 mM ammonium acetate buffer, pH 4.6 (pH was adjusted with glacial 

acetic acid). A 5 mL portion of atorvastatin lactone stock solution was diluted in 10 mL of buffer. The 

concentrations of obtained solutions were 5 µg mL−1. Solutions for method optimization were prepared 

by diluting 1 mL of stock solutions with buffer to obtain a concentration of 500 ng mL−1. All solutions 

were kept on ice to minimize conversion between lactone and acid form of atorvastatin and metabolites. 

3.3. Biological Samples 

Biological samples were obtained from Wistar rats (Rattus rattus). They were given atorvastatin 

over six weeks. Plasma samples were frozen immediately after sample withdrawal to minimize  

acid-lactone interconversion and stored at −80 °C. Preparation of samples was performed by solid-phase 

extraction, and the samples were kept on ice all time during sample preparation. The plasma samples 

(1 mL) were mixed with 1 mL of ammonium acetate (0.1 M, pH 4.6) and centrifuged at 1,600 g for  

5 min. The supernatant was subsequently transferred to 1 mL C18 (100 mg) SPE cartridges  

(J.T. Baker, Deventer, The Netherlands), pre-conditioned with 2 mL methanol followed by 2 mL 

water. The cartridges were washed with 1 mL water and 1 mL methanol:water (5:95, v/v). The 

analytes were eluted with 1 mL methanol:ammonium acetate buffer (0.1M, pH 4.6, 95:5, v/v) and 

evaporated to dryness under a stream of nitrogen. The residues were reconstituted in 0.5 mL mobile 

phase for injection in the HPLC system. 

3.4. Chromatographic Procedure 

The HPLC analyses were done by using an Agilent Technologies 1200 Series (Santa Clara, CA, USA) 

chromatographic system equipped with a PDA detector, binary pumps G1312A, diode array detector 

G1315D, degasser G1379B and manual injector G1328B. The sample loop was 20 μL. Separations 

were performed on a ZORBAX Eclipse Plus C18 Analytical (4.6 mm × 250 mm, 5 μm particle size) 

column (Agilent) with detection at 254 nm. Experiments were prepared according to the plan given in 
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Table 1 below. Mobile phases were degassed and vacuum filtered through a 0.45 μm membrane filter 

(Alltech Associates, Lokeren, Belgium). 

3.5. Software 

Experimental design, statistical analysis and desirability function calculation were performed by 

using MarvinSketch 5.8.2 (Chem Axon Ltd., Somerville, MA, USA, and Budapest, Hungary) and 

Design-Expert 7.0 (Stat-Ease Inc., Minneapolis, MN, USA). 

4. Conclusions 

The chemometric approach for optimization of chromatographic separation of atorvastatin (acid and 

lactone) and its metabolite has been demonstrated. The chemometric methodology chosen for the 

particular objectives was very successful in the retention behavior exploration. 

Full factorial design was used to screen the chromatographic factors that had significant effects on 

the analysis time response. The significant factors were optimized by applying central composite 

design and surface response methodology. Since there was a mix of responses with different targets, a 

multi-criteria decision-making tool (Derringer’s desirability function) was applied. After defining a global 

desirability according to the accepted constraints, optimal chromatographic conditions were established. 

The goal of this optimization of RP-HPLC was not to compete with the more potent LC/MS/MS 

assay with very low LOQ values. The proposed optimized RP-HPLC, as a method available worldwide, 

was applied to the quantitative analysis of real plasma samples, with satisfying analytical parameters. 

This investigation also showed that chromatographic techniques coupled with chemometric tools can 

provide a complete profile of a separation process, making this combined technique a powerful 

analytical tool. 
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