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Abstract: The tetrahydroquinoline ring system is a unit found in many biologically active 

natural products and pharmacologically relevant therapeutic agents. A new series of 

bistetrahydroquinolines (bis-THQs) was synthesized using imino Diels-Alder reactions 

between dialdehydes, anilines and N-vinyl-2-pyrrolidone (NVP). The notable features  

of this procedure are mild reaction conditions, greater selectivity and good yields of 

products. In addition, the inhibitory activity against acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE) of some selected derivatives is reported. The feasible 

binding modes of these active compounds, within AChE and BuChE binding sites, were 

predicted by molecular docking experiments and their binding affinity was estimated by 

means of free energy calculations through the MM-GBSA approximation. 

Keywords: bistetrahydroquinolines; Diels-Alder reaction; AChE and BuChE inhibitors; 

molecular docking; MM-GBSA 

 

1. Introduction 

Heterocyclic compounds, especially nitrogen heterocycles, are the most important class of 

compounds in the pharmaceutical and agrochemical industries [1]. The tetrahydroquinoline (THQ) 
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system, constitutes a privileged substructure found in numerous biologically active natural products 

and pharmacologically relevant therapeutic agents [2]. 

The THQ nucleus has been found to possess a wide range of biological activities, including 

psychotropic activity [3], anti-allergenic [4], antitumoral [5], antimalarial [6], anti-bacterial [7], 

antifungal [8,9], cardiovascular activity [10], antiviral activity [11,12], etc. Also, these kind of 

molecules can act as γ-secretase inhibitors for the treatment of Alzheimer’s disease [13], as platelet 

aggregation inhibitors [14] and modulators of HIV transcription [15]. 

Among those, Alzheimer’s disease (AD), characterized by progressive cognitive impairment, has 

been raising much interest as the most common cause of dementia in elderly people. It is also a 

multifactorial disorder involving the malfunction of different biochemical pathways in which certain 

enzymes play a key role [16]. Among these enzymes are cholinesterases, which have become 

important therapeutic targets for AD treatments. For example, AChE catalyzes the hydrolysis of 

acetylcholine, decreasing its availability in the synaptic space [17], and inhibitors of AChE have been 

used as palliative drugs for AD, including synthetic compounds as tacrine [18], donepezil [19], 

galanthamine [20] and rivastigmine [21], which have all been proven to improve a little the situation of 

AD patients. However, it is important to know that the use of different biological entities that are 

involved in the same pathology (AChE and BuChE), it is widely accepted and can be a better strategy 

to block the course of multifactorial diseases rather than just reducing their symptoms [22]. Therefore, 

and taking into account the effectiveness of this methodology for the treatment of AD, it is necessary 

to focus our research in obtaining better AChE and BuChE inhibitors. 

Due to their broad biological activity, as mentioned in the background, THQ compounds have been 

considered a good starting material in the search of novel inhibitors of the enzymes AChE and BuChE. 

Many synthetic routes to THQs are known, but due to the importance associated with their 

biological activity, the development of new synthetic approaches remains an active research area [23]. 

The imino Diels-Alder reaction between aldimines and electron-rich alkenes is probably the most 

powerful synthetic tool for the construction of this kind of heterocyclic compound [24,25]. This 

reaction has been extensively studied with protic acids; different Lewis [26] and Brönsted acids [27] 

and also lanthanide triflates [28] have been used as efficient catalysts for the synthesis of THQs. This 

method allows the generation of THQs derivatives with a high degree of structural diversification [29]. 

The main purposes of our work were: first, to develop a simple and efficient synthesis protocol for 

bis-THQ derivatives with several degrees of structural diversity; second, to study their biological 

activity as inhibitors of the enzymes AChE and BuChE and third, to explain their binding modes of 

interaction with those molecular targets, aiming in particular at estimating the binding free energy of 

the compounds. 

2. Results and Discussion 

2.1. Chemistry 

We report here the synthesis of a new series of 1,4-bis(heteroaryl-4'-(2-oxopirrolidinyl-1)- 

1',2',3',4'-tetrahydroquinolin-2-yl)benzenes 4a–c, 1,3-bis(heteroaryl-4'-(2-oxopirrolidinyl-1)-1',2',3',4'-

tetrahydroquinolin-2-yl)benzenes 5a–c, and 2,6-bis(heteroaryl-4'-(2-oxopirrolidinyl-1)-1',2',3',4'-
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tetrahydroquinolin-2-yl)pyridine derivatives 6a–e. They were prepared by imino Diels-Alder 

cycloaddition between different substituted anilines 1, dialdehydes (terephthalaldehyde (2a), 

isophthalaldehyde (2b), 2,6-pyridinedicarboxaldehyde 2(c)), and NVP 3 as alkene, using acetonitrile as 

solvent in the presence of 20 mol% of bismuth trichloride (III) as catalyst (Scheme 1). It must be taken 

into consideration that bismuth compounds have attracted attention due to their low toxicity, low cost, 

water tolerant catalyst [30] and good stability in several reactions such as the imino Diels-Alder 

(Povarov) reaction. 

Scheme 1. Synthesis of novel series of bis-THQs, through the r.t. Povarov reaction 

promoted by BiCl3 and MeCN. 

 

The reactions proceeded efficiently at room temperature under mild conditions to give the bis-THQ 

products as stable solids in 22%–67% yields after purification using SiO2 column chromatography, 

depending of the structural variations in aromatic anilines and dialdehydes (Table 1). 

Table 1. Reaction times and yields of bis-THQs 4a�c, 5a–c and 6a–e. 

Compound R1 R2 R3 R4 Mp (°C) Yield (%) Reaction Time (h) 

4a H H H H 250–257 60 7 
4b H H CH3 H 295–298 75 7 
4c H H O-CH3 H 218–221 22 5 
5a H H H H 221–225 67 7 
5b H H CH3 H 190–195 51 8 
5c H H O-CH3 H 237–239 58 6 
6a H H H H 155–158 46 7 
6b H H CH3 H 187–190 72 5 
6c H H O-CH3 H 173–178 34 5 
6d H H NO2 H 202–206 65 10 
6e H CH3 H CH3 157–161 25 9 
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In some cases, the reaction provides the corresponding products depending on the substituents of 

the aromatic ring of aniline. In anilines bearing electron-donating groups, it was found that the reaction 

proceeded faster than the ones bearing electron-withdrawing groups (Table 1). This observation could 

be attributed to the higher nucleophilic activity of aromatic amines with electron-donating groups. 

The products were obtained predominantly as cis-diasteroisomers; this configuration was determined 

by 1H-NMR spectroscopy and assigned on the basis of the corresponding coupling constants. The 

stereochemistry was also confirmed by 1D selective NOE NMR experiments. All 1H-NMR spectra of 

the synthesized bis-THQs were very similar and characterized by the presence of three groups of 

signals at δ 8.0–6.5, indicating the presence of aromatic protons. Similarly, we observed the 

tetrahydoquinolinic H-2', H-2'' and H-4', H-4'' proton signals at δ 6.0–4.5 and with large coupling 

constant values (between 8.5–12.0 Hz for H-4' and H-2', respectively). Finally, the δ 2.9–1.5 zone 

showed multiplets corresponding to the proton signals of the pyrrolidone group. NOE experiments 

support the relative trans-orientation of H-2', H-3' and H-4'. Thus, in the case of 4b, 5b and 6c the 

selective irradiation of H-2' produced an NOE effect over H-3' and H-4', for the three compounds. 

Notably, the high value of the coupling constants found in the proton signals corresponding to H-2', 

H-2'', H-4' and H-4'' confirmed the trans configuration. Therefore, and, based on these results, we can 

conclude that the compounds obtained correspond to the endo cycloadducts of the imino Diels-Alder 

reaction. Besides, by a comparison with previous reports [31–33] for analogous THQs, we assumed 

that the major isomer has a cis-configuration of the C-2 and C-4 substituents. 

From these results, we propose the following possible mechanism to explain the product formation 

(Scheme 2). This procedure allows a cycloaddition reaction between substituted anilines 1 and 

dialdehydes 2, generating a double Schiff base, which is activated by the presence of BiCl3 as Lewis acid, 

and by double imino Diels-Alder (iDA) cycloaddition with VNP leads to the formation of the bis-THQs. 

Scheme 2. Plausible mechanism reaction in the synthesis of the bis-THQs. 
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2.2. Biological Activities 

The bis-THQs 4a–c, 5a–c and 6a–e were tested for inhibition of the enzymes AChE and BuChE, 

and the inhibitory activity of the newly synthesized compounds was studied using the method 

described by Ellman [34] to determine the rate of hydrolysis of acetylthiocholine/butyryltiocholine in 

the presence of the inhibitor. The activity was assayed in comparison with galanthamine as a reference 

compound. The main reason to use galanthamine was because it belongs to a group of natural products 

corresponding to the alkaloid family [35], which structurally resembles the compounds that were 

reported in this work. Galanthamine was also used taking into account previous theoretical studies [36], 

where it is described as the compound with the major number of interactions and low free energy of 

binding against AChE. The compound’s selectivity was also tested by determining their inhibitory 

activity against BuChE, this with the aim to compare both enzymes with the same inhibitors. 

BuChE, also called nonspecific cholinesterase or pseudocholinesterase, is able to act on hydrophilic 

and hydrophobic choline esters. Even though BuChE is closely related to AChE, owing to a larger 

active site gorge of BuChE, a broader variety of substrates and inhibitors are accepted in its binding 

site, compared with AChE [37]. 

Among the 11 compounds synthesized, only two compounds, 5c and 4c, showed some biological 

activity against AChE and BuChE, respectively, with IC50 values of 122 µM for 5c in AChE and 323 µM 

for 4c in BuChE. However, these IC50 values were not comparable with the standard inhibitor 

galanthamine (0.54 µM). The other synthesized compounds showed IC50 values higher than 500 µg/mL, 

therefore, they were not interesting as feasible AChE/BuChE inhibitors. 

The more active compounds contain a [6-methoxy-1,2,3,4-tetrahydroquinoline] substituent. The 

presence of other substituents such as 6-methyl or hydrogen decreased the AChE and BuChE 

inhibitory activity. Furthermore, the large size of the molecules hindered them to accommodate along 

the gorge of AChE, which is smaller than the BuChE [38]. Interestingly, the compound 5c has a better 

selectivity for AChE over BuChE (2.64), perhaps due to the fact this molecule allows greater flexibility 

in the pocket of this enzyme, as opposed to the structure 4c that does appear to have a larger size. 

2.3. Molecular Docking and Binding Affinity Calculations 

Considering the presented in vitro results, and in order to obtain a theoretical model for potential 

binding modes and affinity strength of the most active compounds within the AChE and BuChE binding 

sites, molecular docking and Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) 

calculations were performed for compounds 5c and 4c against the studied molecular targets. A 

graphical inspection of the molecular docking results was made in order to explain the possible 

molecular interactions for the two most active AChE and BuChE inhibitors 5c and 4c (See Figure 1). 

In Figure 1A is shown an overlay of the structures for compounds 5c, 4c and E2020 that is a 

member of a large family of N-benzylpiperidine-based AChE inhibitors that were developed, 

synthesized and evaluated by the Eisai Company in Japan [39], on the basis of QSAR studies [40,41]. 

The compound E2020 (green carbon atoms) establishes aromatic stacking interactions against the 

indole ring of residues Trp84 and Trp279. On the other hand, the charged nitrogen of the piperidine 

ring makes a cation–π interaction with the phenyl ring of Phe330 [42,43]. The nitrogen atom of the 
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piperidine ring makes a hydrogen bond (H-bond) interaction with residue Tyr121, which is mediated 

by a water molecule. Finally E2020 does not interact with the catalytic triad [19]. 

Figure 1. (A) Main molecular interactions established by compounds E2020 (green carbon 

atoms), 5c (gray carbon atoms and ball-stick representation) and 4c (gray carbon atoms  

and stick representation) within AChE binding site. (B) Main molecular interactions 

established by compounds 5c (green carbon atoms and thin stick representation) and 4c 

(green carbon atoms and width stick representation) within BuChE binding site. Only main 

amino acids within AChE and BuChE are sketched for the sake of clarity. 

 

According to our molecular docking results, and comparing the interactions against model 

compounds E2020, the compounds 5c and 4c could establish some of the above-mentioned 

interactions within the AChE binding site. For instance, both compounds established CH-π interactions 

with indole ring of Trp84 through the methoxy groups attached to one of the tetrahydroquinoline ring 

of tested compounds. An aromatic stacking interaction is formed between tetrahydroquinoline ring of 

compound 5c and the indole ring of residue Trp279. The 1,4 substitution pattern of tetrahydroquinoline 

rings around the central phenylene group makes this interaction to be broken for compound 4c. On the 

other hand both compounds established a hydrogen bond interaction between nitrogen atom in 

tetrahydroquinoline ring and hydroxyl group at residue Tyr121. None of the compounds formed any 

interactions with catalytic triad. 
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The molecular interactions, derived from docking experiments, for compounds 5c and 4c within the 

BuChE active site are shown in Figure 1B. As can be seen, the binding site pocket in BuChE seems to 

be less crowded that the corresponding one in AChE, which is in agreement with previous work that 

reported that smaller residues like Leu286 and Val288, instead of Phe295 and Phe297 in AChE, are 

responsible for this [35]. 

The only molecular interactions present in our models suggest that compound 5c makes multiple  

H-bond contacts, through the oxygen atom at pyrrolidone ring, with two residues in the catalytic triad 

in the BuChE active site, namely His438 and Ser198. On the other hand, compound 4c can only 

establish H-bond interactions with residue His438. Both compounds seem to be in close contact with 

residue Trp82 establishing some CH-π interactions through their methoxy groups on the 

tetrahydroquinoline ring. The remaining molecular structure orientation of compounds within the 

binding site are quite different due to the substitution patterns obtained for the tetrahydroquinoline 

rings around the central phenylene scaffold. 

Regarding the binding affinity energies obtained from molecular docking and MM-GBSA 

approximations, and their relationship with molecular interactions discussed above; it is important to 

clarify that our aim here was to get a rough estimation of the energetic differences observed in binding 

affinity, and not to obtain a more detailed structure activity relationships for compounds studied. This 

is supposed to provide us with fresh ideas, mainly from the structural point of view, to redirect the 

synthesis of new potent and selective THQ derivatives active against AChE/BuChE. 

In Table 2 the computational binding affinity energies obtained for compounds 5c and 4c in their 

complexes with the proteins AChE and BuChE can be seen. The docking score for compound 5c 

suggest a more favorable interaction within the AChE binding sites than in the BuChE one (−8.63 and  

−7.98 kcal mol−1, respectively), when compared with compound 4c, with score energies of −7.37 and  

−8.82 kcal mol−1, respectively. This roughly indicates that compound 5c could interact more strongly 

with AChE than with BuChE, and the opposite is true for compound 4c. This is in agreement with the 

experimental affinity data reported in this work. However a work of caution is important here because 

the lack of more experimental affinity data to compare with computational findings (i.e., only two 

compounds showed defined IC50 values), and due to the molecular size of the studied compounds that 

should prove to be difficult to accommodate in the AChE binding site. Other important point from our 

experimental findings is the solubility problems found with the majority of synthesized compounds. In 

order to get a more precise binding affinity prediction for protein-ligand complexes studied in this 

work, we performed MM-GBSA calculations. 

Table 2. Protein-ligand binding affinities estimated through molecular docking and  

MM-GBSA approaches. 

 Glide docking score (kcal mol−1) Binding Free Energy (kcal mol−1) a 
Target/Ligand AChE BuChE AChE BuChE 

5c −8.63 −7.98 −30.64 −33.94 
4c −7.37 −8.82 −28.72 −29.27 

a Free binding energies were obtained through MM-GBSA approach implemented in Prime module of 

Schrödinger suite. 
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This technique is supposed to describe in a more accurate way the solvation events occurring in 

protein-ligand binding processes. According to those results, compound 5c binds more strongly to 

AChE than compound 4c does (−30.64 and −28.72 kcal mol−1, respectively), and regarding the binding 

of those compounds to BuChE, compound 5c also binds more strongly than compound 4c (−33.94 and 

−29.27 kcal mol−1, respectively). The latter free binding energy results are not in agreement with either 

previous docking results or with experimental binding affinity results, but could help us to understand 

the molecular determinants for the interaction of these new compounds within the binding sites of the 

enzymes AChE and BuChE. 

Summarizing, molecular docking and MM-GBSA experiments could be interesting approaches to 

try to predict the activity for this class of bis-THQs in AChE and BuChE receptors. Moreover, the 

different binding patterns for the best inhibitors proposed in this work, could help us to better 

understand the modes of interaction of new series of bis-THQs inhibitors synthesized in our laboratory. 

3. Experimental 

3.1. General 

Melting points were determined on a Buchi apparatus and are uncorrected. The compounds’ purity 

was checked by thin layer chromatography (TLC) on silica gel and they were purified by column 

chromatography. Chemicals were used without further purification. FT-IR spectra were recorded in 

potassium bromide pellets using a Thermo Nicolet NEXUS 670 FT-IR spectrophotometer, with  

0.125 cm−1 spectral resolution. 1H-NMR (400 MHz) and 13C-NMR spectra (100 MHz) were recorded 

in CDCl3 or DMSO-d6, using a Bruker AM-400 instrument. Chemical shifts are expressed as values 

relative to TMS as internal standard. High-resolution mass spectrometry ESI-MS and ESI-MS/MS 

analyses were conducted in a high-resolution hybrid quadrupole (Q) and orthogonal time-of-flight 

(TOF) mass spectrometer (Waters/Micromass Q-TOF micro, Manchester, UK) with a constant 

nebuliser temperature of 100 °C. The experiments were carried out in positive ion mode, and the cone 

and extractor potentials were set at 10 and 3.0 V, respectively, with a scan range of m/z 150–600. 

MS/MS experiments were carried out by mass selection of a specific ion in Q1, which was then 

submitted to collision-induced dissociation (CID) with helium in the collision chamber. The product 

ion MS analysis was accomplished with the high-resolution orthogonal TOF analyzer. The samples 

were directly infused into the ESI source, via a syringe pump, at flow rates of 5 µL min−1, via the 

instrument’s injection valve. 

General procedure for the preparation of 1,4-bis(heteroaryl-4'-(2-oxopirrolidinyl-1)-1',2',3',4'-tetra-

hydroquinolin-2-yl)benzenes 4a–c, 1,3-bis(heteroaryl-4'-(2-oxopirrolidinyl-1)-1',2',3',4'-tetrahydro-

quinolin-2-yl)benzenes 5a–c, and 2,6-bis(heteroaryl-4'-(2-oxopirrolidinyl-1)-1',2',3',4'-tetrahydro-

quinolin-2-yl)pyridines 6a–e. A mixture of p-anisidine (3 mmol) and isophthalaldehyde (1.5 mmol) in 

anhydrous CH3CN (5 mL) was stirred at room temperature under N2 for 1 h. BiCl3 (20 mol%) was 

added. Over a period of 20 min, a solution the NVP (3.1 mmol) in CH3CN (5 mL) was added 

dropwise. The resulting mixture was stirred for 8–10 h. After completion of the reaction as indicated 

by TLC, the reaction mixture was diluted with (15 mL) and extracted with ethyl acetate (3 × 10 mL). The 

organic layer was separated, and dried with Na2SO4. The organic solvent was removed in vacuo and the 
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resulting product was purified by column chromatography (silica gel, petroleum ether/ethyl-acetate) to 

afford the pure bis-THQs. 

1,4-bis(4'-(2-Oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)benzene (4a). White solid; Yield 

60%; Mp 250–257 °C; IR (cm−1): 3315, 2920, 1659, 1486, 1282. 1H-NMR (CDCl3, DMSO-d6) δ ppm: 

7.45 (4H, s, 2-H, 3-H, 5-H and 6-H), 7.08 (2H, t, J = 7.8 Hz, 7'-H and 7''-H), 6.88 (2H, d, J = 8.0 Hz, 

5'-H and 5''-H), 6.73 (2H, t, J = 7.8 Hz, 6'-H and 6''-H), 6.60 (2H, d, J = 8.0 Hz, 8'-H and 8''-H),  

5.74 (2H, t, J = 9.5 Hz 4'-H and 4''-H), 4.63 (2H, m, 2'-H and 2''-H), 3.99 (2H, s, N-H), 3.28–3.19 (4H, 

m, 5-Hpyrr and 5'-Hpyrr), 2.59–2.43 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.13–2.10 (4H, m, 3'-H and 3''-H), 

2.05–1.99 (4H, m, 4-Hpyrr and 4'-Hpyrr). 
13C-NMR (CDCl3, DMSO-d6): 18.2 (2), 31.4 (2), 42.30 (2), 

48.4 (4), 56.1 (2), 114.9 (2), 118.3 (2), 118.8 (2), 126.9 (4), 128.2 (4), 142.8 (2), 145.8 (2), 175.85 (2). 

MS (ESI, m/z): 507.41 ([M+H])+, 529.34 ([M+Na])+. 

1,4-bis(6'-Methyl-4'-(2-oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)benzene (4b). White 

solid; Yield 75%; Mp 295–298 °C; IR (cm−1): 3318, 2920, 1661, 1496, 1281. 1H-NMR (CDCl3)  

δ ppm: 7.44 (4H, s, 2-H, 3-H, 5-H and 6-H), 6.88 (2H, d, J = 8.0 Hz, 7'-H and 7''-H), 6.69 (2H, s, 5'-H and 

5''-H), 6.52 (2H, d, J = 8.0 Hz, 8’-H and 8''-H), 5.71 (2H, dd, J = 9.6, 8.4 Hz, 4'-H and 4''-H),  

4.59–4.56 (2H, m, 2'-H and 2''-H), 3.86 (2H, s, N-H), 3.26−3.21 (4H, m, 5-Hpyrr and 5'-Hpyrr),  

2.56–2.45 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.23 (6H, s, 6'-CH3), 2.11–2.09 (4H, m, 3'-H and 3''-H),  

2.07–2.01 (4H, m, 4-Hpyrr and 4'-Hpyrr). 
13C-NMR (CDCl3, DMSO-d6) δ: 18.6 (2), 20.9 (2), 31.4 (2), 

42.30 (2), 48.4 (4), 56.1 (2), 114.9 (2), 118.3 (2), 118.8 (2), 126.9 (4), 128.2 (4), 142.8 (2), 145.8 (2), 

175.85 (2). MS (ESI, m/z): 535.67 ([M+H])+, 557.68 ([M+Na])+. 

1,4-bis(6'-Methoxy-4'-(2-oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)benzene (4c). 

Crystalline solid; Yield 22%; Mp 218–221 °C; IR (cm−1): 3378, 2956, 1659, 1497, 1284. 1H-NMR 

(CDCl3, DMSO-d6) δ ppm: 7.99 (4H, s, 2-H, 3-H, 5-H and 6-H), 6.71 (2H, d, J = 2.4 Hz, 5'-H and  

5''-H), 6.60 (2H, d, J = 8.8 Hz, 7'-H and 7''-H), 6.50 (2H, d, J = 8.6 Hz, 8'-H and 8''-H), 5.74 (2H, dd,  

J = 11.2, 10.8 Hz, 4'-H and 4''-H), 4.64–4.61 (2H, m, 2'-H and 2''-H), 3.90 (2H, s, N-H), 3.74 (6H, s, 

O-CH3), 3.29–3.23 (4H, m, 5-Hpyrr and 5'-Hpyrr), 2.55–2.46 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.16–2.14 

(4H, m, 3’-H and 3''-H), 2.13–2.01 (4H, m, 4-Hpyrr and 4'-Hpyrr). MS (ESI, m/z): 567.72 ([M+H])+, 

589.71 ([M+Na])+. 

1,3-bis(4'-(2-Oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)benzene (5a). Green solid; Yield 

67%; Mp 221–225 °C; IR (cm−1): 3319, 2943, 1670, 1484, 1250 cm−1. 1H-NMR (CDCl3, DMSO-d6)  

δ ppm: 7.52 (1H, s, 2-H), 7.37 (3H, m, 4-H and 6-H and 5-H), 7.07 (2H, t, J = 7.8 Hz, 7'-H and 7''-H), 

6.88 (2H, m, 5'-H and 5''-H), 6.73 (2H, m, 6'-H and 6''-H), 6.61 (2H, m, 8'-H, 8''-H), 5.72 (2H, m, 4'-H 

and 4''-H), 5.30 (2H, s, N-H), 4.62 (2H, 2'-H and 2''-H), 3.23–3.25 (4H, m, 5-Hpyrr and 5'-Hpyrr),  

2.55–2.43 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.15–2.03 (8H, m, 3'-H and 3''-H, 4-Hpyrr and 4'-Hpyrr).  

MS (ESI, m/z): 507.51 ([M+H])+, 529.45 ([M+Na])+. 

1,3-bis(6'-Methyl-4'-(2-oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)benzene (5b). Crystalline 

solid; Yield 51%; Mp 190–195 °C; IR (cm−1): 3315, 2920, 1670, 1511, 1284 cm−1. 1H-NMR (CDCl3) δ 

ppm: 7.55 (1H, s, 2-H), 7.37 (3H, s, 4-H and 6-H and 5-H), 6.88 (2H, d, J = 8.0 Hz, 7'-H and 7''-H), 
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6.69 (2H, s, 5'-H and 5''-H), 6.54 (2H, d, J = 8.0 Hz, 8'-H and 8''-H), 5.71 (2H, dd, J = 10.8, 10.8 Hz, 

4'-H and 4''-H), 5.30 (2H, s, N-H), 4.59 (2H, d, J = 10.4, 10.0 Hz, 2'-H and 2''-H), 3.26–3.21 (4H, m, 

5-Hpyrr and 5'-Hpyrr), 2.60–2.45 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.23 (6H, s, 6'-CH3), 2.14–2.10 (4H, m,  

3'-H and 3''-H), 2.03–1.99 (4H, m, 4-Hpyrr and 4'-Hpyrr). MS (ESI, m/z): 535.71 ([M+H])+, 5557.71 

([M+Na])+. 

1,3-bis(6'-Methoxy-4'-(2-oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)benzene (5c). White 

solid; Yield 58%; Mp 237–239 °C; IR (cm−1): 3325, 2948, 1671, 1509, 1280 cm−1. 1H-NMR (CDCl3)  

δ ppm: 7.54 (1H, s, 2-H), 7.38 (3H, m, 4-H and 6-H and 5-H), 6.72 (2H, d, J = 7.8 Hz, 5'-H and 5''-H), 

6.58 (2H, d, J = 8.8 Hz, 7'-H and 7''-H), 6.50 (2H, s(br), 8'-H and 8''-H), 5.74 (2H, dd, J = 10.0,  

10.0 Hz, 4'-H and 4''-H), 5.32 (2H, s, N-H), 4.55 (2H, dd, J = 10, 10 Hz, 2'-H and 2''-H), 3.75 (6H, s, 

O-CH3), 3.31–3.22 (4H, m, 5-Hpyrr and 5'-Hpyrr), 2.57–2.45 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.14–2.11 

(4H, m, 3'-H and 3''-H), 2.09–2.01 (4H, m, 4-Hpyrr and 4'-Hpyrr). MS (ESI, m/z): 567.66 ([M+H])+, 

589.65 ([M+Na])+. 

2,6-bis(4'-(2-Oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)pyridine (6a). White solid;  

Yield 46%; Mp 155–158 °C; IR (cm−1): 3363, 2918, 1659, 1490, 1286. 1H-NMR (CDCl3, DMSO-d6)  

δ ppm: 7.77 (1H, t, J = 7.8 Hz, 4-H), 7.39 (2H, d J = 7.8 Hz, 3-H and 5-H), 7.10 (2H, t, J = 7.8 Hz,  

7'-H and 7''-H), 6.90 (2H, d, J = 8.0 Hz, 5'-H and 5''-H), 6.74 (4H, m, 6'-H, 6''-H and 8'-H and 8''-H), 

5.80 (2H, m, 4'-H and 4''-H), 5.31 (2H, s, N-H), 4.75 (2H, m, 2'-H and 2''-H), 3.22 (4H, m, 5-Hpyrr and 

5'-Hpyrr), 2.58–2.45 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.38–2.32 (4H, m, 3'-H and 3''-H), 2.06–2.00 (4H, m, 

4-Hpyrr and 4'-Hpyrr). MS (ESI, m/z): 508.33 ([M+H])+, 530.32 ([M+Na])+. 

2,6-bis(6'-Methyl-4'-(2-oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)pyridine (6b). Black 

solid; Yield 72%; Mp 187–190 °C; IR (cm−1): 3397, 2916, 1655, 1495, 1278. 1H-NMR (CDCl3)  

δ ppm: 7.75 (1H, t, J = 8.0 Hz, 4-H), 7.37 (2H, d, J = 6.0 Hz, 3-H and 5-H), 6.91 (2H, d, J = 8.0 Hz,  

7'-H and 7''-H), 6.70–6.67 (4H, m, 5'-H and 5''-H, 8'-H and 8''-H), 5.75 (2H, dd, J = 11.6, 12.4 Hz,  

4'-H and 4''-H), 5.33 (2H, s, N-H), 4.70 (2H, m, 2'-H and 2''-H), 3.25–3.18 (4H, m, 5-Hpyrr and  

5'-Hpyrr), 2.56–2.48 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.34–2.30 (4H, m, 3'-H and 3''-H), 2.24 (6H, s,  

6'-CH3), 2.05–1.99 (4H, m, 4-Hpyrr and 4’-Hpyrr). 
13C-NMR (CDCl3, DMSO-d6) δ: 17.9 (2),  

20.31 (2), 31.1 (2), 42.1 (2), 47.9 (4), 55.9 (2), 115.4 (2), 119.0 (2), 126.7 (2), 128.7 (2), 138.1 (1), 

145.0 (2), 159.1 (2), 175.5 (2). MS (ESI, m/z): 536.85 ([M+H])+, 558.85 ([M+Na])+. 

2,6-bis(6'-Methoxy-4'-(2-oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)pyridine (6c). 

crystalline solid; Yield 34%; Mp 173–178 °C; IR (cm−1): 3395, 2916, 1672, 1490, 1277. 1H-NMR 

(CDCl3, DMSO-d6) δ ppm: 7.75 (1H, t, J = 7.7 Hz, 4-H), 7.36 (2H, d, J = 7.8 Hz, 3-H and 5-H),  

6.74–6.68 (4H, m, 7'-H and 7''-H, 5'-H and 5''-H), 6.49 (2H, d, J = 2.1 Hz 8'-H and 8''-H), 5.76 (2H, 

dd, J = 11.6, 11.4 Hz, 4'-H and 4''-H), 5.30 (2H, s, N-H), 4.69–4.65 (2H, dd, J = 11.5, 11.7 Hz, 2'-H 

and 2''-H), 3.74 (6H, s, O-CH3), 3.25–3.20 (4H, m, 5-Hpyrr and 5'-Hpyrr), 2.57–2.48 (4H, m, 3-Hpyrr and 

3'-Hpyrr), 2.36–2.32 (4H, m, 3'-H and 3''-H), 2.08–1.98 (4H, m, 4-Hpyrr and 4'-Hpyrr). 
13C-NMR (CDCl3, 

DMSO-d6) δ: 17.9 (2), 31.1 (2), 42.1 (2), 48.2 (4), 55.53 (2), 56.2 (2), 111.7 (2), 114.1 (2), 116.7 (2), 

119.0 (2), 120.3 (2), 139.1 (2), 152.5 (1), 160.1 (2), 175.5 (2). MS (ESI, m/z): 568.57 ([M+H])+, 

590.56 ([M+Na])+. 
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2,6-bis(6'-Nitro-4'-(2-oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)pyridine (6d). Brown solid; 

Yield 65%; Mp 202–206 °C; IR (cm−1): 3397, 2916, 1655, 1495, 1278. 1H-NMR (CDCl3) δ ppm: 8.09 

(5H, d, J = 8,8 Hz, 4-H, 3-H and 5-H, 7'-H and 7''-H), 6.62–6.68 (4H, m, 5'-H and 5''-H, 8'-H and  

8''-H), 5.81–5.74 (2H, m, 4'-H and 4''-H), 4.39 (2H, s, N-H), 4.70 (2H, m, 2'-H and 2''-H), 3.38–3.32 

(2H, m, 5-Hpirr), 3.22–3.16(2H, m, 5'-Hpyrr), 2.49–2.40 (4H, m, 3-Hpyrr and 3'-Hpyrr), 2.05–1.89 (4H, m, 

3'-H and 3''-H), 1.51–1.50 (4H, m, 4-Hpyrr and 4'-Hpyrr). MS (ESI, m/z): 598.35 ([M+H])+, 621.33 

([M+Na])+. 

2,6-bis(5',7'-Dimethyl-4'-(2-oxopyrrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)pyridine (6e). Brown 

solid; Yield 25%; Mp 157–161 °C; IR (cm−1: 3397, 2916, 1655, 1495, 1282. 1H-NMR (CDCl3) δ ppm: 

7.86 (1H, t, J = 7.7 Hz, 4-H), 7.47 (2H, d, J = 7.6 Hz, 3-H and 5-H), 6.47 (2H, s, 8'-H and 8''-H),  

6.43 (2H, s, 6'-H and 6''-H), 5.62–5.58 (2H, m, 4'-H and 4''-H), 4.77 (2H, s, N-H), 4.62 (2H, d, 2'-H 

and 2''-H), 2.93–2.89 (2H, m, 5-Hpirr), 2.76–2.73 (2H, m, 5'-Hpyrr), 2.69–2.65 (4H, m, 3-Hpyrr and  

3'-Hpyrr), 2.54 (6H, s, 7'-CH3 and 7''-CH3), 2.50–2.45 (4H, m, 3'-H and 3''-H), 2.08 (6H, s, 5'-CH3 and 

5''-CH3), 1.77–1.74 (4H, m, 4-Hpyrr and 4'-Hpyrr). 

3.2. Biological Assays 

These activities were evaluated in 96-well plates as described, de la Torre et al. [44].  

All compounds were evaluated in the range of 500–32 µg/mL. 

3.3. Computational Details 

To obtain information about enzyme inhibitor interactions that might help us to explain the 

structural requirements for AChE and BuChE activity and selectivity, a docking study was performed. 

The crystallographic structures of AChE in complex with donepezil inhibitor (pdb code 1EVE) and 

BuChE in complex with benzoic acid (pdb code 3O9M) were used to dock the derivatives under study. 

The former crystallographic structure (1EVE) was selected because it represents the molecular 

interactions of a well-studied inhibitor compound (E2020) within the AChE binding site. The site, the 

reported data showed that compound E2020 has high selectivity (compared with BuChE) and high 

affinity. All previously reported data helped use to rationalize the interactions of the new synthesized 

compounds againt AChE/BuChE proteins. 

The docking simulations were carried out using software Glide operating the standard-precision 

(SP) mode. A grid box of 25 Å × 25 Å × 25 Å was centered on the center of mass of respective ligands 

crystallized with AChE and BuChE protein structures. The remaining Glide docking parameters were 

used as default. The docking poses for each ligand were analyzed by examining both their relative total 

energy score and their interaction with residues at binding sites. The five more energetically favorable 

conformations were selected as the best poses. 

The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) approach was used as 

implemented in Prime (Prime, version 3.1, Schrödinger, LLC, New York, NY, USA, 2012) module 

from Schrödinger Suite and using default settings. Protein-ligand complexes were obtained from 

docking experiments as described before. 
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4. Conclusions 

We report here the synthesis of a new group of bis-THQ derivatives and the evaluation of their 

biological activity as AChE and BuChE inhibitors. The iDA reaction was used as a key step of a good 

methodology for the efficient and general synthesis of a selected series of 1,4- or 1,3- or  

1,6-bis(heteroaryl-4'-(2-oxopirrolidinyl-1)-1',2',3',4'-tetrahydroquinolin-2-yl)benzenes (pyridines). Among 

the obtained compounds, only derivatives 5c and 4c exhibited a low activity against both enzymes. 

With the aim to understand the ligand–protein interactions at molecular level and to gain insight of 

minimal structural requirements for biological activity, molecular docking and MM-GBSA studies 

were performed for these two compounds. 
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