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Abstract: We newly developed lithium methyltriolborate as an air-stable white solid that  

is convenient to handle. The good performance of this triolborate for metal-catalyzed  

bond-forming reactions was demonstrated in palladium-catalyzed cross-coupling reactions 

with haloarenes. Cross-coupling reaction of [MeB(OCH2)3CCH3]Li with aryl halides 

occurred in the presence of Pd(OAc)2/RuPhos complex in refluxing MeOH/H2O and the 

absence of bases. 
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1. Introduction 

Over the past three decades, it has become increasingly clear that organoboron compounds are 

valuable reagents capable of undergoing many catalytic C-C bond formations in organic synthesis [1–6]. 

Boronic acids are convenient reagents that are generally thermally stable and are inert to water and 

oxygen, and it is easy to remove the inorganic by-products from the reaction mixture, making the 

reactions suitable for industrial processes. Since the first report in 1986 of the cross-coupling reaction 

between alkylboron reagents and aryl and alkenyl halides in the presence of a palladium catalyst and a 

base [7], B-alkyl cross-coupling has been frequently used in organic synthesis. Classically, alkylboron 

reagents have been synthesized from the corresponding alkyllithium or alkylmagnesium compounds  

by transmetalation with trialkoxyboranes [8]. Similarly, organometallic reagents were trapped with  

9-methoxy-9-borabicyclo[3.3.1]nonane (B-MeO-9-BBN) to produce the corresponding alkylborinate 
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complexes [9]. Primary alkylboron reagents are easily synthesized by hydroboration of terminal alkenes 

in a highly chemo-, regio-, and stereoselective manner. Methylboronic acid, methylboroxine [10–16], 

and B-methyl-9-borabicylco[3.3.1]nonane (B-Me-9-BBN) [17,18] can also be employed as coupling 

partners. However, coupling of a methyl group with various organic halides is less than ideal. Boronic 

acids are sometimes difficult to purify due to the lack of crystallization or the formation of trimeric 

cyclic anhydrides (boroxines). For this reason, determination of the stoichiometry of the boronic acid 

to be used in the reaction is difficult. In addition, cross-coupling of alkylboronic acids is complicated 

by protodeboronation and, as a result, excess boronic acids are used in the reaction for complete 

consumption of electrophiles. A recent advance is the use of methylboron reagents, such as  

MeLi/B-MeO-9-BBN [19], 10-methyl-9-oxa-10-borabicyclo[3.3.1]decane [20,21] and MeBF3K [22–27], 

for methylation of aryl compounds. However, the use of large amounts of a base, especially a strong 

base, may be a major limitation for these applications [28]. The development of an efficient, mild and 

operationally simple catalyst system that does not require the use of large amounts of a base remains a 

challenge and has becomes an urgent issue. 

Recently, we have developed aryltriolborates [ArB(OCH2)3CCH3]M (M = Li, Na, K, and NBu4), 

that have good stability in air and water and high solubility in organic solvents and that undergo very 

smooth transmetalation to various transition metal complexes [29,30]. High performance for bond-forming 

reactions was demonstrated in palladium-catalyzed cross-coupling reactions [29–35], copper-catalyzed 

N-arylation [36] and rhodium-catalyzed asymmetric addition reactions [37–39]. We describe herein 

lithium methyltriolborate that is exceptionally stable in air and water. We also demonstrate the high 

transmetalation efficiency of triolborate in palladium-catalyzed C-C bond-forming reaction. 

2. Results and Discussion 

We developed a method for synthesis of lithium methyltriolborate. It was synthesized by 

methylation of B(OiPr)3 with MeLi followed by removal of i-PrOH through ester exchange with  

1,1,1-tris(hydroxymethyl)ethane (Scheme 1). By using this protocol, [MeB(OCH2)3CCH3]Li was 

obtained in high yield as an air-stable white solid (97%). Triolborate is a bench-stable ate-complex that 

can be handled and stored without special precautions. 

Scheme 1. Synthesis of lithium methyltriolborate. 
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Next, we chose 4-bromobiphenyl to examine its efficiency toward cross-coupling reaction. The 

yields were highly sensitive to palladium complexes and phosphine ligands in the cross-coupling 

reaction between 4-bromobiphenyl and lithium methyltriolborate (Table 1). 

Table 1. Effect of ligands a. 

O B-
O

O

Me

Li+

Br +

Pd catalyst
ligand

MeOH/H2O (5/1)
80 °C, 22 h

1.5 equiv  

 

Entry Pd catalyst (mol%) Ligand (mol%) Yield (%) b 

1 Pd(dba)2 (3) SPhos (6) 35 
2 PdCl2 (3) SPhos (6) 59 
3 PdCl2(PPh3)2 (3) SPhos (6) 67 
4 PdCl2(PhCN)2 (3) SPhos (6) 66 
5 PdCl2(cod) (3) SPhos (6) 49 
6 Pd(OAc)2 (3) SPhos (6) 71 
7 Pd(OAc)2 (3) RuPhos (6) >99 
8 Pd(OAc)2 (3) BrettPhos (6) 70 
9 Pd(OAc)2 (3) XPhos (6) 6 

10 Pd(OAc)2 (3) CyJohnPhos (6) 22 
11 Pd(OAc)2 (3) JohnPhos (6) 3 
12 Pd(OAc)2 (3) PCy3 (6) 6 
13 Pd(OAc)2 (3) dppp (3) 47 
14 Pd(OAc)2 (3) dppb (3) 59 
15 Pd(OAc)2 (3) dppf (3) 45 
16 Pd(OAc)2 (3) dtbpf (3) 21 
17 Pd(OAc)2 (3) DPEphos (3) 44 
18 Pd(OAc)2 (3) none 6 

a Reaction conditions: A mixture of 4-bromobiphenyl (1 equiv), lithium methylborate (2 equiv), palladium 

catalyst (3 mol%) and ligand (3 or 6 mol%) in MeOH/H2O (2.5 mL/0.5 mL) at 80 °C for 22 h; b GC yield. 

When Pd(dba)2 was used, the yield was 35% (entry 1). The use of Pd(OAc)2 gave the best results 

(entry 6), but palladium chloride complexes such as PdCl2, PdCl2(PhCN)2, PdCl2(PPh3)2 and 

PdCl2(cod) resulted in yields of 59%, 66%, 67% and 49%, respectively (entries 2–5). 
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Among phosphine ligands screened for optimizations, RuPhos was found to be best ligand to 

achieve quantitative yield (entry 7). The use of Brettphos gave a methylation product as in the case of 

SPhos (entry 8). Other monodentate ligands such as Johnphos, XPhos and PCy3 resulted in low yields 

(entries 9–12). Next, we screened bidentate ligands, and coupling products were obtained in moderate 

yields (entries 13–17). Furthermore, we optimized the reaction conditions (Table 2). The reaction 

proceeded smoothly in aqueous MeOH but was very slow in other solvents, such as aqueous THF, 

toluene, dioxane and DMF (Table 2, entries 1–5). In addition, only water was not effective (entry 8). 

By further investigations of reaction time (entries 1 and 9–11), amounts of Pd(OAc)2 and RuPhos 

(entries 1, 12, and 13) and temperature (entries 1 and 14), a methylated product was finally obtained in 

94% yield using 1 mol% Pd(OAc)2/2 mol% RuPhos with MeOH/H2O as a solvent at 80 °C for 12 h 

(entry 13). The yields were low when 1.1 or 1.3 equivalents of boronic acid were used (52% or 83%), 

but they were increased to practical levels in the presence of 1.5–2.0 equivalents of boronic acid. 

Table 2. Optimaization of methylation by lithium methyltriolborate a. 

O B-
O

O

Me

Li+

Br +

Pd(OAc)2 (X mol%)
RuPhos (Y mol%)

solvent

1.5 equiv  
Entry Solvent X (mol%) Y (mol%) Time (h) Temp. (°C) Yield (%) b 

1 MeOH/H2O (5/1) 3 6 22 80 >99 
2 THF/H2O (5/1) 3 6 22 80 35 
3 1,4-dioxane/H2O (5/1) 3 6 22 80 48 
4 toluene/H2O (5/1) 3 6 22 80 17 
5 DMF/H2O (5/1) 3 6 22 80 63 
6 MeOH 3 6 22 80 80 
7 EtOH 3 6 22 80 79 
8 H2O 3 6 22 80 9 
9 MeOH/H2O (5/1) 3 6 12 80 >99 

10 MeOH/H2O (5/1) 3 6 6 80 86 
11 MeOH/H2O (5/1) 3 6 1 80 61 
12 MeOH/H2O (5/1) 2 4 12 80 >99 
13 MeOH/H2O (5/1) 1 2 12 80 >99 (94 c) 
14 MeOH/H2O (5/1) 1 2 12 60 90 

a Reaction conditions: A mixture of 4-bromobiphenyl (1 equiv), lithium methylborate (2 equiv), Pd(OAc)2 

and RuPhos; b GC yield; c Isolated yield. 

Scope and Limitation 

Under the optimized reaction conditions, the scope for representative aryl halides is summarized in 

Table 3. Quantitative conversions resulting in over 80% yields were easily realized at 80 °C in the 

presence of Pd(OAc)2 (1 mol%) and RuPhos (2 mol%). 2-Naphthyliodide showed a slight decrease in 

reactivity compared to the corresponding bromide and chloride (entries 6–8). It was also interesting 

that the steric hindrance of ortho-substituents did not affect the yields (entries 10–12).  
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Table 3. Cross-coupling between lithium methyltriolborate and aryl halides a. 

O B-
O

O

Me

Li+

X +

Pd(OAc)2 (1 mol%)
RuPhos (2 mol%)

MeOH/H2O (5/1)
80 °C, 12 h

2 equiv

FG FG

X = Cl, Br, I
 

Entry Substrate Yield (%) b Entry Substrate Yield (%) b

1 Br
 

94 c 9 ClO2N
 

50 e 

2 Br
O

 
95 10 

Br

OMe

 

96 

3 
O Br

 

81 11 

Br

Me

 

88 

4 
Br

MeO  
>99 12 Br

 

86 

5 
Br Br

 
88 d 13 

Br

NC
 

88 

6 
Br

 
96 14 

Br

H3CO2C

 

72 

7 
I

 
77 15 

O
Br

H3CO2C

 
66 

8 
Cl

 
94 16 S

Br

O

 

64 

a Reaction conditions: A mixture of aryl halides (1 equiv), lithium methylborate (2 equiv), Pd(OAc)2  

(1 mol%) and RuPhos (2 mol%) in MeOH/H2O (2.5 mL/0.5 mL) was stirred at 80 °C for 12 h; b Isolated 

yield; c Lithium methyltriolborate (1.5 eq.) was used; d Lithium methyltriolborate (4 eq.), Pd(OAc)2 (2 mol%) 

and RuPhos (4 mol%) were used; e 4-methoxy-nitrobenzene (26%) was formed. 

The use of 1-bromo-2-methoxynaphthalene, 1-bromo-2-methylnaphthalene and 2-bromo-1,3,5-

trimethylbenzene resulted in yields of 96%, 88% and 86%, respectively. The reaction is highly 

sensitive to electron density of halides. For example, the methylation of furyl and thienyl halides 

results in low yields (entries 14 and 15). 

3. Experimental 

3.1. General 

1H-NMR spectra were recorded on a JEOL ECX-400 (400 MHz) in CDCl3 with tetramethylsilane 

as an internal standard. Chemical shifts are reported in part per million (ppm), and signal are expressed 

as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). 13C-NMR spectra were 



Molecules 2013, 18 435 

 

 

recorded on a JEOL ECX-400 (100 MHz) in CDCl3 (δC = 77.0) with tetramethylsilane as an internal 

standard. 11B NMR spectra was recorded on a JEOL ECX-400 (128 MHz) with BF3·OEt2 as an 

external standard. Chemical shifts are reported in part per million (ppm). Kanto Chemical silica gel 

60N (particle size 0.063–0.210 mm) was used for flash column chromatography. All reactions were 

conducted under an atmosphere of nitrogen. Glassware was oven dried at 130 °C and allowed to cool 

under a stream of dry nitrogen. All chemicals were purchased from Aldrich, Wako, TCI, or Kanto 

Chemicals and used as received. 

3.2. A Preparation of Lithium Methyltriolborate 

MeLi (50 mmol) in ether was added to a solution of triisopropoxyborane (50 mmol) in ether  

(100 mL) at −78 °C. The resulting mixture was stirred for 30 min at −78 °C, then allowed to warm to 

room temperature and was stirred for 8 h. 1,1,1-tris(hydroxymethyl)ethane (50 mmol) was then added 

in one portion, and the resulting mixture was stirred at 60 °C for 1 h. The mixture is poured into 1 L of 

acetone. The solid product is isolated by filtration, washed with acetone and dried under vacuum to afford 

7.3 g (97%) of lithium methyltriolborate as a white solid. 1H-NMR (DMSO-d6) δ = 3.40 (s, 6H), 0.37 

(s, 3H), −0.75 (s, 3H); 13C-NMR (DMSO-d6) δ = 73.5, 34.5, 16.9, 6.54; 11B NMR (DMSO-d6) δ = 1.44. 

3.3. General Procedure for Cross-Coupling with Lithium Methyltriolborate 

Palladium acetate (1 mol%) and RuPhos (2 mol%) were placed in a flask under an atmosphere of 

nitrogen. MeOH/H2O (2.5 mL/0.5 mL) was added, and then the mixture was stirred for 30 min at room 

temperature. After addition of lithium methyltriolborate (1 mmol) and aryl halide (0.5 mmol), the 

mixture was heated at 80 °C for 12 h. After cooling to room temperature, the product was extracted with 

benzene, and dried over anhydrous MgSO4. The desired product was purified by column chromatography 

on silica gel. 

4-Methylbiphenyl (entry 1): 1H-NMR (CDCl3) δ = 7.58 (d, J = 7.25 Hz, 2H), 7.49 (d, J = 8.15 Hz, 2H), 

7.42 (d, J = 8.15 Hz, 1H), 7.42 (t, J = 7.48 Hz, 2H), 7.32 (t, J = 7.48 Hz, 1H), 7.25 (d, J = 8.15 Hz, 

2H), 2.40 (s, 3H). 

p-Methylacetophenone (entry 2): 1H-NMR (CDCl3) δ = 7.82 (d, J = 8.15 Hz, 2H), 7.22 (d, J = 8.15 Hz, 

2H), 2.54 (s, 3H), 2.37 (s, 3H). 

1-Methyl-4-phenoxybenzene (entry 3): 1H-NMR (CDCl3) δ = 7.33 (t, J = 8.07 Hz, 2H), 7.16 (d,  

J = 8.25 Hz, 2H), 7.09 (t, J = 7.53 Hz, 1H), 7.01 (d, J = 7.89 Hz, 2H), 6.95 (d, J = 8.61 Hz, 2H), 2.36 

(s, 3H). 

2-Methoxy-6-methylnaphthalene (entry 4): 1H-NMR (CDCl3) δ = 7.70 (d, J = 9.06 Hz, 2H), 7.59  

(s, 1H), 7.34 (dd, J = 1.81, 8.61 Hz, 1H), 7.19 (dd, J = 2.72, 8.83 Hz, 1H), 7.15 (d, J = 2.27 Hz, 1H), 

3.94 (s, 3H), 2.53 (s, 3H). 

2,7-Dimethylnaphthalene (entry 5): 1H-NMR (CDCl3) δ = 7.76 (d, J = 8.61 Hz, 2H), 7.58 (s, 2H), 7.31 

(dd, J = 1.36, 8.38 Hz, 2H), 2.56 (s, 3H). 
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2-Methylnaphthalene (entries 6–8): 1H-NMR (CDCl3) δ = 7.82–7.72 (m, 3H), 7.67 (s, 1H), 7.51–7.40 

(m, 2H), 7.33 (d, J = 8.15 Hz, 1H), 2.57 (s, 3H). 

1-Methyl-4-nitrobenzene (entry 9): 1H-NMR (CDCl3) δ = 8.10 (d, J = 8.61 Hz, 2H), 7.31 (d, J = 8.61 Hz, 

2H), 2.45 (s, 3H). 

2-Methoxy-1-methylnaphthalene (entry 10): 1H-NMR (CDCl3) δ = 8.03 (d, J = 7.89 Hz, 1H), 7.86 (d,  

J = 8.25 Hz, 1H), 7.78 (d, J = 8.97 Hz, 1H), 7.56 (ddd, J = 1.43, 6.82, 8.32 Hz, 1H), 7.43 (ddd, J = 1.08, 

6.67, 7.44 Hz, 1H), 7.32 (d, J = 8.97 Hz, 1H), 3.99 (s, 3H), 2.65 (s, 3H). 

1,2-Dimethylnaphthalene (entry 11): 1H-NMR (CDCl3) δ = 8.08 (d, J = 8.61 Hz, 1H), 7.85 (d, J = 7.89 

Hz, 1H), 7.67 (d, J = 8.25 Hz, 1H), 7.54 (ddd, J = 1.43, 6.82, 8.34 Hz, 1H), 7.46 (t, J = 6.82 Hz, 1H), 

7.35 (d, J = 8.25 Hz, 1H), 2.65 (s, 3H), 2.54 (s, 3H). 

1,2,3,5-Tetramethylbenzene (entry 12): 1H-NMR (CDCl3) δ = 6.88 (s, 2H), 2.29 (s, 9H), 2.18 (s, 3H). 

2'-Methylbiphenyl-4-carbonitrile (entry 13): 1H-NMR (CDCl3) δ = 7.72–7.68 (m, 3H), 7.44–7.41  

(m, 2H), 7.32–7.25 (m, 2H), 7.19 (d, J = 7.17 Hz, 1H), 2.26 (s, 3H). 

Methyl 3-methylbenzoate (entry 14): 1H-NMR (CDCl3) δ = 7.85–7.82 (m, 2H), 7.36–7.29 (m, 2H), 

3.89 (s, 3H), 2.38 (s, 3H). 

Methyl 5-methylfuran-2-carboxylate (entry 15): 1H-NMR (CDCl3) δ = 7.05 (d, J = 3.59 Hz, 1H), 6.08 

(d, J = 3.23 Hz, 1H), 2.34 (s, 3H). 

2-Acetyl-5-methylthiophene (entry 16): 1H-NMR (CDCl3) δ = 7.48 (d, J = 3.59 Hz, 1H), 6.76 (dd, J = 1.08, 

3.77 Hz, 1H), 2.50 (s, 3H), 2.41 (s, 3H). 

4. Conclusions 

In summary, we have demonstrated the efficiency of lithium methyltriolborate for methylation of 

aryl halides. This borate showed several advantages over boronic acid, including high nucleophilicity 

of methyl groups for smooth transmetalation to a palladium catalyst. Since the use of a base is avoided, 

a variety of functional groups may be accommodated in this reaction system. 
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