Next Article in Journal
Synthesis and Antibacterial Evaluation of Novel Heterocyclic Compounds Containing a Sulfonamido Moiety
Previous Article in Journal
Investigation on the Interaction between Cyclophosphamide and Lysozyme in the Presence of Three Different Kind of Cyclodextrins: Determination of the Binding Mechanism by Spectroscopic and Molecular Modeling Techniques
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

‘One-pot’ Synthesis of Dihydrobenzo[4,5][1,3]oxazino[2,3-a] isoquinolines via a Silver(I)-Catalyzed Cascade Approach

1
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
2
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
*
Authors to whom correspondence should be addressed.
Molecules 2013, 18(1), 814-831; https://doi.org/10.3390/molecules18010814
Submission received: 26 November 2012 / Revised: 4 January 2013 / Accepted: 5 January 2013 / Published: 11 January 2013
(This article belongs to the Section Organic Chemistry)

Abstract

:
An efficient approach for the synthesis of biologically interesting fused tetracyclic isoquinolines in high yields and with a broad substrate scope has been developed. The strategy features an AgNO3 catalyzed ‘one-pot’ cascade process involving formation of two new C–N bonds and one new C–O bond.

1. Introduction

Fused isoquinolines are widely distributed in alkaloids and biologically important synthetic substances. They exhibit a broad spectrum of biological properties, such as antitumor activity [1,2], TC-PTP and PTP1B inhibitory activities [3], and HIV inhibitory potencies [4,5]. Therefore, the development of new synthetic strategies for the efficient preparation of fused isoquinolines is in considerable demand. Compared to the stepwise approach, cascade reactions represent an attractive strategy in synthesis because multiple bond-forming and -cleaving events can be combined into a single reaction operation. Recently, transition-metal-catalyzed cascade processes have received significant attention [6,7,8,9,10,11,12,13,14,15,16,17,18,19]. Among these transition metals, silver salts have long been believed to have low catalytic efficiency, and most commonly served as either co-catalysts or weak Lewis acids [20]. However, in recent years they have been extensively employed to activate alkyne, alkene, and allene functionalities under mild conditions and at low catalyst loadings [21,22,23,24,25,26,27,28,29,30,31,32,33,34].
In our ongoing efforts for the development of the efficient synthetic methods for the construction of potential bioactive fused polycyclic compounds through exploration of new catalytic cascade strategies [35,36,37,38,39,40,41], we envisioned that the direct assembly of nitrogen-containing tetracyclic isoquinoline structures 3 could be realized in a ‘one-pot’ operation from readily available and functional 2-substituted-ethynyl benzaldehydes 1 with 2-aminoarylmethanols 2 (Scheme 1). In this design, the condensation of the starting materials 1 and 2 would be primed for the formation of the Ag-complex (B or B′) in the presence of Ag salts as catalyst. The resulting species would be subject to a cascade nucleophilic attack to give the target scaffold 3. Successful execution of the proposal would lead to highly functionalized isoquinolines, which are particularly attractive for further elaboration in diversity oriented synthesis. Recently, some progress has been made via tandem nucleophilic addition and cyclization to give fused tetracyclic isoquinolines by using o-alkynylbenzaldehyde as the starting material in the presence of various Lewis acid catalysts, such as AuCl [17], In(OTf)3 [18], Yb(OTf)3 [13], CuI [16], AgNO3 [28,29], and Ph3PAuMe/chiral Brønsted acids [15]. However, to the best of our knowledge, there is no report involving the synthesis of dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinolines 3 via a AgNO3-catalyzed one-pot domino process. Herein, we wish to disclose our recent results in this area.

2. Results and Discussion

To fulfill the hypothesis, we carried out the experiments using 2-(phenylethynyl)benzaldehyde (1a) and (2-aminophenyl)methanol (2a) as model substrates (as shown in Table 1). In our previous studies, we found that some gold-complex and/or silver salts were highly efficient catalysts for cascade reactions involving the activation of alkynyl groups [35,36,37,38,39,40,41]. Therefore, several gold catalysts, including AuCl(PPh3), AuCl, (acetonitrile)[(2-biphenyl)di-tert-butylphosphine]gold(I) hexafluoro-antimonate (Au catalyst I), and 2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-biphenyl gold(I) bis(trifluoromethanesulfonyl)imide (Au catalyst II) were firstly investigated in a sealed tube using dry toluene as the solvent at 100 °C for 3 h. Disappointingly, the desirable cascade products were obtained in only 28%–75% yields (Table 1, entries 1–4). Different silver salts, such as AgOOCCF3, AgNO3, AgBF4 and AgOTf, were also subsequently screened, and AgNO3 was proved to be the most effective one for this transformation (Table 1, entries 5–8), and the product 3Aa could be obtained in 93% yield (Table 1, entry 6). It is apparent that the solvent has a significant influence on the yield of this reaction (Table 1, entries 9–14). Toluene was found to be the optimal solvent for this transformation (Table 1, entries 6, 9–14), although when DMSO, CH3CN and 1,4-dioxane were used instead of toluene, the desired product 3Aa can also obtained with good yields (Table 1, entries 12–14). The yield of the product has no significant difference when we decrease the reaction temperature to 80 °C in toluene (Table 1, entry 15). However, when DMSO, CH3CN and 1,4-dioxane were used, decreasing temperature appears to have a negative impact on the yield of product (Table 1, entries 16–18). We further decreased reaction temperature to 50 °C and room temperature, but these changes adversely affected the product yield, and product 3Aa was obtained in only 65% and 30% yield, respectively (Table 1, entries 19–20).
Furthermore, the amount of starting material 2a was also screened, and the results demonstrated that the same excellent yield for desired product 3Aa were observed in toluene at 80 °C for 3 h when 1.2 equiv. of 2a was used (Table 1, entry 21).
To explore the scope and limitation of this cascade reaction, we surveyed the diversity of the starting materials by the structural variations of both 2-substituted-ethynyl benzaldehydes (1AH) and 2-aminoarylmethanols (2aj). As shown in Table 2, notably, the corresponding fused tetracyclic isoquinolines products 3AaBj were efficiently produced in moderate to excellent yields (45%–94%). The nature of the 2-aminoarylmethanol and the substituents attached to the triple bond of benzaldehydes has a major impact on the yield of the transformation. When 2-phenylethynyl-benzaldehyde (1A) was treated with different substituted 2-aminoarylmethanols 2ae, excellent yields were achieved (Table 2, entries 1–5). Moreover, when introducing substituent groups such as fluoro, chloro, or methyl groups onto the phenyl ring in the 2-phenylethynylbenzaldehydes, most of the desired products were obtained with high yields (Table 2, entries 6–22). Nevertheless, some substituted 2-aminoarylmethanols with bromo or methyl groups (Table 2, entries 8–10, 17–18 and 22), especially 6-methyl-2-aminophenylmethanol (Table 2, entry 10), result in a decrease in the yield of the target products, presumably due to the influence of electronic and/or steric effects. Subsequently, we prepared substrates 1F and 1G by introducing methyl and fluoro groups in the 4-position and 5-postion of 2-phenylethynylbenzaldehyde (1A), respectively. Results of further investigations demonstrated that all tested substrates were tolerated in this cascade transformation, giving good to excellent yields (Table 2, entries 23–30). However, a relatively lower 55% yield of product 3Gh was obtained in the reaction of 2-phenylethynyl-4-methylbenzaldehyde (1G) with 3-aminonaphthalenylmethanol (2h). We speculate that the electronic effect of naphthalene ring was responsible for the decrease in the yield. Furthermore, an alkyl (n-hexyl) group at the R1 position was also tolerated, and excellent yields were obtained (Table 2, entries 31–32). Finally, a N-containing heterocyclic substrate (2-amino-pyridinylmethanol, 2j) was investigated in this cascade transformation, but only moderate yields were obtained (Table 2, entries 33–34). In view of these findings, this cascade strategy could serve as a general approach for the preparation of fused tetracyclic isoquinoline complex molecular architectures.
Scheme 1 depicts a plausible mechanism for this cascade transformation. The condensation of the starting materials 1 and 2 generates the key imine intermediate A, which subsequently can be converted into the final product 3 via two possible catalytic pathways (I and II). In pathway I [17,42], the imine intermediate A is activated by AgNO3 to form the π-Ag complex B, and futher generates the N-aryl imine cation C through an intramolecular nucleophilic addition, which is subject to a subsequent nucleophilic attack and proton transformation to afford the target scaffold 3. In the conceivable alternative pathway II [17,28], the aminal intermediate C′ is probably formed by an intramolecular nucleophilic addition of iminoalkyne Ag-complex B′. Then, the Ag-mediated intramolecular hydroamination reaction of C′ and subsequent protonation results in the formation of the target product 3. The target product 3Aa was further characterized by X-ray crystallography (Figure 1, see Supporting Information for details).

3. Experimental

3.1. General

2-Aminoarylmethanols 2aj and the two 2-substituted-ethynyl benzaldehydes 1A and 2B are commercially available starting materials. The five remaining 2-substituted-ethynyl benzaldehydes 1CH were prepared as indicated in the following methods. Commercially available reagents and solvents were used without further purification. Column chromatography was carried out on silica gel. 1H and 13C-NMR spectra were obtained on Varian Mercury-300, Varian Mercury-400 and Varian Mercury-500 spectrometers (TMS as IS). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), multipet (m) and broad (br). Low- and high-resolution mass spectra (LRMS and HRMS) were measured on a Finnigan MAT 95 spectrometer.

3.2. General Procedure for Synthesis of 2-Substituted-ethynyl Benzaldehyde Derivatives 1CH (1C as an Example)

To a solution of 2-bromobenzaldehyde (0.37 g), PdCl2(PPh3)2 (28 mg), and CuI (3.8 mg) in of Et3N (20 mL) was added phenylacetylene (0.2 g). The resulting mixture was heated under a nitrogen atmosphere at 60 °C for 4 h. After the reaction was completed, the reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by flash column chromatography (PE/EA = 50/1, v/v, as an eluent) to give 2-((4-chlorophenyl)ethynyl)benzaldehyde (1C) in 90% yield. 1H-NMR (500 MHz, CDCl3) δ 10.61 (s, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.47 (m, 3H), 7.35 (d, J = 8.4 Hz, 2H). 13C-NMR (125 MHz, CDCl3) δ 191.47, 135.84, 135.19, 133.84, 133.25, 132.91, 128.93, 128.86, 127.46, 126.41, 120.83, 95.09, 85.91. LRMS (ESI) m/z 241 [M+H]+; HRMS (ESI) m/z calcd C15H9ClONa [M+Na]+ 263.0240, found 263.0243.
2-(p-Tolylethynyl)benzaldehyde (1D). 1H-NMR (400 MHz, CDCl3) δ 10.68 (s, 1H), 7.97 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.62 (m, 1H), 7.49 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H). 13C-NMR (125 MHz, CDCl3) δ 191.87, 139.42, 135.77, 133.81, 133.17, 131.62, 129.34, 128.45, 127.21, 119.27, 96.69, 84.35, 21.63. LRMS (ESI) m/z 221 [M+H]+; HRMS (ESI) m/z calcd C16H12ONa [M+Na]+ 243.0786, found 243.0784.
2-(m-Tolylethynyl)benzaldehyde (1E). 1H-NMR (500 MHz, CDCl3) δ 10.66 (s, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.91 (d, J = 9.7 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.59 (td, J = 7.6, 1.1 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.44–7.35 (m, 3H), 7.29 (d, J = 7.6 Hz, 1H), 7.21 (d, J = 7.7 Hz, 1H), 2.38 (s, 3H). 13C-NMR (125 MHz, CDCl3) δ 191.78, 138.19, 135.70, 133.73, 133.11, 132.16, 129.92, 128.67, 128.45, 128.34, 127.15, 126.96, 122.02, 96.52, 84.44, 21.15. LRMS (ESI) m/z 221 [M+H]+; HRMS (ESI) m/z calcd C16H12ONa [M+Na]+ 243.0786, found 243.0791.
5-Fluoro-2-(phenylethynyl)benzaldehyde (1F). 1H-NMR (400 MHz, CDCl3) δ 10.63 (s, 1H), 7.71–7.62 (m, 2H), 7.61–7.53 (m, 2H), 7.43–7.41 (m, 3H), 7.38–7.28 (m, 1H). 13C-NMR (125 MHz, CDCl3) δ 190.52, 162.41 (d, J = 252.7 Hz), 137.78 (d, J = 6.6 Hz), 135.28 (d, J = 7.6 Hz), 131.67, 129.21, 128.60, 123.04 (d, J = 3.3 Hz), 122.13, 121.42 (d, J = 22.8 Hz), 113.73 (d, J = 23.0 Hz), 96.06, 83.84. LRMS (ESI) m/z 225 [M+H]+; HRMS (ESI) m/z calcd C15H9ONaF [M+Na]+ 247.0535, found 247.0529.
4-Methyl-2-(phenylethynyl)benzaldehyde (1G). 1H-NMR (400 MHz, CDCl3) δ 10.62 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.64–7.55 (m, 2H), 7.49 (s, 1H), 7.46–7.36 (m, 3H), 7.30 (s, 1H), 2.45 (s, 3H). 13C-NMR (125 MHz, CDCl3) δ 191.43, 144.91, 133.69, 133.62, 131.70, 129.72, 129.03, 128.55, 127.36, 126.91, 122.45, 95.87, 85.13, 21.67. LRMS (ESI) m/z 221 [M+H]+; HRMS (ESI) m/z calcd C16H12ONa [M+Na]+ 243.0786, found 243.0786.
2-(Oct-1-yn-1-yl)benzaldehyde (1H). 1H-NMR (400 MHz, CDCl3) δ 10.56 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.65–7.47 (m, 2H), 7.47–7.33 (m, 1H), 2.50 (t, J = 7.1 Hz, 2H), 1.73–1.59 (m, 2H), 1.54–1.44 (m, 2H), 1.42–1.31 (m, 4H), 0.93 (t, J = 6.8 Hz, 3H). 13C-NMR (125 MHz, CDCl3) δ 192.21, 135.96, 133.70, 133.29, 127.99, 127.84, 126.88, 98.24, 76.32, 31.32, 28.67, 28.50, 22.56, 19.61, 14.07. LRMS (ESI) m/z 215 [M+H]+; HRMS (ESI) m/z calcd C15H18ONa [M+Na]+ 237.1255, found 237.1259.

3.3. General Procedure for Synthesis of Dihydrobenzo [4,5][1,3]oxazino[2,3-a]isoquinolines (3Aa as an Example)

To a solution of 2-(phenylethynyl)benzaldehyde (1A, 0.1 mmol) in dry toluene (2 mL) were added (2-aminophenyl)methanol (2a, 0.12 mmol) and AgNO3 catalyst (5 mol%). Then, the reaction vial was sealed and the mixture was heated to 80 °C for 3 h. Afterwards, the cooled mixture was concentrated under reduced pressure, and the resulting reside was purified by flash column chromatography (PE/EA = 30/1, v/v, as an eluent) to afford the desired product 3Aa [17] in 94% yield. 1H-NMR (400 MHz, CDCl3) δ 7.43 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.25–7.19 (m, 7H), 7.06 (d, J =7.6 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 6.80 (t, J = 8.4 Hz, 1H), 6.24 (d, J = 8.0 Hz, 1H), 6.10 (s, 1H), 5.97 (s, 1H), 5.27 (d, J = 14.4 Hz, 1H), 5.11 (d, J = 14.8 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 140.75, 139.82, 136.90, 132.32, 128.96, 128.56, 128.41, 127.95, 127.82, 126.75, 125.97, 125.73, 124.66, 124.29, 123.74, 122.51, 105.63, 84.96, 69.99. LRMS (EI) m/z 311 (M+); HRMS (EI) m/z calcd C22H17NO (M+) 311.1310, found 311.1303.
8-Fluoro-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ab). 1H-NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.2 Hz, 1H), 7.34 (t, J = 7.6Hz, 1H), 7.26–7.22 (m, 4H), 7.20–7.17 (m, 3H), 6.77 (dd, J = 8.4, 2.4 Hz, 1H), 6.51 (td, J = 8.8, 2.8 Hz, 1H), 6.19 (dd, J = 8.8, 4.8 Hz, 1H), 6.04 (s, 1H), 5.91 (s, 1H), 5.24 (d, J = 15.2 Hz, 1H), 5.07 (d, J = 15.2 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 158.60 (d, J = 242.0 Hz), 140.87, 136.70, 136.01, 132.17, 130.13 (d, J = 7.4 Hz), 129.17, 128.74, 127.98, 127.89, 127.15, 125.93, 125.60 (d, J = 7.8 Hz), 124.34, 112.81 (d, J = 22.8 Hz), 111.15 (d, J = 22.9 Hz), 104.87, 84.98, 67.69. LRMS (EI) m/z 329 (M+); HRMS (EI) m/z calcd C22H16FNO (M+) 329.1216, found 329.1213.
8-Chloro-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ac). 1H-NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.6 Hz, 1H), 7.33 (td, J = 7.6, 1.2 Hz, 1H), 7.29–7.17 (m, 6H), 7.04 (d, J = 2.4 Hz, 1H), 6.75 (dd, J = 8.8, 2.4 Hz, 1H), 6.13 (d, J = 8.8 Hz, 1H), 6.05 (s, 1H), 6.0 (s, 1H), 5.19 (d, J = 14.4 Hz, 1H), 5.04 (d, J = 14.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 140.19, 138.24, 136.43, 132.10, 129.55, 129.05, 128.46, 128.16, 128.05, 127.54, 126.80, 126.50, 126.24, 126.00, 124.61, 124.51, 124.40, 106.49, 85.05, 67.44. LRMS (EI) m/z 345 (M+); HRMS (EI) m/z calcd C22H16ClNO (M+) 345.0920, found 345.0919.
9-Chloro-12-phenyl-4b,6-dihydrobenzo[4,5][1,3] oxazino[2,3-a]isoquinoline (3Ad). 1H-NMR (300 MHz, CDCl3) δ 7.43 (d, J = 7.2 Hz, 1H), 7.36–7.26 (m, 6H), 7.23–7.18 (m, 2H), 6.97 (d, J = 8.1 Hz, 1H), 6.84 (dd, J = 8.1, 1.8 Hz, 1H), 6.16 (d, J =1.5 Hz, 1H), 6.11 (s, 1H), 6.07 (s, 1H), 5.16 (d, J = 14.1 Hz, 1H), 5.04 (d, J = 14.1 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 139.88, 139.37, 135.60, 131.61, 131.20, 128.49, 127.85, 127.78, 127.29, 125.99, 125.70, 125.50, 125.06, 123.94, 122.11, 121.49, 107.48, 84.64, 66.85. LRMS (EI) m/z 345 (M+); HRMS (EI) m/z calcd C22H16ClNO (M+) 345.0920, found 345.0916.
8-Bromo-12-phenyl-4b,6-dihydrobenzo[4,5][1,3] oxazino[2,3-a]isoquinoline (3Ae). 1H-NMR (400 MHz, CDCl3) δ 7.41 (d, J = 8.0 Hz, 1H), 7.32 (td, J = 7.6, 1.2 Hz, 1H), 7.21–7.28 (m, 6H), 7.19–7.17 (m, 2H), 6.88 (dd, J = 8.4, 2.0 Hz,1H), 6.07 (s, 1H), 6.05 (s, 1H), 6.01(s, 1H), 5.18 (d, J = 14.8 Hz, 1H), 5.03 (d, J = 14.8 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 140.07, 138.69, 136.38, 132.11, 129.89, 129.04, 128.93, 128.42, 128.21, 128.09, 127.55, 126.98, 126.39, 126.32, 124.71, 124.43, 115.04, 106.83, 85.07, 67.33. LRMS (EI) m/z 389 (M+); HRMS (EI) m/z calcd C22H16BrNO (M+) 389.0415, found 389.0410.
8-Fluoro-12-(4-fluorophenyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Bb). 1H-NMR (400 MHz, CDCl3) δ 7.43 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.25–7.30 (m, 1H), 7.15–7.23 (m, 3H), 6.97 (t, J = 8.4 Hz, 2H), 6.8 (dd, J = 8.4, 2.4 Hz, 1H), 6.57 (td, J = 8.8, 2.4 Hz, 1H), 6.21 (dd, J = 8.8, 4.8 Hz, 1H), 6.05 (s, 1H), 5.90 (s, 1H), 5.27 (d, J = 15.2 Hz, 1H), 5.09 (d, J = 15.2 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 162.39 (d, J = 246.6 Hz), 158.75 (d, J = 242.7 Hz), 139.96, 135.91, 132.84, 132.09, 130.57 (d, J = 8.0 Hz), 130.36 (d, J = 7.1 Hz), 129.27, 127.22, 126.11, 126.04, 125.71 (d, J = 8.1 Hz), 124.40, 115.09 (d, J = 21.4 Hz), 113.00 (d, J = 23.0 Hz), 111.34(d, J = 22.8 Hz), 105.09, 85.07, 67.74. LRMS (EI) m/z 347 (M+); HRMS (EI) m/z calcd C22H15F2NO (M+) 347.1122, found 347.1116.
9-Chloro-12-(4-fluorophenyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Bd). 1H-NMR (400 MHz, CDCl3) δ 7.45 (d, J = 7.6 Hz, 1H), 7.36 (td, J = 7.6, 1.2 Hz,1H), 731–7.25 (m, 3H), 7.22 (d, J = 7.6 Hz, 1H), 7.05–6.98 (m, 3H), 6.89 (dd, J = 8.0, 2.0 Hz, 1H), 6.18 (d, J = 1.6 Hz, 1H), 6.10 (s, 1H), 6.07 (s, 1H), 5.16 (d, J = 14.4 Hz, 1H), 5.05 (d, J = 14.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 162.63 (d, J = 246.8 Hz), 140.26, 138.91, 132.24 (d, J = 3.4 Hz), 132.00, 131.88, 130.05 (d, J = 8.2 Hz), 129.02, 127.76, 126.66, 126.26, 126.01, 125.75, 124.52, 122.67, 122.10, 115.40 (d, J = 21.6 Hz), 108.06, 85.08, 67.37. LRMS (EI) m/z 363 (M+); HRMS (EI) m/z calcd C22H15ClFNO (M+) 363.0826, found 363.0831.
8-Bromo-12-(4-fluorophenyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Be). 1H-NMR (400 MHz, CDCl3) δ 7.45 (d, J = 7.6 Hz, 1H), 7.36 (td, J = 7.6, 1.2 Hz, 1H), 7.31–7.25 (m, 3H), 7.22 (d, J = 7.6 Hz, 1H), 7.05–6.98 (m, 3H), 6.89 (dd, J = 8.0, 2.0 Hz,1H), 6.18 (d, J = 1.6 Hz, 1H), 6.10 (s, 1H), 6.07 (s, 1H), 5.16 (d, J = 14.4 Hz, 1H), 5.05 (d, J = 14.4Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 162.49 (d, J = 246.8 Hz), 139.13, 138.57, 132.51 (d, J = 3.2 Hz), 132.01, 130.27, 130.19, 130.1, 129.09 (d, J = 6.4 Hz), 127.72, 126.99, 126.49, 126.46, 124.80, 124.47, 115.42 115.26 (d, J = 21.6 Hz), 106.91, 85.11, 67.35. LRMS (EI) m/z 407 (M+); HRMS (EI) m/z calcd C22H15BrFNO (M+) 407.0321, found 407.0320.
12-(4-Fluorophenyl)-8-methyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Bf). 1H-NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.26–7.14 (m, 4H), 6.93 (t, J = 8.8 Hz, 2H), 6.86 (s, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.12 (d, J = 8.4 Hz, 1H), 6.05 (s, 1H), 5.84 (s, 1H), 5.25 (d, J = 14.8 Hz, 1H), 5.06 (d, J = 14.8 Hz, 1H), 2.25 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 162.26 (d, J = 246.1 Hz), 140.12, 137.29, 133.14 (d, J = 3.7 Hz), 132.69, 132.20, 130.48 (d, J = 8.3 Hz), 129.06, 128.55, 127.19, 126.48, 126.10, 125.84, 125.16, 124.21, 124.07, 114.88 (d, J = 21.4 Hz), 104.47, 84.93, 68.05, 20.81. LRMS (EI) m/z 343 (M+); HRMS (EI) m/z calcd C23H18FNO (M+) 343.1372, found 343.1375.
12-(4-Fluorophenyl)-10-methyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Bg). 1H-NMR (400 MHz, CDCl3) δ 7.38–7.36 (m, 2H), 7.26–7.20 (m, 2H), 7.10–6.92 (m, 4H), 6.87–6.77 (m, 3H), 5.91–5.90 (m, 2H), 5.30–5.17 (m, 2H), 1.67 (s, 3H). 13C-NMR (125 MHz, CDCl3) δ 162.21 (d, J = 246.3 Hz), 141.92, 140.45, 133.85, 133.35, 132.50, 130.99, 130.16 (d, J = 8.0 Hz), 129.36, 128.50, 127.80, 125.66 (d, J = 33.1 Hz), 125.67, 124.41, 122.70, 114.53, 114.36, 104.47, 85.02, 67.75, 17.34. LRMS (EI) m/z 343 (M+); HRMS (EI) m/z calcd C23H18FNO (M+) 343.1372, found 343.1368.
12-(4-Chlorophenyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ca). 1H-NMR (400 MHz, CDCl3) δ 7.42 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.27–7.14 (m, 6H), 7.06 (d, J = 7.2 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 6.22 (d, J = 8.4 Hz, 1H), 6.08 (s, 1H), 5.95 (s, 1H), 5.26 (d, J = 14.4 Hz, 1H), 5.09 (d, J = 14.8 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 139.52, 135.38, 133.71, 132.04, 129.81, 129.02, 128.44, 128.22, 126.76, 126.23, 125.95, 124.81, 124.37, 123.67, 122.73, 106.07, 84.91, 67.97. LRMS (EI) m/z 345 (M+); HRMS (EI) m/z calcd C22H16ClNO (M+) 345.0920, found 345.0890.
8-Chloro-12-(4-chlorophenyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Cc). 1H-NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.6 Hz, 1H), 7.34 (td, J = 7.2, 1.2 Hz, 1H), 7.28–7.23 (m, 3H), 7.20–7.14 (m, 3H), 7.06 (d, J = 2.0 Hz, 1H), 6.80 (dd, J = 8.8, 2.4 Hz, 1H), 6.12 (d, J = 8.4 Hz, 1H), 6.04 (s, 1H), 5.99 (s, 1H), 5.18 (d, J = 14.8 Hz, 1H), 5.04 (d, J = 14.8 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ138.99, 137.96, 134.93, 133.99, 131.85, 129.71, 129.62, 129.12, 128.45, 127.80, 126.92, 126.54, 126.51, 126.24, 124.79, 124.51, 124.42, 107.02, 85.05, 67.45. LRMS (EI) m/z 379 (M+); HRMS (EI) m/z calcd C22H15Cl2NO (M+) 379.0531, found 379.0503.
9-Chloro-12-(4-chlorophenyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Cd). 1H-NMR (400 MHz, CDCl3) δ 7.42 (d, J = 7.6 Hz, 1H), 7.33 (td, J = 7.2, 1.2 Hz, 1H), 7.29–7.25 (m, 3H), 7.23–7.17 (m, 3H), 6.97 (d, J = 8.0 Hz, 1H), 6.86 (dd, J = 8.0, 2.0 Hz, 1H), 6.15 (d, J = 1.6 Hz, 1H), 6.11 (s, 1H), 6.04 (s, 1H), 5.12 (d, J = 14.4 Hz, 1H), 5.02 (d, J = 14.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 140.08, 138.61, 134.56, 134.15, 131.96 131.82, 129.37, 128.96, 128.57, 127.94, 126.82, 126.08, 125.83, 125.74, 124.57, 122.35, 122.00, 108.72, 84.99, 67.26. LRMS (EI) m/z 379 (M+); HRMS (EI) m/z calcd C22H15Cl2NO (M+) 379.0531, found 379.0508.
12-(p-Tolyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Da). 1H-NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.6, 1H), 7.31 (td, J = 7.6, 1.2 Hz, 1H), 7.23 (td, J = 7.2, 1.2 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.12 (d, J = 8.0, 2H), 7.05 (m, 3H), 6.92 (td, J = 7.6, 1.2 Hz, 1H), 6.81 (td, J = 8.4, 1.2 Hz, 1H), 6.25 (d, J = 8.0, 1H), 6.08 (s, 1H), 5.94 (s, 1H), 5.25 (d, J = 14.8, 1H), 5.09 (d, J = 14.8, 1H), 2.33 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.77, 139.87, 137.69, 133.96, 132.44, 128.91, 128.66, 128.41, 128.35, 126.71, 126.63, 125.85, 125.77, 124.62, 124.20, 123.74, 122.37, 105.42, 84.98, 67.96, 21.26. LRMS (EI) m/z 325 (M+); HRMS (EI) m/z calcd C23H19NO (M+) 325.1467, found 325.1472.
8-Chloro-12-(p-tolyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Dc). 1H-NMR (300 MHz, CDCl3) δ 7.41 (d, J = 10.0 Hz, 1H), 7.32 (td, J = 10.0, 1.6 Hz, 1H), 7.26–7.04 (m, 7H), 6.77 (dd, J = 10.6, 3.2 Hz, 1H), 6.16 (d, J = 10.6 Hz, 1H), 6.05 (s, 1H), 5.99 (s, 1H), 5.18 (d, J = 19.6 Hz, 1H), 5.04 (d, J = 19.2 Hz, 1H), 2.35 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.27, 138.36, 138.04, 133.56, 132.31, 129.53, 129.03, 128.92, 128.36, 127.42, 127.00, 126.41, 126.17, 126.11, 124.61, 124.53, 124.37, 106.37, 85.17, 67.45, 21.30. LRMS (EI) m/z 359 (M+); HRMS (EI) m/z calcd C23H18ClNO (M+) 359.1077, found 359.1078.
9-Chloro-12-(p-tolyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Dd). 1H-NMR (400 MHz, CDCl3) δ 7.42 (dd, J = 8.8, 0.8 Hz, 1H), 7.32 (td, J = 7.6, 1.2 Hz, 1H), 7.25 (td, J = 7.2, 1.2 Hz, 1H), 7.20–7.16 (m, 3H), 7.10 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 1H), 6.83 (dd, J = 8.0, 1.6 Hz, 1H), 6.18 (d, J = 2.0 Hz, 1H), 6.11 (s, 1H), 6.05 (s, 1H), 5.13 (d, J = 14.0 Hz, 1H), 5.02 (d, J = 14.0 Hz, 1H), 2.35 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.42, 139.90, 138.22, 133.13, 132.25, 131.75, 129.00, 128.85, 128.03, 127.90, 126.38, 125.98, 125.74, 125.52, 124.38, 122.49, 121.64, 107.79, 85.04, 67.25, 21.27. LRMS (EI) m/z 359 (M+); HRMS (EI) m/z calcd C23H18ClNO (M+) 359.1077, found 359.1053.
8-Bromo-12-(p-tolyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3De). 1H-NMR (400 MHz, CDCl3) δ 7.42 (d, J = 7.6 Hz, 1H), 7.32 (td, J = 7.6, 1.2 Hz, 1H), 7.24 (td, J = 7.2, 1.2 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.91 (dd, J = 8.4, 2.0 Hz, 1H), 6.10 (d, J = 8.8 Hz, 1H), 6.04 (s, 1H), 6.02 (s, 1H), 5.17 (d, J = 14.4 Hz, 1H), 5.03 (d, J = 14.8 Hz, 1H), 2.35 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.07, 138.72, 138.00, 133.44, 132.25, 129.80, 128.95, 128.91, 128.25, 127.47, 127.10, 126.23, 126.17, 124.66, 124.32, 114.83, 106.64, 85.09, 67.25, 21.25. LRMS (EI) m/z 403 (M+); HRMS (EI) m/z calcd C23H18BrNO (M+) 403.0572, found 403.0558.
8-Methyl-12-(p-tolyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Df). 1H-NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.6 Hz, 1H), 7.32 (td, J = 7.6, 0.8 Hz, 1H), 7.22 (td, J = 7.6, 1.2 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.11 (d, J = 7.6 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 6.86 (s, 1H), 6.62 (d, J = 7.2 Hz, 1H), 6.17 (d, J = 8.0 Hz, 1H), 6.06 (s, 1H), 5.87 (s, 1H), 5.25 (d, J = 14.8 Hz, 1H), 5.07 (d, J = 14.8 Hz, 1H), 2.34 (s, 3H), 2.25 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 141.07, 137.56, 137.53, 134.15, 132.48, 132.24, 128.93, 128.56, 128.36, 127.01, 126.43, 126.23, 125.58, 125.01, 124.12, 123.95, 104.29, 84.98, 68.01, 21.25, 20.83. LRMS (EI) m/z 339 (M+); HRMS (EI) m/z calcd C24H21NO (M+) 339.1623, found 339.1609.
14-(p-Tolyl)-4b,6-dihydronaphtho[2′,3′:4,5][1,3]oxazino[2,3-a]isoquinoline (3Dh). 1H-NMR (400 MHz, CDCl3) δ 7.70–7.66 (m, 1H), 7.54 (s, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.34–7.30 (m, 3H), 7.28–7.21 (m, 5H), 7.06 (d, J = 7.6 Hz, 2H), 6.53 (s, 1H), 6.36 (s, 1H), 6.20 (s, 1H), 5.25 (d, J = 13.6 Hz, 1H), 5.23 (d, J = 13.6 Hz, 1H), 2.30 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.13, 137.98, 136.77, 133.25, 132.84, 132.49, 129.39, 129.02, 128.59, 128.45, 128.07, 127.74, 127.15 , 126.80, 126.61, 125.61, 124.50, 124.20, 123.94, 123.06, 117.77, 109.94, 85.75, 67.43, 21.20. LRMS (EI) m/z 375 (M+); HRMS (EI) m/z calcd C27H21NO (M+) 375.1623, found 375.1621.
12-(m-Tolyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ea). 1H-NMR (400 MHz, CDCl3) δ 7.43 (d, J = 7.2 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.26–7.18 (m, 2H), 7.14–7.04 (m, 4H), 6.99–6.91 (m, 2H), 6.82 (t, J = 7.6 Hz, 1H), 6.26 (d, J = 8.0 Hz, 1H), 6.10 (s, 1H), 5.97 (s, 1H), 5.27 (d, J = 14.4 Hz, 1H), 5.11 (d, J = 14.4 Hz, 1H), 2.30 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.89, 139.82, 137.60, 136.77, 132.36, 129.12, 128.90, 128.54, 128.28, 127.69, 126.70, 125.85, 125.72, 125.65, 124.58, 124.21, 123.69, 122.42, 105.44, 84.93, 67.93, 21.34. LRMS (EI) m/z 325 (M+); HRMS (EI) m/z calcd C23H19NO (M+) 325.1467, found 325.1468.
8-Chloro-12-(m-tolyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ec). 1H-NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.26–7.10 (m, 5H), 7.04 (s, 1H), 6.96 (d, J = 6.8 Hz, 1H), 6.76 (dd, J = 8.4, 1.2 Hz, 1H), 6.15 (d, J = 8.8 Hz, 1H), 6.05 (s, 1H), 5.99 (s, 1H), 5.19 (d, J = 14.4 Hz, 1H), 5.04 (d, J = 14.8 Hz, 1H), 2.31 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.35, 138.30, 137.90, 136.37, 132.19, 129.42, 129.00, 128.82, 127.94, 127.40, 126.90, 126.43, 126.18, 125.99, 125.65, 124.55, 124.43, 124.36, 106.46, 85.09, 67.42, 21.41. LRMS (EI) m/z 359 (M+); HRMS (EI) m/z calcd C23H18ClNO (M+) 359.1077, found 359.1063.
8-Bromo-12-(m-tolyl)-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ee). 1H-NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.6 Hz, 1H), 7.33 (td, J = 7.2, 1.2 Hz,1H), 7.25 (td, J = 7.6, 1.2 Hz,1H), 7.20–7.08 (m, 5H), 6.97 (d, J = 7.2Hz, 1H), 6.90 (dd, J = 8.8, 2.0 Hz, 1H), 6.09 (d, J = 8.8 Hz, 1H), 6.05 (s, 1H), 6.02 (s, 1H), 5.18 (d, J = 14.8 Hz, 1H), 5.04 (d, J = 15.6 Hz, 1H), 2.3 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.20, 138.73, 137.93, 136.31, 132.18, 129.71, 128.98, 128.91, 128.85, 127.94, 127.48, 127.08, 126.30, 126.23, 125.59, 24.60, 124.37, 114.87, 106.80, 85.08, 67.27, 21.42. LRMS (EI) m/z 403 (M+); HRMS (EI) m/z calcd C23H18BrNO (M+) 403.0572, found 403.0576.
3-Fluoro-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Fa). 1H-NMR (400 MHz, CDCl3) δ 7.29–7.27 (m, 5H), 7.20–7.16 (m, 2H), 7.10–7.02 (m, 2H), 6.93 (t, J = 7.6 Hz, 1H), 6.82 (t, J = 7.6 Hz, 1H), 6.24 (d, J = 8.0 Hz, 1H), 6.09 (s, 1H), 6.04 (s, 1H), 5.24 (d, J = 14.4 Hz, 1H), 5.10 (d, J = 14.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 161.49 (d, J = 243.5 Hz), 140.01, 139.38, 136.64, 129.23, 129.13 (d, J = 7.6 Hz), 128.73, 128.38, 128.11, 127.99, 126.13, 125. 86 (d, J = 7.9 Hz), 124.70, 123.18, 122.24, 116.09 (d, J = 22.0 Hz), 113.16 (d, J = 22.6 Hz), 105.86, 84.67, 67.86. LRMS (EI) m/z 329 (M+); HRMS (EI) m/z calcd C22H16FNO (M+) 329.1216, found 329.1210.
8-Chloro-3-fluoro-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Fc). 1H-NMR (400 MHz, CDCl3) δ 7.30–7.23 (m, 5H), 7.18–7.13 (m, 2H), 7.06–7.00 (m, 2H), 6.76 (dd, J = 8.8, 2.4 Hz, 1H), 6.11 (d, J = 8.8 Hz,1H), 6.06 (s, 1H), 6.02 (s, 1H), 5.14 (d, J = 14.4 Hz, 1H), 5.02 (d, J = 14.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 162.80 (d, J = 244.2 Hz), 139.40, 137.77, 136.13, 129.25 (d, J = 7.5 Hz), 129.06, 128.48, 128.45, 128.28, 128.22, 127.20, 126.34, 125.98 (d, J = 7.7 Hz), 124.64, 123.85, 116.12 (d, J = 21.9 Hz), 112.96 (d, J = 22.9 Hz), 106.75, 84.71, 67.25. LRMS (EI) m/z 363 (M+); HRMS (EI) m/z calcd C22H15ClFNO (M+) 363.0826, found 363.0808.
8-Bromo-3-fluoro-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Fe). 1H-NMR (400 MHz, CDCl3) δ 7.30–7.24 (m, 5H), 7.20 (d, J = 2.4Hz, 1H), 7.17–7.13 (m, 2H), 7.04 (td, J = 8.4, 2.4 Hz,1H), 6.90 (dd, J = 8.8, 2.4 Hz, 1H), 6.09 (s, 1H), 6.05 (d, J = 8.8 Hz, 1H), 6.02 (s, 1H), 5.13 (d, J = 14.0 Hz, 1H), 5.08–4.96 (d, J = 14.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 161.64 (d, J = 244.1 Hz), 139.25, 138. 19, 136.06, 129.46 (d, J = 7.2 Hz), 129.38, 129.26, 128.42, 128.32, 128.22, 128.16, 127.54, 125.98 (d, J = 7.9 Hz), 124.02, 116.07 (d, J = 22.0 Hz), 114.62, 112.85 (d, J = 23.0 Hz), 107.12, 84.71, 67.10. LRMS (EI) m/z 407 (M+); HRMS (EI) m/z calcd C22H15BrFNO (M+) 407.0321, found 407.0316.
3-Fluoro-8-methyl-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ff). 1H-NMR (400 MHz, CDCl3) δ 7.26–7.19 (m, 5H), 7.16–7.11 (m, 2H), 7.02 (td, J = 8.4, 2.4 Hz, 1H), 6.86 (s, 1H), 6.60 (d, J = 8.4 Hz, 1H), 6.11 (d, J = 8.4 Hz, 1H), 6.03 (s, 1H), 5.91 (s, 1H), 5.21 (d, J =14.8 Hz, 1H), 5.05 (d, J = 14.8 Hz, 1H), 2.23 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 160.78 (d, J = 243.8 Hz), 140.30, 137.07, 136.80, 132.22, 128.86, 128.74, 128.54, 128.29 (d, J = 7.8 Hz), 127.97, 127.84, 126.66, 125.77 (d, J = 7.7 Hz), 125.10, 123.50, 116.18 (d, J = 22.8 Hz), 113.48 (d, J = 22.3 Hz), 104.42, 84.59, 67.94, 20.80. LRMS (EI) m/z 343 (M+); HRMS (EI) m/z calcd C23H18FNO (M+) 343.1372, found 343.1375.
2-Methyl-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ga). 1H-NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.0 Hz, 1H), 7.26–7.19 (m, 5H), 7.07–7.03 (m, 2H), 7.00 (s, 1H), 6.92 (t, J = 7.6Hz, 1H), 6.78 (t, J = 7.6Hz, 1H), 6.22 (d, J = 8.4 Hz, 1H), 6.07 (s, 1H), 5.90 (s, 1H), 5.26 (d, J =14.8 Hz,1H), 5.09 (d, J =14.4 Hz,1H), 2.36 (s, 3H). 13C-NMR (125 MHz, CDCl3) δ 140.81, 140.05, 138.74, 137.11, 132.24, 128.65, 128.52, 127.97, 127.79, 126.94, 126.78, 125.69, 124.79, 124.70, 124.12, 123.88, 122.54, 105.59, 85.00, 68.00, 21.40. LRMS (EI) m/z 325 (M+); HRMS (EI) m/z calcd C23H19NO (M+) 325.1467, found 325.1463
8-Chloro-2-methyl-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Gc). 1H-NMR (400 MHz, CDCl3) δ 7.32–7.25 (m, 4H), 7.23–7.21 (m, 2H), 7.08 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 1.6 Hz, 1H), 7.01 (s, 1H), 6.75 (dd, J = 8.8, 2.4 Hz, 1H), 6.13 (d, J = 8.8 Hz, 1H), 6.02 (s, 1H), 5.95 (s, 1H), 5.18 (d, J =14.8 Hz,1H), 5.04 (d, J =14.8 Hz,1H), 2.34 (s, 3H). 13C-NMR (125 MHz, CDCl3) δ 140.27, 138.87, 138.51, 136.68, 132.07, 129.69, 128.56, 128.21, 128.05, 127.60, 127.21, 126.58, 125.99, 124.95, 124.67, 124.23, 106.49, 85.14, 67.49, 21.41. LRMS (EI) m/z 359 (M+); HRMS (EI) m/z calcd C23H18ClNO (M+) 359.1077, found 359.1058.
2,8-Dimethyl-12-phenyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Gf). 1H-NMR (400 MHz, CDCl3) δ 7.31–7.28 (d, J = 8.0 Hz, 1H), 7.26–7.18 (m, 5H), 7.04 (d, J = 7.6 Hz, 1H), 6.99 (s, 1H), 6.85 (s, 1H), 6.59 (d, J = 7.6 Hz, 1H), 6.12 (d, J = 8.0 Hz, 1H), 6.04 (s, 1H), 5.81 (s, 1H), 5.25 (d, J = 14.8 Hz,1H), 5.06 (d, J = 14.8 Hz,1H), 2.36 (s, 3H), 2.24(s, 3H). 13C-NMR (125 MHz, CDCl3) δ 141.11, 138.76, 137.73, 137.30, 132.43, 132.29, 128.82, 128.52, 127.89, 127.69, 127.14, 126.73, 126.36, 125.10, 124.69, 124.08, 123.59, 104.46, 84.99, 68.06, 21.42, 20.87. LRMS (EI) m/z 339 (M+); HRMS (EI) m/z calcd C24H21NO (M+) 339.1623, found 339.1617.
2-Methyl-14-phenyl-4b,6-dihydronaphtho[2′,3′:4,5][1,3]oxazino[2,3-a]isoquinoline (3Gh). 1H-NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.4 Hz,1H), 7.54 (s, 1H), 7.42–7.36 (m, 3H), 7.27–7.25 (m, 6H), 7.10 (d, J = 7.6 Hz, 1H), 7.07 (s, 1H), 6.51 (s, 1H), 6.31 (s, 1H), 6.21 (s, 1H), 5.28 (d, J = 13.6 Hz, 1H), 5.22 (d, J = 14.0 Hz, 1H), 2.39 (s, 3H). 13C-NMR (125 MHz, CDCl3) δ 140.27, 138.34, 137.00, 136.43, 132.78, 132.32, 128.77, 128.33, 128.17, 128.10, 128.03, 127.60, 127.20, 126.88, 126.53, 125.76, 124.98, 124.87, 124.12, 123.19, 118.14, 109.99, 85.88, 67.63, 21.39. LRMS (EI) m/z 375 (M+); HRMS (EI) m/z calcd C27H21NO (M+) 375.1623, found 375.1617.
12-Hexyl-4b,6-dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinoline (3Ha). 1H-NMR (400 MHz, CDCl3) δ 7.35– 7.31 (m, 3H), 7.27–7.09 (m, 5H), 5.83(s, 1H), 5.75(s, 1H), 5.23 (d, J = 15.6 Hz, 1H), 5.00 (d, J = 15.2 Hz, 1H), 2.57–2.36 (m, 2H), 1.46–1.31 (m, 2H), 1.25–1.13 (m, 6H), 0.85 (t, J = 6.4 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 142.63, 140.91, 132.49, 130.91, 129.23, 127.63, 125.91, 125.31, 125.15, 125.00, 124.92, 124.85, 123.62, 100.42, 84.85, 67.74, 32.88, 31.52, 28.75, 27.57, 22.43, 14.02. LRMS (EI) m/z 319 (M+); HRMS (EI) m/z calcd C22H25NO (M+) 319.1936, found 319.1935.
12-Hexyl-8-iodo-4b,6-dihydrobenzo[4,5][1,3]oxa-zino[2,3-a]isoquinoline (3Hi). 1H-NMR (300 MHz, CDCl3) δ 7.54 (d, J =8.7 Hz, 1H), 7.43 (s, 1H), 7.34–7.27 (m, 2H), 7.19–7.10 (m, 2H), 6.92 (d, J = 8.4 Hz, 1H), 5.74 (s, 2H), 5.14 (d, J = 15.3 Hz,1H), 4.91 (d, J =15.9 Hz, 1H), 2.43–2.40 (m, 2H), 1.30–1.17 (m, 8H), 0.88–0.84 (m, 3H). 13C-NMR (125 MHz, CDCl3) δ 141.92, 140.66, 134.94, 134.27, 133.07, 132.26, 129.39, 127.60, 126.78, 125.19, 124.88, 123.77, 101.09, 84.83, 67.02, 32.73, 31.51, 28.74, 27.59, 22.46, 14.07. LRMS (EI) m/z 445 (M+); HRMS (EI) m/z calcd C22H24INO (M+) 445.0903, found 445.0905.
6-Phenyl-11b,13-dihydropyrido[2′,3′:4,5][1,3]oxa-zino[2,3-a]isoquinoline (3Aj). 1H-NMR (500 MHz, CDCl3) δ 7.81 (d, J = 5.5 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.36–7.28 (m, 6H), 7.26–7.19 (m, 3H), 6.71 (m, 1H), 6.34 (s, 1H), 6.23 (s, 1H), 5.09 (d, J = 14.0 Hz, 1H), 5.03 (d, J = 13.5 Hz, 1H). 13C-NMR (125 MHz, CDCl3) δ 150.45, 146.85, 139.24, 137.51, 132.44, 132.28, 129.63, 128.69, 128.04, 127.49, 127.06, 126.87, 124.91, 124.52, 121.24, 116.31, 111.25, 85.88, 66.45. LRMS (EI) m/z 312 (M+); HRMS (EI) m/z calcd C21H16N2O (M+) 312.1263, found 312.1260.
6-(4-Fluorophenyl)-11b,13-dihydropyrido[2′,3′:4,5][1,3]oxazino[2,3-a]isoquinoline (3Bj). 1H-NMR (400 MHz, CDCl3) δ 7.81 (dd, J = 4.8, 1.6 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.34–7.26 (m, 4H), 7.25–7.22 (m, 1H), 7.18 (dd, J = 7.6, 1.2 Hz, 1H), 6.94 (t, J = 8.8 Hz, 2H), 6.74–6.70 (q, 1H), 6.26 (s, 1H), 6.20 (s, 1H), 5.06 (d, J = 14.0 Hz, 1H), 5.04–4.98 (d, J = 14.0 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 150.19, 146.75, 138.22, 133.53, 132.39, 132.20, 129.38, 128.72, 128.65, 126.89, 124.70 (d, J = 25.6 Hz), 121.32, 116.46, 114.94 (d, J = 21.5 Hz), 110.90, 85.78, 66.37. LRMS (EI) m/z 330 (M+); HRMS (EI) m/z calcd C21H15FN2O (M+) 330.1168, found 330.1162.

4. Conclusions

In summary, an efficient strategy for the one-pot construction of dihydrobenzo[4,5][1,3]oxazino-[2,3-a]isoquinolines from simple starting substrates has been developed via an unprecedented Ag(I)-catalyzed N-aryliminium ion cyclization cascade. On the basis of a large assortment of bioactivities of fused isoquinolines, we believe that the new synthetic method will serve as valuable tool to efficiently construct new members fused isoquinoline derivatives in drug discovery, and will have potential biological applications.

Supplementary Materials

Supplementary materials can be accessed at: https://www.mdpi.com/1420-3049/18/1/814/s1.

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grants 20902022, 81102307, 21222211), the Natural Science Foundation of Shanghai, China (Grant 11ZR1444600), National S&T Major Project, China (Grant 2011ZX09102-005-02), the Shanghai Committee of Science and Technology (Grant 11DZ2260600), and the Fundamental Research Funds for the Central Universities.

References

  1. Parenty, A.D.; Smith, L.V.; Guthrie, K.M.; Long, D.L.; Plumb, J.; Brown, R.; Cronin, L. Highly stable phenanthridinium frameworks as a new class of tunable DNA binding agents with cytotoxic properties. J. Med. Chem. 2005, 48, 4504–4506. [Google Scholar] [CrossRef] [PubMed]
  2. Weinkauf, R.L.; Chen, A.Y.; Yu, C.; Liu, L.; Barrows, L.; LaVoie, E.J. Antineoplastic activity of benzimidazo[1,2-b]-isoquinolines, indolo[2,3-b]quinolines, and pyridocarbazoles. Bioorg. Med. Chem. 1994, 2, 781–786. [Google Scholar] [CrossRef]
  3. Chen, Z.; Wu, J. Efficient generation of biologically active H-pyrazolo[5,1-a]isoquinolines via multicomponent reaction. Org. Lett. 2010, 12, 4856–4859. [Google Scholar] [CrossRef] [PubMed]
  4. Iwasa, K.; Moriyasu, M.; Tachibana, Y.; Kim, H.S.; Wataya, Y.; Wiegrebe, W.; Bastow, K.F.; Cosentino, L.M.; Kozuka, M.; Lee, K.H. Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents. Bioorg. Med. Chem. 2001, 9, 2871–2884. [Google Scholar] [CrossRef]
  5. Reddy, M.V.; Rao, M.R.; Rhodes, D.; Hansen, M.S.; Rubins, K.; Bushman, F.D.; Venkateswarlu, Y.; Faulkner, D.J. Lamellarin alpha 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. J. Med. Chem. 1999, 42, 1901–1907. [Google Scholar] [CrossRef] [PubMed]
  6. Petrignet, J.; Boudhar, A.; Blond, G.; Suffert, J. Step-economical synthesis of taxol-like tricycles through a palladium-catalyzed domino reaction. Angew. Chem. Int. Ed. 2011, 50, 3285–3289. [Google Scholar] [CrossRef] [PubMed]
  7. Chen, J.R.; Li, C.F.; An, X.L.; Zhang, J.J.; Zhu, X.Y.; Xiao, W.J. Ru-catalyzed tandem cross-metathesis/intramolecular-hydroarylation sequence. Angew. Chem. Int. Ed. 2008, 47, 2489–2492. [Google Scholar] [CrossRef] [PubMed]
  8. Wasilke, J.C.; Obrey, S.J.; Baker, R.T.; Bazan, G.C. Concurrent tandem catalysis. Chem. Rev. 2005, 105, 1001–1020. [Google Scholar] [CrossRef] [PubMed]
  9. Velcicky, J.; Soicke, A.; Steiner, R.; Schmalz, H.G. Palladium-catalyzed cyanomethylation of aryl halides through domino Suzuki coupling-isoxazole fragmentation. J. Am. Chem. Soc. 2011, 133, 6948–6951. [Google Scholar] [CrossRef] [PubMed]
  10. Malakar, C.C.; Schmidt, D.; Conrad, J.; Beifuss, U. Cu(I)-catalyzed domino reactions: efficient and selective synthesis of 4H-chromenes and naphthalenes. Org. Lett. 2011, 13, 1972–1975. [Google Scholar] [CrossRef] [PubMed]
  11. Nanjo, T.; Tsukano, C.; Takemoto, Y. Palladium-catalyzed cascade process consisting of isocyanide insertion and benzylic C(sp3)-H activation: concise synthesis of indole derivatives. Org. Lett. 2012, 14, 4270–4273. [Google Scholar] [CrossRef] [PubMed]
  12. Magano, J.; Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 2011, 111, 2177–2250. [Google Scholar] [CrossRef] [PubMed]
  13. Kumar, K.S.; Kumar, P.M.; Reddy, M.A.; Ferozuddin, M.; Sreenivasulu, M.; Jafar, A.A.; Krishna, G.R.; Reddy, C.M.; Rambabu, D.; Kumar, K.S.; et al. Yb(OTf)3 catalyzed new cascade reaction: A facile assembly of fused quinazolinones. Chem. Commun. 2011, 47, 10263–10265. [Google Scholar] [CrossRef] [PubMed]
  14. Gigant, N.; Gillaizeau, I. Palladium(II)-catalyzed direct alkenylation of nonaromatic enamides. Org. Lett. 2012, 14, 3304–3307. [Google Scholar] [CrossRef] [PubMed]
  15. Patil, N.T.; Mutyala, A.K.; Konala, A.; Tella, R.B. Tuning the reactivity of Au-complexes in an Au(I)/chiral Bronsted acid cooperative catalytic system: an approach to optically active fused 1,2-dihydroisoquinolines. Chem. Commun. 2012, 48, 3094–3096. [Google Scholar] [CrossRef] [PubMed]
  16. Ouyang, H.C.; Tang, R.Y.; Zhong, P.; Zhang, X.G.; Li, J.H. CuI/I2-promoted electrophilic tandem cyclization of 2-ethynylbenzaldehydes with ortho-benzenediamines: Synthesis of iodoisoquinoline-fused benzimidazoles. J. Org. Chem. 2011, 76, 223–228. [Google Scholar] [CrossRef] [PubMed]
  17. Patil, N.T.; Mutyala, A.K.; Lakshmi, P.G.V.V.; Raju, P.V.K.; Sridhar, B. Facile Assembly of Fused Isoquinolines by Gold(I)-Catalyzed-Coupling Cyclization Reactions between o-Alkynylbenzaldehydes and Aromatic Amines Containing Tethered Nucleophiles. Eur. J. Org. Chem. 2010, 1999–2007. [Google Scholar] [CrossRef]
  18. Yanada, R.; Hashimoto, K.; Tokizane, R.; Miwa, Y.; Minami, H.; Yanada, K.; Ishikura, M.; Takemoto, Y. Indium(III)-catalyzed tandem reaction with alkynylbenzaldehydes and alkynylanilines to heteroaromatic compounds. J. Org. Chem. 2008, 73, 5135–5138. [Google Scholar] [CrossRef] [PubMed]
  19. Yanada, R.; Obika, S.; Kono, H.; Takemoto, Y. In(OTf)3-catalyzed tandem nucleophilic addition and cyclization of ortho-alkynylarylaldimines to 1,2-dihydroisoquinolines. Angew. Chem. Int. Ed. 2006, 45, 3822–3825. [Google Scholar] [CrossRef] [PubMed]
  20. Liu, G.; Zhou, Y.; Ye, D.; Zhang, D.; Ding, X.; Jiang, H.; Liu, H. Silver-Catalyzed Intramolecular Cyclization of o-(1-Alkynyl)benzamides: Efficient Synthesis of (1H)-Isochromen-1-imines. Adv. Synth. Catal. 2009, 351, 2605–2610. [Google Scholar] [CrossRef]
  21. Patil, N.T.; Pahadi, N.K.; Yamamoto, Y. Silver(I)-catalyzed novel cascade cyclization reactions: incorporation of allenes into the isochromenes. J. Org. Chem. 2005, 70, 10096–10098. [Google Scholar] [CrossRef] [PubMed]
  22. Blanc, A.; Tenbrink, K.; Weibel, J.M.; Pale, P. Silver(I)-catalyzed cascade: Direct access to furans from alkynyloxiranes. J. Org. Chem. 2009, 74, 4360–4363. [Google Scholar] [CrossRef] [PubMed]
  23. Su, S.; Porco, J.A., Jr. Synthesis of pyrrolo-isoquinolines related to the lamellarins using silver-catalyzed cycloisomerization/dipolar cycloaddition. J. Am. Chem. Soc. 2007, 129, 7744–7745. [Google Scholar] [CrossRef] [PubMed]
  24. Weibel, J.M.; Blanc, A.; Pale, P. Ag-mediated reactions: Coupling and heterocyclization reactions. Chem. Rev. 2008, 108, 3149–3173. [Google Scholar] [CrossRef] [PubMed]
  25. Huple, D.B.; Chen, C.H.; Das, A.; Liu, R.S. Silver-catalyzed exo-dig-azacyclization/[3+2] cycloaddition cascades on 1-tosylhydrazon-4-oxy-5-yne substrates: Applicability to diverse alkenes. Adv. Synth. Catal. 2011, 353, 1877–1882. [Google Scholar] [CrossRef]
  26. Li, W.; Wang, Y.; Lu, T. Facile synthesis of 1-aminoisoquinolines via the tandem reactions of 2-alkynylbenzaldoximes with isothiocyanates. Tetrahedron 2012, 68, 6843–6848. [Google Scholar] [CrossRef]
  27. Huang, P.; Yang, Q.; Chen, Z.; Ding, Q.; Xu, J.; Peng, Y. Metal cocatalyzed tandem alkynylative cyclization reaction of in situ formed N-iminoisoquinolinium ylides with bromoalkynes via C–H bond activation. J. Org. Chem. 2012, 77, 8092–8098. [Google Scholar] [CrossRef] [PubMed]
  28. Rustagi, V.; Aggarwal, T.; Verma, A.K. Highly efficient Ag(I)-catalyzed regioselective tandem synthesis of diversely substituted quinoxalines and benzimidazoles in water. Green Chem. 2011, 13, 1640–1643. [Google Scholar] [CrossRef]
  29. Rustagi, V.; Tiwari, R.; Verma, A.K. AgI-Catalyzed Cascade Strategy: Regioselective Access to Diversely Substituted Fused Benzimidazo[2,1-a]isoquinolines, Naphthyridines, Thienopyridines, and Quinoxalines in Water. Eur. J. Org. Chem. 2012, 4590–4602. [Google Scholar] [CrossRef]
  30. Yu, X.X.; Yang, Q.; Lou, H.L.; Peng, Y.Y.; Wu, J. An efficient approach to pyrazolo[5,1-a]isoquinolin-2-amines via a silver(I)-catalyzed three-component reaction of 2-alkynylbenzaldehyde, sulfonohydrazide, and nitrile. Org. Biomol. Chem. 2011, 9, 7033–7037. [Google Scholar] [CrossRef] [PubMed]
  31. Markina, N.A.; Mancuso, R.; Neuenswander, B.; Lushington, G.H.; Larock, R.C. Solution-Phase Parallel Synthesis of a Diverse Library of 1,2-Dihydroisoquinolines. ACS Comb. Sci. 2011, 13, 265–271. [Google Scholar] [CrossRef] [PubMed]
  32. Ding, Q.P.; Wu, J. Lewis acid- and organocatalyst-cocatalyzed multicomponent reactions of 2-alkynylbenzaldehydes, amines, and ketones. Org. Lett. 2007, 9, 4959–4962. [Google Scholar] [CrossRef] [PubMed]
  33. Yu, X.X.; Wu, J. Synthesis of 1-(1H-Indol-3-yl)-1,2-dihydroisoquinolines via AgOTf-Catalyzed Three-Component Reactions of 2-Alkynylbenzaldehydes, Amines, and Indoles. J. Comb. Chem. 2010, 12, 238–244. [Google Scholar] [CrossRef] [PubMed]
  34. Asao, N.; Yudha, S.S.; Nogami, T.; Yamamoto, Y. Direct Mannich and nitro-Mannich reactions with non-activated imines: AgOTf-catalyzed addition of pronucleophiles to ortho-alkynylaryl aldimines leading to 1,2-dihydroisoquinolines. Angew. Chem. Int. Ed. 2005, 44, 5526–5528. [Google Scholar] [CrossRef] [PubMed]
  35. Liu, G.N.; Zhou, Y.; Lin, D.Z.; Wang, J.F.; Zhang, L.; Jiang, H.L.; Liu, H. Synthesis of Pyrrolo[1,2-a]quinoxalines via Gold(I)-Mediated Cascade Reactions. ACS Comb. Sci. 2011, 13, 209–213. [Google Scholar] [CrossRef] [PubMed]
  36. Zhou, Y.; Li, J.; Ji, X.; Zhou, W.; Zhang, X.; Qian, W.; Jiang, H.; Liu, H. Silver- and gold-mediated domino transformation: A strategy for synthesizing benzo[e]indolo[1,2-a]pyrrolo/pyrido[2,1-c][1,4]diazepine-3,9-diones. J. Org. Chem. 2011, 76, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
  37. Feng, E.; Zhou, Y.; Zhang, D.; Zhang, L.; Sun, H.; Jiang, H.; Liu, H. Gold(I)-catalyzed tandem transformation: A simple approach for the synthesis of pyrrolo/pyrido[2,1-a][1,3]benzoxazinones and pyrrolo/pyrido[2,1-a]quinazolinones. J. Org. Chem. 2010, 75, 3274–3282. [Google Scholar] [CrossRef] [PubMed]
  38. Feng, E.G.; Zhou, Y.; Zhao, F.; Chen, X.J.; Zhang, L.; Jiang, H.L.; Liu, H. Gold-catalyzed tandem reaction in water: An efficient and convenient synthesis of fused polycyclic indoles. Green Chem. 2012, 14, 1888–1895. [Google Scholar] [CrossRef]
  39. Zhou, Y.; Feng, E.G.; Liu, G.N.; Ye, D.J.; Li, J.; Jiang, H.L.; Liu, H.; Liu, G. Gold-Catalyzed One-Pot Cascade Construction of Highly Functionalized Pyrrolo[1,2-a]quinolin-1(2H)-ones. J. Org. Chem. 2009, 74, 7344–7348. [Google Scholar] [CrossRef] [PubMed]
  40. Zhou, Y.; Zhai, Y.; Ji, X.; Liu, G.N.; Feng, E.G.; Ye, D.J.; Zhao, L.X.; Jiang, H.L.; Liu, H. Gold(I)-Catalyzed One-Pot Tandem Coupling/Cyclization: An Efficient Synthesis of Pyrrolo-/Pyrido[2,1-b]benzo[d][1,3]oxazin-1-ones. Adv. Synth. Catal. 2010, 352, 373–378. [Google Scholar] [CrossRef]
  41. Zhou, Y.; Ji, X.; Liu, G.N.; Zhang, D.Y.; Zhao, L.X.; Jiang, H.L.; Liu, H. Gold(I)-Catalyzed Cascade for Synthesis of Pyrrolo[1,2-a:2′,1′-c]-/Pyrido[2,1-c]pyrrolo[1,2-a]quinoxalinones. Adv. Synth. Catal. 2010, 352, 1711–1717. [Google Scholar] [CrossRef]
  42. Waldmann, H.; Eberhardt, L.; Wittstein, K.; Kumar, K. Silver catalyzed cascade synthesis of alkaloid ring systems: Concise total synthesis of fascaplysin, homofascaplysin C and analogues. Chem. Commun. 2010, 46, 4622–4624. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of all target compounds are available from the authors.
Scheme 1. A plausible mechanism.
Scheme 1. A plausible mechanism.
Molecules 18 00814 sch001
Figure 1. X-ray crystallographic structure of 3Aa.
Figure 1. X-ray crystallographic structure of 3Aa.
Molecules 18 00814 g001
Table 1. Optimization of the reaction conditions a.
Table 1. Optimization of the reaction conditions a.
Molecules 18 00814 i001
EntryCatalyst system bSolventTemp (°C)Yield (%)
1AuCl(PPh3)Toluene10075
2AuClToluene10049
3Au catalyst IToluene10058
4Au catalyst IIToluene10028
5AgOOCCF3Toluene10060
6AgNO3Toluene10093
7AgBF4Toluene10057
8AgOTfToluene10092
9AgNO3MeOHreflux77
10AgNO3THFreflux60
11AgNO3DMF10071
12AgNO3DMSO10092
13AgNO3CH3CNreflux87
14AgNO3Dioxane10083
15AgNO3Toluene8094
16AgNO3DMSO8075
17AgNO3CH3CN8078
18AgNO3Dioxane8077
19AgNO3Toluene5065
20AgNO3TolueneRT30
21AgNO3Toluene8094 c
a 1A (0.1 mmol), 2a (0.2 mmol) and catalyst (5 mol%) in the specified solvent (2 mL) were reacted in a sealed vial; b Au catalyst I = (acetonitrile)[(2-biphenyl)di-tert-butylphosphine]gold (I) hexafluoroantimonate; Au catalyst II = 2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-biphenyl gold(I) bis(trifluoromethane-sulfonyl)imide; c 1.2 eqv. of 2a was used.
Table 2. Silver-mediated one-pot domino synthesis of target compounds 3 a.
Table 2. Silver-mediated one-pot domino synthesis of target compounds 3 a.
Molecules 18 00814 i002
EntryProduct Yield (%)EntryProduct Yield (%)
1 Molecules 18 00814 i0033Aa9418 Molecules 18 00814 i0043Df65
2 Molecules 18 00814 i0053Ab9219 Molecules 18 00814 i0063Dh70
3 Molecules 18 00814 i0073Ac8520 Molecules 18 00814 i0083Ea87
4 Molecules 18 00814 i0093Ad8121 Molecules 18 00814 i0103Ec85
5 Molecules 18 00814 i0113Ae7722 Molecules 18 00814 i0123Ee68
6 Molecules 18 00814 i0133Bb8523 Molecules 18 00814 i0143Fa90
7 Molecules 18 00814 i0153Bd8224 Molecules 18 00814 i0163Fc70
8 Molecules 18 00814 i0173Be6925 Molecules 18 00814 i0183Fe85
9 Molecules 18 00814 i0193Bf6826 Molecules 18 00814 i0203Ff45
10 Molecules 18 00814 i0213Bg6527 Molecules 18 00814 i0223Ga90
11 Molecules 18 00814 i0233Ca8828 Molecules 18 00814 i0243Gc77
12 Molecules 18 00814 i0253Cc8229 Molecules 18 00814 i0263Gf85
13 Molecules 18 00814 i0273Cd8030 Molecules 18 00814 i0283Gh55
14 Molecules 18 00814 i0293Da9731 Molecules 18 00814 i0303Ha82
15 Molecules 18 00814 i0313Dc7632 Molecules 18 00814 i0323Hi80
16 Molecules 18 00814 i0333Dd8033 Molecules 18 00814 i0343Aj47
17 Molecules 18 00814 i0353De7534 Molecules 18 00814 i0363Bj45
a 1A (0.1 mmol), 2a (0.12 mmol) and catalyst (5 mol%) in toluene (2 mL) were perfomed in a sealed vial.

Share and Cite

MDPI and ACS Style

Jiang, B.; Zhou, Y.; Kong, Q.; Jiang, H.; Liu, H.; Li, J. ‘One-pot’ Synthesis of Dihydrobenzo[4,5][1,3]oxazino[2,3-a] isoquinolines via a Silver(I)-Catalyzed Cascade Approach. Molecules 2013, 18, 814-831. https://doi.org/10.3390/molecules18010814

AMA Style

Jiang B, Zhou Y, Kong Q, Jiang H, Liu H, Li J. ‘One-pot’ Synthesis of Dihydrobenzo[4,5][1,3]oxazino[2,3-a] isoquinolines via a Silver(I)-Catalyzed Cascade Approach. Molecules. 2013; 18(1):814-831. https://doi.org/10.3390/molecules18010814

Chicago/Turabian Style

Jiang, Baifeng, Yu Zhou, Qingya Kong, Hualiang Jiang, Hong Liu, and Jian Li. 2013. "‘One-pot’ Synthesis of Dihydrobenzo[4,5][1,3]oxazino[2,3-a] isoquinolines via a Silver(I)-Catalyzed Cascade Approach" Molecules 18, no. 1: 814-831. https://doi.org/10.3390/molecules18010814

Article Metrics

Back to TopTop