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Abstract: In the present paper, we report on the synthesis, and in vitro antiviral  

and cytostatic activities of a series of novel imidazole[4,5-e][1,3]diazepine-4,8-dione 

(compounds 9–11) and acyclic carbamoyl imino-ureido imidazole (compounds 12 and 13) 

derivatives. These new type of chemical entities showed no significant activity on the 

broad spectrum of DNA and RNA viruses. Results of antiproliferative assays performed on 

a panel of selected human tumor cell lines revealed that only compounds 1 and 5 showed 

moderate and selective cytostatic effect against HeLa cells (IC50 = 24 and 32 µM) with no 

concomitant cytotoxic effects on human normal fibroblasts (BJ). Importantly, an imidazole 

derivative containing a pyrrolidine moiety linked via an ethylenic spacer (3) showed a 

selective cytostatic effect toward cervical carcinoma (HeLa) cells (IC50 = 9.5 µM) with  
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no apparent cytotoxicity on human normal fibroblasts (BJ). This compound can be 

therefore considered as a potential anti-tumor lead compound for further synthetic  

structure optimization. 

Keywords: imidazole; [4,5-e][1,3]diazepine; anti-RSV; anti-tumor 

 

1. Introduction 

It has been found that infection with respiratory syncytial virus (RSV), which manifests primarily as 

bronchiolitis or viral pneumonia, is the leading cause of lower respiratory tract infections (LRTIs) in 

infants and young children [1]. Ribavirin still is the only antiviral agent approved for the treatment of 

RSV infection, but due to efficacy and toxicity issues, it has only limited utility [2]. There is a clear 

need for new anti-RSV therapeutics, with improved efficacy and safety for broader applications [3]. 

Powell and his colleagues have recently identified a new class of RSV inhibitors, namely  

1,4-benzodiazepines [4], which eventually led to identification of RSV604 as a clinical candidate [5]. 

Furthermore, imidazole is an entity incorporated into many important biological molecules with a 

wide range of pharmacological activity. In the field of drug discovery the imidazole scaffold is  

widely used in the drug design strategy and imidazoles are generally well known as anticancer agents as 

well [6]. 

Moreover, heterocycles containing an imidazo[4,5-e][1,3]diazepine ring system have already shown 

potent in vitro activity at low micromolar concentrations against lung, breast, ovarian and prostate 

cancer cell lines [7]. Also, in vitro inhibitory activity of a number of ring-expanded nucleosides  

against NTPase/helicases of a family of Flaviviridae have been reported. Compounds containing an 

imidazo[4,5-e][1,3]diazepine-4,8-dione ring system have exhibited potent activities against HBV and 

HCV [8]. Ring-expanded nucleosides employing a fused imidazo[4,5-e][1,3]diazepine ring system 

show promising anti-measles virus activity at submicromolar or micromolar concentration levels with 

no apparent toxicity to the host cell line [9]. 

In the light of these findings we efficiently synthesized a series of new 1H-imidazole-4,5-dicarboxylic 

acid/amide derivatives (1–8), imidazo[4,5-e][1,3]diazepine-4,8-dione derivatives (9–11) and 

carbamoyl imino-ureido derivatives of imidazole (12 and 13) (Figure 1) and evaluated their antiviral 

and cytostatic activity potency. 

2. Results and Discussion 

2.1. Chemistry 

The synthesis of new 1H-imidazole-4,5-dimethyl dicarboxylate (1–4), 1H-imidazole-4,5-diamide 

(5–8), imidazole[4,5-e][1,3]diazepine-4,8-dione (9–11) and acyclic carbamoyl imino-ureido imidazole 

derivatives (12 and 13) is performed according to the Figure 2. 
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Figure 1. New 1H-imidazole-4,5-dicarboxylic acid/amide derivatives (1–8), 

imidazo[4,5-e][1,3]diazepine-4,8-dione derivatives (9–11) and carbamoyl imino-ureido 

derivatives of imidazole (12 and 13). 

 

Figure 2. Synthesis of imidazo[4,5-e][1,3]diazepine-4,8-dione (9–11) and  

ureido-imino-carbamoyl-imidazole derivatives (12–13). Reagents and conditions:  

(i) K2CO3, CH3CN, r.t.; (ii) NH3, MeOH, r.t.; (iii) guanidine hydrochloride, NaOMe, 

MeOH, r.t.; (iv) 2-fluorophenyl isocyanate, DMF, r.t. 

 

Reaction of 4,5-dimethyl 1H-imidazole-dicarboxylate (dMIdC) with K2CO3 and different  

2-chloroalkylamine hydrochlorides, that is 4-(2-chloroethyl)morpholine, 4-(2-chloroethyl)piperidine, 

4-(2-chloroethyl)pyrrolidine and 3-dimethylaminopropyl chloride gave 4,5-dimethyl dicarboxylate 

derivatives (1–4) with alkylamino chains at the N-1 of the imidazole ring. 1H-imidazo-4,5-diamide 

derivatives (5–7) were obtained by ammonolysis of diesters 1–4 in polar protic solvent.  



Molecules 2013, 18 13388 

 

 

Time-controlled reaction of compounds 1–3 with guanidine-hydrochloride and sodium-methoxide 

gave cyclized imidazo[4,5-e]diazepine-4,8-dione derivatives (9–11) and a mixture of two regioisomeric 

guanidino carbamoyl-imidazole derivatives which in subsequent in situ reaction with 2-fluorophenyl 

isocyanate in DMF afforded carbamoyl imino-ureido derivatives 12 and 13. It is worth noting that the 

reaction of imidazo[4,5-e][1,3]diazepine-4,8-dione derivatives (9–11) with 2-fluorophenyl isocyanate 

did not gave the desired ureido-imidazo[4,5-e][1,3]diazepine-4,8-dione derivative. The main reason 

obviously lies in the fact that 6-amino-diazepine-4,8-dione molecules (9–11) are predominantly in 

solution in their imino tautomeric form as confirmed by NMR spectroscopy, which is inactive in the 

final step of the synthesis to create the ureido derivative of imidazo[4,5-e][1,3]diazepine-4,8-dione. 

Morpholine derivative 12 for which we believed to have a diazepine-4,8-dione structure and whose 

NMR spectrum indicated next to all diagnostic signals for the assumed structure the presence of an 

unidentified signal at approximately 3.8 ppm attributable to a OMe group, which is consistent with the 

results of the determination of the molecular ion mass by high resolution mass spectrometry. 

2.2. Structural Properties 

The structures of 1–13 have been confirmed by 1H and 13C-NMR spectra (Experimental). The 

analysis of the spectra was achieved on the basis of the chemical shift, signal multiplicity and integral 

values. 19F NMR resonances of 12 and 13 were well resolved (Experimental). 1H decoupled 13C-NMR 

showed C–F coupling constants that enabled straightforward identification of fluorinated carbon atoms 

and their neighbors. Two sets of signals were observed for 9 in the ratio 4:1 as was estimated from the 

integral values of 1H-NMR signals (e.g., CH-5 proton at δ 8.05 and 7.69 ppm). Two species were most 

probably detected due to presence of dynamic equilibrium between amine and imine tautomers  

(C8–NH2 and C8=NH). C8 chemical shifts of the major species showed value of 149.99 ppm, which is 

characteristic for the imine form. Therefore, imine form of 9 is the predominant species in solution. 

Likewise, broad 13C-NMR signals suggested presence of tautomer forms for 10 and 11. Imine forms 

are favored according to C8 chemical shift (δ 149.70 and 150.12 ppm for 10 and 11, respectively). 

The correlation signals observed in 1H-13C HSQC and HMBC spectra allowed assignment of C2, 

C3 and C5 atoms. Interestingly, major chemical shifts differences between 12 and 13 were observed 

for C2 and C3 atoms. The correlation signals between methylene protons CH2-1' and C2 and C5 in 

combination with chemical shift values of imidazole carbon atoms suggested that COOCH3 group is 

attached to C2 (δ 121.43 ppm) and fluoro-phenyl-ureido-imino-methyl-carbamoyl moiety to C3  

(δ 145.53) in 12. On the other hand, COOCH3 in attached to C3 in 13, which is indicated by C2 and C3 

chemical shift (δ 127.71 and 134.19 ppm). 

These spectroscopic results indicate that compounds 12 and 13 exist as regioisomers with respect to 

substitution at positions C-2 and C-3 of the imidazole moiety. This implies that both regioisomers are 

formed as indicated in Figure 2 and their subsequent in situ reaction gave compounds 12 and 13. 

Structural differences between 12 and 13, which were suggested by distinct NMR chemical shifts of 

C2 and C3, were assessed by NOESY experiments. Unfortunately, only trivial NOESY cross-peaks 

were observed for 12 and 13. COOCH3 group showed no NOESY signals with methylene protons and 

therefore no particular conformational preferences could be established for these compounds. 
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2.3. Biological Results 

2.3.1. Antiviral Activity 

Compounds 1–3, 5–7 and 9–13 were evaluated for their antiviral activity against a wide variety of 

DNA and RNA viruses, including herpes simplex virus type 1 (HSV-1) (KOS), HSV-2 (G), vaccinia 

virus and vesicular stomatitis virus in HEL cells, parainfluenza-3, reovirus-1, Sindbis, Coxsackie B4, 

and Punta Toro virus in Vero cells, vesicular stomatitis virus, Coxsackie virus B4, and respiratory 

syncytial virus in HeLa cells and influenza A (H1N1; H3N2) and influenza B viruses in MDCK  

cells. Unfortunately, none of the compounds showed pronounced antiviral activity at subtoxic 

concentrations. No cytotoxicity for all evaluated compounds on HEL, Vero, HeLa and MDCK cell 

cultures was observed (data not shown). 

2.3.2. Cytostatic Activity 

Compounds 1–12 were evaluated for their antiproliferative effect against several malignant tumor 

cell lines: cervical carcinoma (HeLa), colorectal adenocarcinoma, metastatic (SW 620), breast 

epithelial adenocarcinoma, metastatic (MCF-7) and human hepatocarcinoma (HepG2) cells and 

compared with their effects on the growth of normal human skin fibroblasts (BJ) (Table 1). The 

imidazole[4,5-e][1,3]diazepine-4,8-dione derivative linked with a pyrrolidine ligand (11) showed a 

modest cytostatic effect on colon cancer cells (SW620) (IC50 = 20 µM) while imidazole derivative 

containing a pyrrolidine moiety linked via an ethylenic spacer (3) showed specific antiproliferative 

effect on HeLa cells (IC50 = 9.5 µM). However, both compounds 11 and 3 exerted moderate growth 

inhibition only at the highest tested concentrations (10 and 100 µM). Other compounds exerted weak 

or no antproliferative effects on tested cell lines. 

Table 1. Inhibitory effects of compounds 1–12 on the growth of malignant tumor cell lines 

in comparison with their effect on normal human skin fibroblasts (BJ). 

Tumor cell growth IC50
a (μM) 

Compd. Structure 
Cell lines 

MCF-7 HepG2 SW620 HeLa BJ 

1 >100 >100 >100 24 >100 

2 >100 >100 >100 >100 >100 

3 >100 >100 >100 9.5 >100 
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Table 1. Cont. 

Tumor cell growth IC50 
a (μM) 

Compd. Structure 
Cell lines 

MCF-7 HepG2 SW620 HeLa BJ 

4 >100 >100 >100 >100 >100 

5 >100 >100 >100 32 >100 

6 >100 >100 >100 >100 >100 

7 >100 >100 >100 >100 >100 

8 >100 >100 >100 >100 >100 

9 >100 >100 >100 >100 >100 

10 >100 41 31 31 >100 

11 >100 >100 20 >100 >100 

12 >100 >100 >100 >100 >100 

a IC50; 50% inhibitory concentration, or compound concentration required to inhibit tumor cell proliferation 

by 50%. 
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3. Experimental 

3.1. General Materials and Methods 

All commercially available chemicals were purchased from Sigma Aldrich (Hamburg, Germany) 

and used without purification. All solvents were analytical grade purity and dried. Methanol (CH3OH) 

was stored over 3 Å molecular sieves. Dimethylformamide (DMF) was stored over 4 Å molecular sieves. 

Dichloromethane (CH2Cl2) was refluxed over phosphorus pentoxide (P2O5), distilled and stored over  

4 Å molecular sieves. Merck silica gel 60 F254 plates were used for thin-layer chromatography.  

Column chromatography was performed with Merck silica gel (0.063−0.200 mm), with 

dichloromethane/methanol as eluent. 1H and 13C-NMR spectra were recorded on a Varian Gemini  

300 spectrometer (Institute Ruđer Bošković, Zagreb, Croatia) and Varian NMR System 600 and 

Varian Unity Inova 300 and Agilent Technologies DD2 300 MHz NMR spectrometers (National 

Institute of Chemistry, Ljubljana, Slovenia) Samples were measured in CDCl3 and DMSO-d6 solutions 

at 25 °C in 5 mm NMR tubes. Chemical shifts (δ) in ppm were referred to TMS. High performance LC 

was performed on Agilent 1100 series system with UV detection (photodiode array detector) using 

Zorbax C18 reverse-phase analytical column (2.1 × 30 mm; 3.5 µm). All compound used for biological 

evaluation showed >95% purity in this HPLC system. The electron impact mass spectra and the purity 

of compounds were assessed by using Agilent Technologies 6410 Triple Quad LC/MS instrument 

equipped with electrospray interface and triple quadrupole analyzer (LC-MS/MS). 

3.2. Procedures for the Preparations of Compounds 

3.2.1. General Procedure for Synthesis of 1–4 

To a solution of 4,5-dimethyl 1H-imidazole-dicarboxylate (1 g; 5.43 mmol) and K2CO3 (1.5 g; 

10.86 mmol) in CH3CN (30 mL) is added 4-(2-chloroethyl)morpholine hydrochloride (for cmpd 1),  

4-(2-chloroethyl)piperidine hydrochloride (for cmpd 2), 4-(2-chloroethyl)pyrrolidine hydrochloride 

(for cmpd 3) or 3-dimethylaminopropyl chloride hydrochloride (for cmpd 4) (5.43 mmol). Reaction 

mixture is stirred at room temperature for 48 h. The solvent is evaporated and the crude product simply 

extracted with CH2Cl2 or purified by silica gel column chromatography (CH2Cl2/CH3OH = 20/1). 

1-(2-Morpholin-4-yl-ethyl)-1H-imidazole-4,5-dicarboxylic acid dimethyl ester (1): Following general 

procedure compound 1 is obtained as a yellow oil (1.68 g; 52.23%); MS m/z: 297.1 (M+1). 1H-NMR 

(DMSO-d6): δ 2.37 (4H, m, CH2-4'), 2.58 (2H, t, J = 5.8, CH2-2'), 3.52 (4H, m, CH2-5'), 3.79 (3H, s, 

COOCH3-3), 3.84 (3H, s, COOCH3-2), 4.29 (2H, t, J = 5.7, CH2-1'), 7.97 ppm (1H, s, CH-5).  
13C-NMR (DMSO-d6): δ 43.63 (C1'), 52.29 (COOCH3-3), 52.86 (COOCH3-2), 53.63 (C4'), 58.72 

(C2'), 66.57 (C5'), 124.99 (C2), 136.24 (C3), 141.58 (C5), 160.78 (COOCH3), 163.44 ppm (COOCH3). 

1-(2-Piperidin-1-yl-ethyl)-1H-imidazole-4,5-dicarboxylic acid dimethyl ester (2): Following general 

procedure compound 2 is obtained as a pale yellow oil (1.32 g; 83.36%); MS m/z: 296.2 (M+1).  
1H-NMR (DMSO-d6): δ 1.25–1.45 (6H, m, 2 × CH2-5' and CH2-6'), 2.30 (4H, m, CH2-4'), 2.51 (2H, t,  

J = 5.7, CH2-2'), 3.77 (3H, s, COOCH3-3), 3.83 (3H, s, COOCH3-2), 4.25 (2H, t, J = 5.9, CH2-1'),  

7.92 ppm (1H, s, CH-5). 13C-NMR (DMSO-d6): δ 24.29 (C6'), 25.94 (C5'), 44.09 (C1'),  
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52.28 (COOCH3-3), 52.84 (COOCH3-2), 54.47 (C4'), 59.10 (C2'), 125.17 (C2), 136.05 (C3),  

141.47 (C5), 160.79 (COOCH3), 163.42 ppm (COOCH3). 

1-(2-Pyrrolidin-1-yl-ethyl)-1H-imidazole-4,5-dicarboxylic acid dimethyl ester (3): Following general 

procedure compound 3 is obtained as a pale yellow oil (1.11 g; 72.98%); MS m/z: 282.1 (M+1).  
1H-NMR (DMSO-d6): δ 1.69 (4H, m, CH2-5'), 2.43 (4H, m, CH2-4'), 2.70 (2H, t, J = 6.1, CH2-2'),  

3.78 (3H, s, COOCH3-3), 3.83 (3H, s, COOCH3-2), 4.27 (2H, t, J = 6.1, CH2-1'), 7.96 ppm (1H, s,  

CH-5). 13C-NMR (DMSO-d6): δ 23.64 (C5'), 45.64 (C1'), 52.30 (COOCH3-3), 52.87 (COOCH3-2), 

53.96 (C4'), 56.20 (C2'), 125.18 (C2), 136.06 (C3), 141.41 (C5), 160.78 (COOCH3), 163.39 ppm 

(COOCH3). 

1-(3-Dimethylamino-propyl)-1H-imidazole-4,5-dicarboxylic acid dimethyl ester (4): Following general 

procedure compound 4 is obtained as a pale yellow oil (0.75 g; 75.0%); MS m/z: 270.1 (M+1).  
1H-NMR (DMSO-d6): δ 1.84 (2H, m, CH2-2'), 2.16 (6H, s, 2 × CH3), 2.29 (2H, t, J = 6.5, CH2-3'), 3.76 

(3H, s, COOCH3-3), 3.81 (3H, s, COOCH3-2), 4.18 (2H, t, J = 7.1, CH2-1'), 7.96 ppm (1H, s, CH-5). 
13C-NMR (DMSO-d6): δ 28.21 (C2'), 44.74 (C1'), 45.04 (CH3) 52.34 (COOCH3-3), 52.99 (COOCH3-2), 

55.73 (C3'), 124.89 (C2), 136.37 (C3), 141.29 (C5), 160.67 (COOCH3), 163.39 ppm (COOCH3). 

3.2.2. General Procedure for Synthesis of 5–8 

To a stirred solution of compounds 1–4 (500 mg; 1.68 mmol) in anhydrous CH3OH (15 mL) 

ammonia is introduced at 0 °C. After saturation a reaction mixture is stirred overnight at room 

temperature. The solvent and excess ammonia are removed under reduced pressure and the crude 

product purified by silica gel column chromatography (CH2Cl2/CH3OH = 2/1). 

1-(2-Morpholin-4-yl-ethyl)-1H-imidazole-4,5-dicarboxylic acid diamide (5): According to the general 

procedure compound 5 is obtained as a white crystals (262 mg; 58.17%; m.p. = 196–197 °C); MS m/z: 

267.1 (M+1). 1H-NMR (DMSO-d6): δ 2.39 (4H, m, CH2-4'), 2.59 (2H, t, J = 6.1, CH2-2'),  

3.51 (4H, m, CH2-5'), 4.53 (2H, t, J = 6.1, CH2-1'), 7.53 (1H, s, CONH2-2), 7.75 (1H, s, CONH2-3), 

7.88 (1H, s, CH-5), 7.95 (1H, s, CONH2-3), 10.65 ppm (1H, s, CONH2-2). 13C-NMR (DMSO-d6):  

δ 43.93 (C1'), 53.25 (C4'), 58.51 (C2'), 66.18 (C5'), 126.16 (C2), 136.90 (C3), 140.53 (C5), 160.66 

(CO-2), 165.80 ppm (CO-3). 

1-(2-Piperidin-1-il-etil)-1H-imidazol-4,5-diamide (6): According to the general procedure compound 6 

is obtained as a white crystals (194 mg; 53.93%; m.p. = 200–201 °C); MS m/z: 265.2 (M+1).  
1H-NMR (DMSO-d6): δ 1.35 (2H, m, CH2-6'), 1.43 (4H, m, CH2-5'), 2.34 (4H, m, CH2-4'), 2.54 (2H, t, 

J = 6.2, CH2-2'), 4.51 (2H, t, J = 6.2, CH2-1'), 7.51 (1H, s, CONH2-2), 7.74 (1H, s, CONH2-3),  

7.85 (1H, s, CH-5), 7.94 (1H, s, CONH2-3), 10.64 ppm (1H, s, CONH2-2). 13C-NMR (DMSO-d6):  

δ 24.41 (C6'), 26.08 (C5'), 44.90 (C1'), 54.55 (C4'), 59.30 (C2'), 126.64 (C2), 135.36 (C3), 140.98 

(C5), 161.14 (CO-2), 166.31 ppm (CO-3). 

1-(2-Piperidin-1-yl-ethyl)-1H-imidazole-4,5-dicarboxylic acid diamide (7): According to the general 

procedure compound 7 is obtained as a white crystals (182 mg; 45.50%; m.p. = 205–210 °C); MS m/z: 

252.2 (M+1). 1H-NMR (DMSO-d6): δ 1.65 (4H, m, CH2-5'), 2.45 (4H, m, CH2-4'), 2.72 (2H, t, J = 5.6, 
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CH2-2'), 4.52 (2H, t, J = 6.1, CH2-1'), 7.53 (1H, s, CONH2-2), 7.75 (1H, s, CONH2-3), 7.88 (1H, s, 

CH-5), 7.94 (1H, s, CONH2-3), 10.65 ppm (1H, s, CONH2-2). 13C-NMR (DMSO-d6): δ 23.16 (C5'), 

46.03 (C1'), 53.52 (C4'), 55.97 (C2'), 126.11 (C2), 134.98 (C3), 140.42 (C5), 160.61 (CO-2), 165.80 

ppm (CO-3). 

1-(3-Dimethylamino-propyl)-1H-imidazole-4,5-dicarboxylic acid diamide (8): According to the 

general procedure compound 8 is obtained as a white crystals (144 mg; 48.0%; m.p. = 205–210 °C); 

MS m/z: 240.1 (M+1). 1H-NMR (DMSO-d6): δ 1.83 (2H, m, CH2-2'), 2.11 (6H, s, 2 × CH3), 2.14 (2H, 

t, J = 6.9, CH2-3'), 4.42 (2H, t, J = 7.0, CH2-1'), 7.57 (1H, s, CONH2-2), 7.83 (1H, s, CONH2-3), 7.89 

(1H, s, CH-5), 7.98 (1H, s, CONH2-3), 10.66 ppm (1H, s, CONH2-2). 13C-NMR (DMSO-d6): δ 29.09 

(C2'), 45.50 (CH3), 45.93 (C3'), 56.31 (C1'), 126.71 (C2), 135.60 (C3), 140.61 (C5), 161.02 (CO-2), 

166.25 ppm (CO-3). 

3.2.3. General Procedure for Synthesis of 9–11 

To a solution of guanidine hydrochloride (5.38 mmol) in anhydrous methanol (10 mL) cooled to  

0 °C is added a solution of sodium methoxide (25 wt%; 13 mmol). The reaction mixture is stirred for 

30 min at 0 °C. The sodium salt formed is removed by filtration, and the filtrate thus obtained is added 

to a solution of compounds 1–3 (1.35 mmol) in anhydrous methanol (5 mL). Reaction mixture is 

stirred for 72 h at room temperature. The solvent is evaporated and the crude product purified by silica 

gel column chromatography (CH2Cl2/CH3OH = 2/1). 

6-Imino-1-(2-morpholin-4-yl-ethyl)-6,7-dihydro-1H,5H-1,3,5,7-tetraaza-azulene-4,8-dione (9): (55 mg; 

13.99%; m.p. > 300 °C); MS m/z: 292.1 (M+1). 1H-NMR (DMSO-d6): δ 2.38 (4H, m, CH2-4'), 2.58 

(2H, m, CH2-2'), 3.51 (4H, m, CH2-5'), 4.48 (2H, m, CH2-1'), 6.64 (1H, b, NH),  

7.37 (1H, b, NH), 8.04 (1H, s, CH-5), 10.66 ppm (1H, b, NH). 13C-NMR (DMSO-d6): δ 43.18 (C1'), 

53.19 (C4'), 58.27 (C2'), 66.15 (C5'), 129.7 (C2), 135.2 (C3), 143.41 (C5), 149.99 (C8), 160.27 and 

161.63 ppm (C6 and C10). 

6-Imino-1-(2-piperidin-1-yl-ethyl)-6,7-dihydro-1H,5H-1,3,5,7-tetraaza-azulene-4,8-dione (10): (22 mg; 

2.23%; m.p. > 300 °C); MS m/z: 290.2 (M+1). 1H-NMR (DMSO-d6): δ 1.36 (2H, m, CH2-6'), 1.43 

(4H, m, CH2-5'), 2.35 (4H, m, CH2-4'), 2.55 (2H, t, J = 6.2, CH2-2'), 4.46 (2H, t, J = 6.2, CH2-1'), 6.48 

(1H, b, NH), 7.55 (1H, b, NH), 8.02 (1H, s, CH-5), 10.60 ppm (1H, b, NH). 13C-NMR (DMSO-d6): δ 
23.86 (C6'), 25.51 (C5'), 43.62 (C1'), 53.98 (C4'), 58.50 (C2'), 130.8 (C2), 133.8 (C3), 143.35 (C5), 

149.70 (C8), 161.92 and 162.16 ppm (C6 and C10). 

6-Imino-1-(2-pyrrolidin-1-yl-ethyl)-6,7-dihydro-1H,5H-1,3,5,7-tetraaza-azulene-4,8-dione (11): (55 mg; 

13.99%; m.p. > 300 °C); MS m/z: 292.1 (M+1). 1H-NMR (DMSO-d6): δ 1.90 (4H, m, CH2-5'), 3.24 

(4H, m, CH2-4'), 3.54 (2H, m, CH2-2'), 4.68 (2H, t, J = 6.1, CH2-1'), 6.57 (1H, b, NH), 7.68 (1H, b, NH), 

8.19 (1H, s, CH-5), 10.74 ppm (1H, b, NH). 13C-NMR (DMSO-d6): δ 22.65 (C5'), 43.06 (C1'), 53.79 (C4'), 

54.14 (C2'), 130.7 (C2), 134.4 (C3), 143.5 (C5), 150.12 (C8), 159.15 and 161.97 ppm (C6 and C10). 
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3.2.4. General Procedure for Synthesis of 12–13 

To a solution of guanidine hydrochloride (514 mg; 5.38 mmol) in anhydrous methanol (8 mL) 

cooled to 0 °C is added a solution of sodium methoxide (25 wt%; 0.75 mL; 13.12 mmol). The reaction 

mixture is stirred for 30 min at 0 °C. The sodium salt formed is removed by filtration, and the filtrate 

thus obtained is added to a solution of compound 1 or 2 (400 mg; 1.35 mmol) in anhydrous methanol 

(5 mL). Reaction mixture is stirred for 8 h at room temperature, solvent evaporated and in reaction 

mixture in situ dissolved in DMF (3 mL) is added 2-fluorophenyl isocyanate (0,02 mL; 0,18 mmol). 

Reaction mixture is stirred for 24 h at room temperature. The solvent is evaporated and the crude 

product purified by silica gel column chromatography (CH2Cl2/CH3OH = 60/1) to give: 

5-({[3-(2-Fluoro-phenyl)-ureido]-imino-methyl}-carbamoyl)-1-(2-morpholin-4-yl-ethyl)-1H-imidazole- 

4-carboxylic acid methyl ester (12) as a white crystals (6.5 mg; 1.63%; m.p. > 164–165 °C); MS m/z 

462.1915 (M+1). 1H-NMR (DMSO-d6): δ 2.48 (4H, t, J = 4.7, CH2-4'), 2.73 (2H, t, J = 6.0, CH2-2'), 

3.66 (4H, t, J = 4.7, CH2-5'), 4.10 (3H, s, COOCH3-3), 4.55 (2H, t, J = 6.0, CH2-1'), 6.97 (1H, m, F-

C6H4), 7.06 (1H, m, F-C6H4), 7.11 (1H, m, F-C6H4), 7.37 (1H, b, NH), 7.71 (1H, s, CH-5), 8.29 (1H, 

m, F-C6H4), 8.83 (1H, b, NH), 9.57 (1H, b, NH), 12.48 ppm (1H, b, NH). 13C-NMR (DMSO-d6): δ 
24.11 (C6'), 25.71 (C5'), 43.49 (C1'), 54.29 (C4'), 59.05 (C2'), 115.10 (F-C6H4, d, JCF = 18.0), 116.5 

(F-C6H4), 121.43 (C2), 124.80 (F-C6H4, d, JCF = 3.2), 136.3 (F-C6H4), 139.97 (C5), 145.53 (C3), 

150.95 (F-C6H4, d, JCF = 236.4), 158.20, 161.73 and 163.60 (2×C=O and C=NH), 167.55 (COOCH3). 
19F NMR (DMSO-d6): δ −125.27 (F-C6H4, b). 

5-({[3-(2-Fluoro-phenyl)-ureido]-imino-methyl}-carbamoyl)-3-(2-piperidin-1-yl-ethyl)-3H-imidazole-

4-carboxylic acid methyl ester (13) as a yellow oil (7.2 mg; 0.72%); MS m/z 460.2 (M+1). 1H-NMR 

(CDCl3): δ 1.34 (2H, m, CH2-6'), 1.42 (4H, m, CH2-5'), 2.30 (4H, m, CH2-4'), 2.5 (2H, m, CH2-2'), 

3.73 (3H, s, COOCH3-2), 4.17 (2H, t, J = 6.2, CH2-1'), 6.5–7.0 (4 × 1H, m, F-C6H4), 7.69 (1H, s,  

CH-5), 7.7–8.6, 12.3 ppm (4 × 1H, b, NH). 13C-NMR (CDCl3): δ 46.15 (C1'), 53.79 (C4'), 53.86 

(COOCH3), 58.60 (C2'), 66.90 (C5'), 114.70 (F-C6H4, d, JCF = 19.2), 120.47 (F-C6H4), 122.66 (F-C6H4, 

d, JCF = 7.1), 124.36 (F-C6H4, d, JCF = 3.3), 127.69 (F-C6H4, d, JCF = 16.5), 127.71 (C2), 134.19 (C3), 

142.33 (C5), 152.25 (F-C6H4, d, JCF = 242.8), 158.04, 160.43 and 162.98 (2×C=O and C=NH), 165.70 

(COOCH3). 
19F NMR (CDCl3): δ −124.37 (F-C6H4, b). 

3.3. Biological Methods 

3.3.1. Cell Culturing 

The cell lines HeLa (cervical carcinoma), SW620 (colorectal adenocarcinoma, metastatic), MCF-7 

(breast epithelial adenocarcinoma, metastatic), HepG2 (hepatocellular carcinoma) and BJ (normal 

diploid human fibroblasts), were cultured as monolayers and maintained in Dulbecco’s modified Eagle 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL 

penicillin and 100 μg/mL streptomycin in a humidified atmosphere with 5% CO2 at 37 °C. 
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3.3.2. Proliferation Assays 

The panel cell lines were inoculated onto a series of standard 96-well microtiter plates on day 0, at 

3,000 to 5,000 cells per well according to the doubling times of specific cell line. Test agents were then 

added in 10-fold dilutions (0,01 to 100 µM) and incubated for further 72 h. Working dilutions were 

freshly prepared on the day of testing in the growth medium. The solvent (DMSO) was also tested  

for eventual inhibitory activity by adjusting its concentration to be the same as in the working 

concentrations (DMSO concentration never exceeded 0.1%). After 72 h of incubation, the cell growth 

rate was evaluated by performing the MTT assay: experimentally determined absorbance values were 

transformed into a cell percentage growth (PG) using the formulas proposed by NIH and described 

previously [10]. This method directly relies on control of untreated cells at the day of substances 

addition because it compares the growth of treated cells with the growth of untreated cells in control 

wells on the same plate—the results are therefore a percentile difference from the calculated expected 

value. The IC50 values for each compound were calculated from dose-response curves using linear 

regression analysis by fitting the mean test concentrations that give PG values above and below the 

reference value. If, however, all of the tested concentrations produce PGs exceeding the respective 

reference level of effect (e.g., PG value of 50) for a given cell line, the highest tested concentration is 

assigned as the default value (in the screening data report that default value is preceded by a “>” sign). 

Each test point was performed in quadruplicate in three individual experiments. The results were 

statistically analyzed (ANOVA, Tukey post-hoc test at p < 0.05). Finally, the effects of the tested 

substances were evaluated by plotting the mean percentage growth for each cell type in comparison to 

control on dose response graphs. 

3.3.3. Antiviral Activity Assays 

The antiviral assays, other than the anti-HIV assays, were based on inhibition of virus-induced 

cytopathicity in HEL [herpes simplex virus type 1 (HSV-1) (KOS), HSV-2 (G), vaccinia virus and 

vesicular stomatitis virus], Vero (parainfluenza-3, reovirus-1, Sindbis, Coxsackie B4, and Punta Toro 

virus), HeLa (vesicular stomatitis virus, Coxsackie virus B4, and respiratory syncytial virus) or MDCK 

[influenza A (H1N1; H3N2) and influenza B] cell cultures. Confluent cell cultures (or nearly confluent 

for MDCK cells) in microtiter 96-well plates were inoculated with 100 CCID50 of virus (1 CCID50 

being the virus dose to infect 50% of the cell cultures). The cell cultures were incubated at the time of 

infection in the presence of varying concentrations (200, 40, 8, … µM) of the test compounds.  

Viral cytopathicity was recorded microscopically as soon as it reached completion in the control  

virus-infected cell cultures that were not treated with the test compounds. The methodology of the  

anti-HIV assays was as follows: human CEM cells (~3 × 105 cells/mL) were infected with 100 CCID50 

of HIV(IIIB) or HIV-2(ROD)/mL and seeded in 200-µL wells of a microtiter plate containing 

appropriate dilutions of the test compounds. After 4 days of incubation at 37 °C, HIV-induced giant 

cell formation was examined microscopically. 
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4. Conclusions  

The main objective of this study was synthesis of a molecule that would be closely related to 

RSV604. None of the compounds showed pronounced antiviral activity at subtoxic concentrations. No 

cytotoxicity for all evaluated compounds on HEL, Vero, HeLa and MDCK cell cultures was observed. 

From the structure-activity point of view, we believe that the main reason for lack of antiviral 

activity is probably the absence of either sugar moiety at N-1 of imidazole or a closer resemblance to 

the active compound RSV604, that was chemically caused and constrained by the formation of the 

inactive imino form of the cyclized product instead of the targeted amino form. The 1H-imidazole-4,5-

dicarboxylic acid dimethyl ester derivative having an ethyl morpholino ligand (compound 1) and the 

1H-imidazole-4,5-diamide derivative with morpholino moiety bound to an imidazole ring (compound 5) 

have also exerted selective but modest cytostatic effect towards human cervix carcinoma (HeLa) cells 

(IC50 = 24 and 32 µM), while moderate non-selective antiproliferative activity was observed for 

compound 10. The imidazole[4,5-e][1,3]diazepine-4,8-dione derivative linked with a pyrrolidine 

ligand (11) showed only a modest cytostatic effect on colon cancer cells (SW620) (IC50 = 20 µM). 

These compounds showed no cytotoxic effects on human normal fibroblasts. 

Synthetic chemistry is often full of surprises and presented compounds containing a carbamoyl 

imino-ureido moiety are structurally very interesting, e.g., compounds 12 and 13. Moreover,  

1H-imidazole derivative containing a pyrrolidine moiety linked via an ethylenic spacer to N-1 of the 

imidazole ring (compound 3) exerted a more pronounced selective cytostatic effect towards human 

cervix cancer (HeLa) cells (IC50 = 9.5 µM) in comparison with other tested compounds with no 

apparent cytotoxicity on normal human skin fibroblasts (BJ) as well. This compound might therefore 

be suited for further exploration as a potential lead compound and chemical modifications. 
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