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Abstract: Hypochlorite is a strong oxidant able to induce deleterious effects in biological 

systems. The goal of this work was to investigate the use of PGR and PYR as probes in 

assays aimed at evaluating antioxidant activities towards hypochorite and apply it to plant 

extracts employed in Chilean folk medicine. The consumption of PGR and PYR was 

evaluated from the decrease in the visible absorbance and fluorescence intensity, 

respectively. Total phenolic content was determined by the Folin Ciocalteau assay. PGR 

and PYR react with hypochlorite with different kinetics, being considerably faster the 

consumption of PGR. Different stoichiometric values were also determined: 0.7 molecules 

of PGR and 0.33 molecules of PYR were bleached per each molecule of added 

hypochlorite. Both probes were protected by antioxidants, but the rate of PGR bleaching 

was too fast to perform a kinetic analysis. For PYR, the protection took place without 

changes in its initial consumption rate, suggesting a competition between the dye and the 

antioxidant for hypochlorite. Plant extracts protected PYR giving a PYR-HOCl index that 
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follows the order: Fuchsia magellanica  Marrubium vulgare  Tagetes minuta  

Chenopodium ambrosoides  Satureja montana  Thymus praecox. Based on both the 

kinetic data and the protection afforded by pure antioxidants, we selected PYR as the best 

probe. The proposed methodology allows evaluating an antioxidant capacity index of plant 

extracts related to the reactivity of the samples towards hypochlorite.  

Keywords: pyrogallol red; pyranine; hypochlorite; antioxidant activity; plant extracts 

 

1. Introduction 

In the last two decades, antioxidant capacity assessments for phytochemicals present in natural 

products able to inhibit (or delay) damage induced by hypochlorite have attracted the attention of 

several research groups. HOCl plays a relevant role in the defense mechanisms involved in the 

immune response towards microorganisms. Nonetheless, it has also documented that HOCl, in some 

patho-physiological conditions, can damage macromolecules such as proteins, DNA, RNA and cell 

membrane lipids, altering their biological function [1]. In particular, in the first case the ability of 

HOCl to react with lysine residues of proteins forming chloramine derivatives which could extended 

the original oxidative HOCl-mediated modifications is well-known [2]. In this context, it is important 

to evaluate the potential role of antioxidant compounds for minimizing the deleterious effects of 

hypochlorite on biomolecules and/or cellular structures, and therefore decrease its impact on human 

health [3]. Among the different approaches that have been developed to evaluate the scavenging 

activity of pure antioxidants and their complex samples towards hypochlorite, the most frequently 

employed strategy is based on the ability of antioxidants to protect molecular targets (proteins or other 

molecules). For instance, α1-antiproteinase, myoglobin and serum albumins have been used as protein 

targets [4–10]. In addition, 5-thio-2-nitrobenzoic acid (TNB), 5-aminosalycilic acid, fluorescein and 

luminol have been employed as hypochlorite-oxidizable target molecules [11–15]. 

It has been shown that pyrogallol red (PGR) and pyranine (PYR) dyes react efficiently with reactive 

species [16–19]. The spectroscopic evaluation of the bleaching of these target molecules induced by 

peroxyl radicals has permitted the development of assays aimed at evaluating the antioxidant capacity 

of pure antioxidants, plants extracts, beverages and human fluids [18,20–25]. However, the factors 

determining the level of protection estimated from the use of these two probes are different. While the 

PGR-based assay would provide an index related to the reactivity of the samples towards peroxyl 

radicals, the PYR-based index would be more associated with the stoichiometry of the sample-peroxyl 

radical reaction. In this context, it has been proposed that the use of both probes gives complementary 

information on the total content of antioxidants present in a complex mixture and the rate of their 

reaction towards peroxyl radicals [23]. In addition, PGR has also been employed as probe to estimate 

the scavenging activity of antioxidants present in human plasma towards hypochlorite [26]. 

Nonetheless, until now the antioxidant capacity of polyphenols and their complex mixtures towards 

hypochlorite employing this probe has not been reported. Therefore, in the present work we studied the 

feasibility of using PGR and PYR as hypochlorite-sensitive probes to assess the oxidant removal 

capacity of pure polyphenols and methanolic extracts of six plant species (Satureja montana L. 
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(Lamiaceae), Fuchsia magellanica Lam. (Onagraceae) Thymus praecox subsp. arcticus (Durand) Jalas 

(Lamiaceae), Marrubium vulgare L. (Lamiaceae), Tagetes minuta L. (Asteraceae) and Chenopodium 

ambrosioides L. (Amaranthaceae). These plants were selected because they are commonly used in 

Chilean folk medicine as analgesic, anti-inflammatory and antispasmodic agents. 

2. Results and Discussion 

2.1. Interaction of PGR and PYR with Hypochlorite 

Figure 1A and B show the effect of hypochlorite on the UV-visible spectrum of PGR and PYR, 

respectively. The absorption intensity of the visible band of PGR (with a maximum at 540 nm) decreased 

immediately (less than 10 s) after the addition of hypochlorite in a concentration-dependent way. In 

addition, a new band at 395 nm was generated implying that PGR was efficiently oxidized by hypochlorite. 

As shown in Figure 1B, the presence of hypochlorite also generated changes in the UV-visible spectrum of 

PYR. In fact, the absorbance at 460 nm clearly decreased while formation of a new band at 265 nm is 

observed. In addition, the intensity of PYR fluorescence (460 and 510 nm as excitation and emission 

wavelengths, respectively) decreased during its incubation with hypochlorite (Figure 1C). No changes 

in the shape of the fluorescence band were observed up to 60% of PYR disappearance. 

Figure 1. Probe spectroscopic changes induced by HOCl. (A) Changes in the UV-visible 

spectrum of PGR (30 µM) induced by hypochlorite (15 µM). Line a and b before and after 

5 min of hypochlorite addition, respectively; (B) Changes in the UV-visible spectrum of 

PYR (50 µM) mediated by 100 µM of hypochlorite. Lines a–e: increasing times up to  

30 min of incubation; (C) Changes in the fluorescence spectrum of PYR (5 µM) mediated 

by hypochlorite (10 µM). Lines a–e: increasing times up to 30 min of incubation. 
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In comparison with PGR, the hypochlorite-mediated UV-visible and fluorescence changes of PYR 

were significantly slower. In fact, as depicted in Figure 2, different kinetic profiles were observed 

during the reaction of PGR and PYR with hypochlorite. In the case of PGR (Figure 2A), a fast 

decrease of the absorption units at 540 nm was evidenced immediately (less than 5 s) after the addition 

of hypochlorite.  

Figure 2. Kinetic profiles of PGR and PYR consumption induced by hypochlorite.  

(A) Consumption of PGR followed by visible spectroscopy at 540 nm. PGR (60 µM) was 

incubated with hypochlorite at 20; 30; 60; and 100 µM. The arrow indicates the time in 

which hypochlorite was added; (B) PYR consumption followed by fluorescence technique 

(460 and 510 nm for λex and λem, respectively). PYR (5 µM) was incubated with 

hypochlorite at 5; 10; 20; and 50 µM. Controls experiments (PGR or PYR solution in the 

absence of hypochlorite).  

 

Therefore, the kinetic profiles regarding the PGR consumption induced by hypochlorite did not 

allow estimating the initial rate of the reaction and the hypochlorite removing capacity was 

characterized by the presence of a plateau in the absorbance (Figure 2A). Contrary to this behavior, the 

PYR-hypochlorite reaction was slow enough to allow the evaluation of the initial PYR consumption 

rate. Interestingly, as in the case of PGR, the kinetic profiles of PYR consumption also reached a 

plateau in a hypochlorite-concentration dependent way (Figure 2B) attributable to the total 

consumption of the oxidant. The presence of this plateau allows then an evaluation of the PGR and 

PYR consumed by each mol of hypochlorite added to the working solution. Then, from the 

dependence of consumed moles of PGR and PYR on hypochlorite concentration (Figure 3) we 

estimated the stoichiometry of the reaction (n) of both probes towards hypochlorite. The consumption 

of PGR and PYR showed a linear dependence between 1 and 20 µM of hypochlorite concentrations. In 

this range of hypochlorite concentrations was estimated a stoichiometry (defined as mole of probe 

consumed by each mole of hypochlorite) of the reaction of 0.7 and 0.33, for PGR and PYR, respectively.  
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Figure 3. Dependence of the consumed probe with hypochlorite concentration.  

(A) Dependence of the PGR consumed with hypochlorite concentration. [PGR] = 15; 30; and 

60 µM. (B) Dependence of PYR consumed with hypochlorite concentration. [PYR] = 5; 

10; and 50 µM. 

 

The initial consumption rate of PYR was estimated upon a wide PYR and hypochlorite 

concentration range, and represented as Log-Log plots in Figure 4. The data depicted in this figure 

gave a linear regression equation of y = 0.79x – 1.07 (r
2
 = 0.963) for the Log v0 versus Log 

[hypochlorite] plot (Figure 4A), and y = 0.79x + 0.062 (r
2
 = 0.995) for the Log v0 versus Log [PYR] plot 

(Figure 4B). From these results, it was estimated a kinetic hypochlorite and PYR order near to 0.8. 

These kinetic orders are compatible with a bimolecular process in the first stages of the reaction and 

the n value (n = 0.33) would reflect the presence of secondary reactions between PYR-oxidized 

products and hypochlorite. 
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Figure 4. Dependence of initial consumption rate of PYR with hypochlorite (A) or PYR 

initial concentrations (B). Log-Log plots. 

 

2.2. Protection of PGR and PYR by Antioxidants 

From the results presented in Figures 1 to 4 we chose the more appropriate experimental conditions 

to carry out experiments aimed to study the effect of pure antioxidants and plant extracts on the 

hypochlorite-mediated PGR and PYR consumption. We selected 10 µM hypochlorite concentration, 

and 15 and 5 µM for PGR and PYR concentrations, respectively. These experimental conditions were 

chosen considering near a half consumption of the probes induced by the above mentioned 

hypochlorite concentration.  

2.3. Protection by Antioxidants 

The consumption of PGR and PYR induced by hypochlorite is inhibited by compounds able to react 

with this reactive species. Figure 5 shows representative results regarding the protection of PGR and 

PYR afforded by antioxidants. As depicted in this figure, the presence of ferulic acid clearly inhibited 

the consumption of both probes. In the case of PGR (Figure 5A), the protection was evidenced at 

higher ferulic acid concentrations (50 and 300 µM) than PGR, implying a lower reactivity of the 

antioxidant than PGR towards hypochlorite. Ferulic acid also protected PYR even at concentrations 

similar to those of the dye, 0.5–25 µM (Figure 5B). Interestingly, the kinetic data associated with the 

effect of ferulic acid on the PYR consumption highlights the fact that the initial consumption rate of 

PYR was similar in the absence and presence of the additive (even at the highest concentration 
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employed). The latter evidences that the protection to PYR given by ferulic acid is mainly related to 

the direct competition by hypochlorite, disregarding possible reactions of the antioxidant with 

hypochlorite-generated intermediates. The same behavior was observed for all the antioxidants studied 

in this work. 

Figure 5. Effect of ferulic acid on the consumption of PGR or PYR induced by 

hypochlorite. (A) Kinetic profiles of the reaction between PGR (15 µM) and hypochlorite 

(10 µM) in the absence and presence of ferulic acid at 100 and 300 µM. The arrow 

indicates the time at which hypochlorite was added. (B) Kinetic profiles of the reaction 

between PYR (5 µM) and hypochlorite (10 µM) in the absence and presence of ferulic acid 

at 0.5; 5 and 25 µM. Controls experiments (PGR or PYR plus ferulic acid in the absence  

of hypochlorite). 

 

Considering a direct competition between PGR or PYR and antioxidants towards hypochlorite, a 

simple competitive scheme where both processes follow the same kinetic law leads to:  

 
(1) 

where Probe0 and ProbeXH correspond to the difference of the initial absorbance or fluorescence 

intensity of PGR or PYR and the absorbance or fluorescence intensity after the reaction with 

hypochlorite in absence (Probe0) and in the presence (ProbeXH) of the antioxidant. kProbe and kXH 

represent the specific kinetic rate constant of the hypochlorite-probe and hypochlorite-XH reaction, 

respectively. [XH] and [Probe] are the initial antioxidant and PGR or PYR molar  

concentrations, respectively.  
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Therefore the slope of the PGR0/PGRProbe versus [XH]/[Probe] plots is directly related to the 

kinetic rate constant of the reaction between XH and hypochlorite and, as consequence, such slope 

could be considered as an antioxidant capacity index of a particular additive towards hypochlorite. 

Figure 6 shows typical results in which PGR was used as probe and Trolox, gallic and ferulic acid 

were employed as antioxidants. As is expected from Eqn. (1), a linear behavior was observed. 

Obtained data for Trolox, gallic and ferulic acids gave mean linear regressions of y = 1.07 − 0.32x  

(r
2
 = 0.991); y = 1.08 − 4.21x (r

2
 = 0.995); and y = 1.07 − 0.097x (r

2
 = 0.995), respectively. The slope 

of these data represents the kXH/kprobe ratio. From these type of data, employing both probes, the slopes 

for different antioxidants were estimated and represented as gallic acid equivalents, named as  

PGR-HOCl and PYR-HOCl indexes, when PGR and PYR were employed as probes, respectively. As 

presented in Table 1, coumaric acid was the compound with the lowest antioxidant ability, 0.004 and 

0.02 gallic acid equivalents, by PGR-HOCl and PYR-HOCl assays, respectively. Quercetin was the 

antioxidant compound that showed the highest antioxidant ability, 4.35 and 1.5 for PGR-HOCl and 

PYR-HOCl, respectively. These results show that the PGR-HOCl index of quercetin was 1088 times 

higher than that of coumaric acid. The same comparison, but employing PYR as probe (PYR-HOCl) 

showed an antioxidant ability of quercetin 75 times higher than that of coumaric acid. In agreement 

with previous reports, which employed human serum albumin (HSA) as hypochlorite-target, coumaric 

acid showed a lower antioxidant capacity than caffeic, ferulic and sinapic acid [7]. In addition, the 

higher antioxidant capacity of quercetin towards hypochlorite than cinnamic acids has also been 

reported by Firuzzi et al. [7,8] who obtained a quercetin/coumaric acid ratio close to 900. 

Figure 6. Dependence of PGR0/PGRXH with the [XH]/[PGR] ratio. XH = Trolox, 

gallic acid, and ferulic acid. 
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Table 1. PGR-HOCl and PYR-HOCl values (relative to gallic acid activity) of pure 

antioxidants. Data represent the mean of at least three independent experiments. Standard 

deviation (SD) represented less than 10% of the mean. 

Compound PGR-HOCl PYR-HOCl 

Trolox ® 0.07 ± 0.001 0.04 ± 0.003 

Cafeic acid 0.01 ± 0.0008 0.70 ± 0.06 

Ferulic acid 0.02 ± 0.0012 0.19 ± 0.01 

Sinapic acid 0.01 ± 0.0009 0.24 ± 0.02 

Cumaric acid 0.004 ± 0.0002 0.02 ± 0.001 

Gallic acid 1  1 

Quercetin 4.35 ± 0.30 1.5 ± 0.14 

Apigenin 0.46 ± 0.04 0.56 ± 0.03 

Ascorbic acid 0.44 ± 0.03 0.06 ± 0.003 

Initial reaction rates can be obtained only when PYR was employed as probe. In addition, the 

stoichiometry of the reaction was different depending on the target molecule employed—0.7 and  

0.33 moles of PGR and PYR were consumed per each mol of hypochlorite, respectively. In the case of 

PYR, the stoichiometric value would involve the occurrence of secondary reactions after the first step, 

which directly depends on the PYR and hypochlorite concentrations. When each probe was incubated 

with hypochlorite in the presence of antioxidants, the results obtained showed a low protection of PGR 

afforded by cinnamic acids. Coumaric acid, a cinnamic acid derivative with the lowest antioxidant 

activity, showed a PGR protection five times lower than ferulic acid (the cinnamic acid derivative with 

the highest ability to protect PGR). When PYR was used as probe, coumaric acid presented an 

antioxidant activity 35 times lower than caffeic acid (the cinnamic acid derivative with the highest 

activity to protect PYR). Thus, the use of PYR implies a higher discrimination than PGR in terms of 

the antioxidant activity of pure compounds. Therefore, and taking into account the kinetic profiles of 

the PYR consumption, we selected this molecule as hypochlorite-oxidable probe. The above presented 

results show that PYR presents advantages in comparison with PGR. Firstly, the low rate of the  

PYR-HOCl reaction allows estimating initial reaction rates, obtaining kinetic data regarding its 

consumption induced by HOCl. Secondly, the protection given by pure antioxidants follows the 

expected order in comparison with the activity of these compounds towards hypoclorite [7,8]. Then, 

we applied a competitive assay employing PYR as target to evaluate the antioxidant activity of plant 

extracts towards hypochlorite.  

2.4. Protection of PYR by Plant Extracts 

The antioxidant activity of Marrubium vulgare [27,28], Tagetes minuta [29], Thymus praecox [30,31] 

and Satureja montana [32–34] have been reported previously. The published data referred to the 

scavenging activity of essential oils, and aqueous or alcoholic extracts of these plants towards the  

2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. This antioxidant activity would be associated with 

the presence in these plant species of phenolic acids and flavonoids. To our knowledge, there are no 

studies of the in vitro antioxidant activity of these species against hypochlorite. The latter, added to the 

common use of these plants in the folk medicine, led us to apply the PYR-based assay to study their 
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hypochlorite removing capacity. Figure 7A shows the effect of the extract of F. magellanica on the 

consumption of PYR induced by hypochlorite. This extract protected PYR, as evidenced by the 

increase in fluorescence intensity measured in the plateau of the kinetic profiles (after 20 min 

incubation). In a similar way that experiments employing pure antioxidants, the protection of this plant 

extract did not change the initial consumption rate of PYR. This behavior, i.e., effect on the 

fluorescence plateau without alter the initial rate of the reaction, was observed for all the samples 

studied. As is evidenced from data depicted in Figure 7B, increasing concentrations of extracts showed 

a linear relationship in agreement with Eqn 1. From these types of experiments were obtained PYR-HOCl 

values of the samples, which followed the order: F. magellanica  M. vulgare  T. minuta   

C. ambrosoides  S. montana  T. praecox. 

Figure 7. Effect of plant extracts (PE) on the hypochlorite-mediated consumption of PYR. 

(A) Kinetic profiles of the reaction between PYR (5 µM) and hypochlorite (10 µM) in the 

absence and presence of F. magellanica at 0.2; 1; 2 and 10 µg/mL. (B) Dependence of 

Probe0/ProbePE with [PE]/[PYR] ratio. F. magellanica; M. vulgare; C. ambrosoides; 

and S. montana. PE concentrations correspond to µg of dried extract/mL. 

 

The antioxidant capacity of plant extracts towards hypochlorite, estimated employing PYR as 

probe, show that the samples protected PYR to different degrees. This would imply that the samples 

contain different concentrations of antioxidants and/or that they contain compounds of different 

reactivity towards hypochlorite. To clarify this aspect we determined the total phenolic content of the 

samples by the Folin Ciocalteau assay. As presented in Figure 8, the PYR-HOCl values did not 
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correlate with the total phenolic content of the samples. For example, the latter is evident if the results 

obtained employing M. vulgare and T. praecox extracts are analyzed. While the former showed, 

among all studied samples, one of the highest antioxidant activity, the latter extract presented the lowest 

PYR-HOCl value (Table 2). In contrast, the Folin Ciocalteau data showed that T. praecox extract had 

close to six times more phenols than M. vulgare. These results could be due to the fact that PYR-HOCl 

index is associated with the kinetic rate constant of the sample-hypochlorite reaction. Then, M. vulgare 

extract would contain antioxidants with higher reactivity towards hypochlorite than T. praecox extract. 

Figure 8. Dependence of the PYR-HOCl index with total phenol content of plant extracts. 

 

Table 2. PYR-HOCl values (relative to gallic acid activity) of plant extracts. Data 

represent the mean of at least three independent experiments. Standard deviation (SD) 

represented less than 10% of the mean. 

Plant Extracts PYR-HOCl 

M. vulgare 0.11  

T. minuta 0.11  

C. ambrosioides 0.06  

T. praecox 0.03  

F. magellanica 0.12  

S. montana 0.05  

3. Experimental  

3.1. Chemicals  

Trolox (6-hydroxy-2,5,8-tetramethylchroman-2-carboxylic acid), pyrogallol red (pyrogallol-sulfophtalein, 

PGR), pyranine (8-hydroxypyrene-1,3,6-trisulfonate trisodium salt, PYR), and all the antioxidants 

studied were purchased from Sigma-Aldrich (St. Louis, MO, USA). Hypochlorite and Folin-Ciocalteau 

reagent were supplied by Merck (Darmstadt, Germany). All compounds were employed as received. 
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3.2. Solutions 

PGR and PYR stock solutions (1 mM) were prepared daily in Chelex-treated phosphate buffer 75 mM, 

pH 7.4. Hypochlorite stock solution (0.6 mM) was prepared daily by diluting commercial sodium 

hypochlorite with ultrapure water. This solution was kept in an ice bath and protected from light. 

Hypochlorite concentration was determined spectrophotometrically in 0.01 M NaOH using an 

extinction coefficient of 350 M
−1

cm
−1

 at 292 nm [8]. Stock solutions of all antioxidants (10 mM) were 

prepared in ethanol. In all cases ethanol concentration did not excess 5% of the final working solution 

volume. Working solutions were prepared as follows: to a solution containing PGR (15 µM) or PYR  

(5 µM) an aliquot of hypochlorite (30 µL) was added to obtain a final hypochlorite concentration of  

10 µM. Similar experiments were carried out in the presence of pure antioxidants (between 10 and  

500 μM final concentrations) or dried extracts (between 0.1 and 40 μg/mL final concentrations).  

The consumption of PGR was evaluated from the progressive absorbance decrease measured at  

540 nm in a thermostatized cuvette of a Hewlett Packard 8453 (Palo Alto, CA, USA) UV-visible 

spectrophotometer. The PYR consumption was assessed from the decrease in the sample fluorescence 

intensity (excitation: 460 nm; emission: 510 nm). Fluorescence measurements were carried out in a 

Perkin Elmer LS-55 spectrofluorimeter (Beaconsfield, UK). 

3.3. Plant Material  

Aerial parts of Satureja montana L; Fuchsia magellanica Lam.; Thymus praecox subsp. arcticus 

Jalas; Marrubium vulgare L.; Tagetes minuta L. and Chenopodium ambrosioides L. were grown, 

identified and collected in October 2010 in the Herbarium nursery, Peñalolén, Santiago, Chile. Plant 

material was dried at room temperature and powdered. Crude extracts were obtained by static 

maceration (2 × 24 h) of the dry material with methanol at room temperature. After extraction, the 

solvent was evaporated to dryness under reduced pressure. 

3.4. Total Phenolics 

Total phenol content in the extracts was determined according to the Folin–Ciocalteau colorimetric 

method [35,36]. Briefly, appropriate dilutions of the samples were incubated with 0.2 N  

Folin-Ciocalteau reagent (Merck, 2N, diluted ten-fold). After 5 min, sodium carbonate (75 g/L) was 

added. The mixtures were incubated for 60 min and the absorbance of the resulting blue color 

measured at 765 nm using an Agilent 8453 UV-visible spectrophotometer (Palo Alto, CA, USA). 

Quantification was done on the basis of a standard curve of gallic acid, and the results were expressed 

as milligrams of gallic acid equivalents per gram of dry extract. 

3.5. Data Expression and Analysis  

All data represent the mean values of at least three independent experiments, each conducted in 

triplicate. The standard deviations (SD) of such values are not included as these generally represent 

less than 10% of the means. The kinetic profiles and data treatment (linear regression analyses) were 

performed employing Origin 6.0 software.  
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4. Conclusions  

The results presented in this work show that PGR and PYR react efficiently with hypochlorite. 

Based on kinetic data and on the results from the protection afforded by pure antioxidants, we selected 

PYR as a better hypochlorite-oxidable probe than PGR. The use of PYR as probe allowed us to 

determine an antioxidant capacity index of plant extracts related to the reactivity of the samples 

towards hypochlorite. Plant extracts protected PYR giving a PYR-HOCl index that follows the order: 

Fuchsia magellanica  Marrubium vulgare  Tagetes minuta  Chenopodium ambrosoides   

Satureja montana  Thymus praecox. 
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