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Abstract: The density functional theory calculations of 7-methylguanine clusters revealed 

that stable ring assemblies can be formed with or without anions in the center position and 

hexameric clusters are the most stable and most planar ones. The coordination of anions 

(Cl−, Br−, NO3
−) stabilizes and thus favors the formation of planar aggregates. We believe 

that the predicted planar structures stabilized by anions are good models for self-assembly 

structures formed at solid-liquid or solid-gas interfaces. Comparing the bonding and average 

H-bond energy to reference ribbon calculations we pointed out the presence of the previously 

introduced cooperativity effect in circular supramolecular structures of 7-methylguanine. 
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1. Introduction 

Higher-order structures based on self-recognition and self-assembly available for simpler molecules 

are of prime interest in a wide range of research fields starting from structural biology to medicinal 

chemistry as well as from supramolecular chemistry to nanotechnology. The ability of supramolecular 

systems to include different molecules, cations and/or anions has long been a flourishing area in this 

field [1]. The inclusion complexes featuring cations have been pioneered by Pedersen, Cram and Lehn 

by the introduction of crown complexes and cryptands. Anion complexation studies have been lagging 

behind those of cations due to some inherent problems (large size, various shapes, solvation effects, 

narrow pH window, coordinative saturation, etc.) [2]. Nonetheless, more and more investigations are 

directed towards this area of research [3–7]. 

Nucleic acid self-assembly in the form of various strands (duplexes and triplexes), knots, nucleic 

acid-metal ion complexes, tetrads and their stacks (quadruplexes) has long been known. The 2D  

self-assembly of different nucleobase derivatives on surfaces has also been the subject of several 

studies (e.g., [8–10]). It has been demonstrated, e.g., that infinite ribbons and discrete (although 

interconnected) tetramers of 9-octadecylguanine with cation binding can exist under different 

conditions and these structures can be interconverted into each other [11]. Further interesting 

representative of supramolecular structures are the quadruplexes, primarily based on guanine (G) 

nucleobase in the telomerase region of the chromosome. Although (oligo)nucleotides or other  

9-substituted derivatives of guanine are primary targets of several investigations (see e.g., [12]),  

7-substituted derivatives have been less investigated. Eukaryotic messenger RNAs are modified at 

their 5'-ends by addition of a 7-methylguanosine attached by a 5'-5' triphosphate bridge to the first 

nucleotide of the mRNA chain. This cap structure, m7G(5')ppp(5')X (X = any nucleoside), plays a 

pivotal role in mRNA metabolism, including mRNA transport between the nucleus and the cytoplasm, 

control of mRNA stability, involving various cap binding proteins [13]. 7-Substituted guanine-

containing peptide nucleic acid oligomers are also able to form N7-G*G:C base triplets [14].  

In addition, the N7-coordination of guanine residues by platinum complexes has been found to be the 

primary mode of action of platinum anticancer drugs [15]. 

We also found that the self-assembly of methylguanines has received little attention so far.  

Bald et al. [16] have found that 2D-self-assembled nanostructures can be formed from guanine and its 

1-, 8- and 9-methyl derivatives, respectively. In particular, 1-methylguanine forms windmill structures, 

8-methylguanine forms hexagonal networks, guanine and 9-methylguanine form 2D ribbons. The 

effect of DNA nucleobase methylation is threefold: (i) hydrogen-bonding sites are directly blocked, 

preventing the formation of particular binding motifs, such as Watson–Crick base pairing; (ii) the 

strength of intermolecular hydrogen bonds may be modified upon methylation; (iii) an important 

driving force for 2D self-assembly–cooperative hydrogen bonding–is strongly influenced by the 

network structure and thus the methylation position. 

It is important to emphasize that Bald et al. paid special attention to keep free the traditional 

Watson–Crick and Hoogsten pair connection points in the different methylation patterns of guanine [16]. 

However, in a brief paper Guille and Clegg [17] obtained small anhydrous guanine crystal with  

7H tautomeric form and not the usual 9H one that is found in monohydrated guanine. The crystal of 
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7H-guanine showed interesting H-bond pattern forming planar sheets, wherein molecules created 

infinite chains by a triple hydrogen-bonding motif. 

A very similar system to Guille and Clegg’s work was investigated by Lippert et al. [18]. The  

self-assembling capacity of protonated 7-methylguanine (Hm7G+) salts (with different counter ions) 

and m7G–Pt complexes were reported by X-ray experiments. Three counter ions were applied and in 

case of NO3
− ion almost perfect parallel sheets were found, similarly to Guille and Clegg’s results. 

However, the bonding pattern of the ribbons in the sheet differs from those which are based on neutral 

7H-guanine molecules because of the strong influence by the presence of the anion. Interestingly, none 

of these works concerned the ring forming capacity of the monomer, however, the tetrameric ring 

structure in quadruplexes formed by 9-substituted guanines has been very intensively examined as 

mentioned before [12]. 

Anion binding capacity of self-assembling nucleobase tetramers has also been less studied. Only a 

few paper can be found in the literature describing the participation of anions in the stabilization of 

quadruplexes by anions in lateral positions [19] and according to our knowledge Bickelhaupt et al. [20] 

were the first who have shown theoretically that quartets formed by natural nucleobase can bind 

halogen anions in the center of their structure. 

The ring forming ability of 7-methylguanine (m7G) has not been examined before, so we 

investigated herein theoretically the self-assembly capacity of this molecule with special attention to 

the ring forming possibility on surface. Since planar ribbon structures have been observed with  

7H-guanine, we apply the ribbon motif as a reference system. In Figure 1 we present m7G and  

9-methylguanine (m9G) for comparison, where arrows indicate the direction of H-bonds in  

self-assembled ring structures. 

Figure 1. (a) The 7-methyl (m7G) and (b) the 9-methyl (m9G) substituted forms of guanine 

with optimal H-bonding directions in ring formation. 

 
(a) m7G   (b) m9G 

It is clear that the angle between the optimal donor and acceptor directions is quite different in the 

two cases. For m7G it is definitely larger than 90°, while in m9G assemblies it is nearly perpendicular. 

Consequently, four molecules can form a closed planar ring motif in the latter situation (which is the 

building block of the previously mentioned quadruplex structures), while in the former one, five or six 

units are necessary to reach a nearly planar ring structure. To check this assumption 4-, 5- and  

6-membered ring structures of m7G were optimized with high level quantum chemical method. For 
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comparison, we also performed plane-restrained ribbon fragment calculations of m7G built up from 4, 

5, 6 and 7 units. Examination of ring structure with more than 4 units is based on the result of 

isoguanine (6-amino-1,7-dihydropurin-2-one) investigations where this natural but non-standard base 

has been found to form not only quartets but also pentamers, depending on the cation identity [21–23]. 

2. Theoretical Methods 

2.1. Computational Details 

All calculations were performed using density functional theory (DFT) as implemented in the Amsterdam 

Density Functional (ADF) program developed by Baerends and others [24] and the QUantum-regions 

Interconnected by Local Descriptions (QUILD) program by Swart and Bickelhaupt [25,26]. The 

calculations were performed at BLYP-D/TZ2P level of theory for tetramers, and the final geometry 

was determined with 10−5 and 10−6 accuracy for the gradient and the energy, respectively. The BLYP 

functional was augmented with dispersion correction according to Grimme’s suggestion (BLYP-D 

calculation) [27,28]. In this approach, the BLYP density functional is augmented with an empirical 

correction term for long-range dispersion effects, described by a sum of damped interatomic potentials 

of the form C6R
−6 added to the usual DFT energy. This approach has been shown to yield excellent 

structures and energies for multiply-hydrogen bonded DNA-base oligomers [20,29]. 

2.2. Bonding Analyses 

The overall bond energy Ebond is made up of two major components [Equation (1)]: 

Ebond = Eprep + Eint (1)  

In this formula, the preparation energy Eprep is the amount of energy required to deform the separate 

monomer bases from their equilibrium structure to the geometry that they acquire in the ribbon. The 

interaction energy Eint corresponds to the actual energy change when the chosen geometrically 

deformed constituents are combined to form the ring or ribbon complexes (Ecomplex − ΣEconstituents).  

E.g., when anion binding is calculated then the two constituents are the separated ion and the ion-free 

ring, and the deformation energy of the ring is related to the optimized ion-free ring structure. In the 

meantime, the bonding energy of the same complex is related to the separated six m7G units and the 

detached ion. It is worth to note that the sum of preparation energies is one order of magnitude smaller 

than the interaction energy and usually 1–2 kcal/mol for a single m7G unit. 

3. Results and Discussion 

3.1. Systems without Ions 

The optimized ring geometries with selected distances can be found in Figure 2 and the related 

bonding energies are shown in Table 1 as well as the results of the reference ribbon calculations. 
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Figure 2. Calculated geometries of 4-, 5- and 6-membered ring conformations of m7G  

(top and side view) with selected distances (in Å). 

 

Table 1. Bonding energies and average H-bond energies (in kcal/mol) of the 4-, 5- and  

6-membered m7G rings (with and without Cs symmetry) and the planar ribbon structures 

with 4, 5, 6 and 7 units. The number of H-bonds in the concerned structure is also shown. 

 Tetramer Pentamer Hexamer Heptamer 

Energy 

(kcal/mol) 

H
-b

on
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(
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Energy 

(kcal/mol) 

H
-b

on
ds

 

(
)

Energy 

(kcal/mol) 

H
-b

on
ds

 

(
)

Energy 

(kcal/mol) 

H
-b

on
ds

 

(
)

Bonding  
Average 

H-bond 
Bonding 

Average 

H-bond 
Bonding 

Average 

H-bond 
Bonding  

Average 

H-bond 

Ring 

without 

Cs sym. 

−71.9 −9.0 

8 

−96.7 −9.7 

10 

−120.4 −10.0 

12 - 
Ring 

with  

Cs sym. 

−53.3 −6.7 −76.6 −7.7 −114.0 −9.5 

Ribbon 

with  

Cs sym. 

−78.1 −8.7 9 −102.1 −8.5 12 −130.7 −8.7 15 −156.3 −8.7 18 

The optimized geometries show clearly that the ring assembly tends to be planar with increasing 

number of ring members which is also corroborated by comparing bonding energies of planar and  

non-planar structures. Namely, the bonding energy difference between the Cs constrained and freely 

optimized geometries is 6.4 kcal/mol in case of the hexameric ring while the same difference is  

18.7 kcal/mol and 20.1 kcal/mol in tetrameric and pentameric cases, respectively. These numbers also 

demonstrate that the hexameric ring arrangement can be favorable therefore we applied this unit 

number in anion-containing calculations.  
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In Figure 3 the optimized planar ring conformations are presented together with the seven units-

long ribbon conformation. The appropriateness of the chosen calculation method can be demonstrated 

by comparing theoretical and experimental results. We calculated the length of the translation 

symmetry vector in the optimized ribbon structure and compared to 7H-guanine crystal data. In the 

former case we get 9.8 Å while in the latter one the result was 9.7 Å. Moreover, comparing the heavy 

atom distances involved in H-bonding in ribbon we have obtained 2.84 Å for N1H1···N3, 2.96 Å for 

N2H2···N9 and 2.84 Å for N2H2···O6 (see Figure 3). The corresponding values found in crystals are 

2.86 Å, 3.01 Å and 2.90 Å, respectively [17], which are in good accordance with the computed ones. 

These data confirm the previous analyses which demonstrate that this level of theory yields excellent 

structures and energies for multiply-hydrogen bonded DNA-base oligomers [20,29]. 

Figure 3. Optimized planar ring and ribbon structures of m7G with selected distances  

(in Å). The numbers in parenthesis show the corresponding distances in 7H-guanine  

crystal [17]. The hollow arrows represent the DH···A hydrogen bonding pattern. 

 

 

Comparing the ring and ribbon bonding energies with the same number of units one can see that 

even in the tetrameric cases the two extra (ring-closing) H-bonds cannot compensate the bonding 

energy of ribbon structure formed by three H-bonds. However, the average H-bond energies 

demonstrate an interesting difference between ribbon and ring structures. Namely, while the average 

H-bond energy of ribbons does not change with the increasing number of units, in the ring situations 

the H-bond energy displays a definitely increasing tendency, independently from the presence or 

absence of Cs symmetry restraint. 

The theoretical explanation of this fact is based on our previous work [30], where tetrameric 

xanthine and guanine structures were examined. We found in that paper that extra stability can occur 

only in the presence of a special H-bond arrangement. Namely, the donor-acceptor direction of 
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adjacent H-bonds must be the same to reach extra stability. In Figures 2 and 3 one can easily check 

that this requirement is fulfilled in ring structures, but in ribbon arrangement the H-bond between the 

oxo and the amino groups is oppositely directed compared to the other two H-bonds. It is important to 

emphasize that the present systems display cooperative effect even at non-planar calculations as it is 

shown by increasing average H-bond energies. Considering planar systems we pointed out in ref. [30] 

that cooperativity is primarily related to the donor–acceptor orbital interactions in the σ-electron 

system, and not from the strengthening caused by resonance in the π-electron system. However, the  

π-electron system in the present structures is different from the one which can be found in a perfectly 

planar geometry. Moreover, we would like to emphasize that according to the ribbon calculations one 

oppositely directed H-bond can prevent the appearance of cooperativity. This fact is shown by the 

present structures where the principal difference between ring and ribbon structure is the presence or 

the absence of the third H-bond formation between the oxo and the amino groups.  

Finally, we would like to note that further investigations based on different energy decomposition 

methods can be useful to refine the description of the cooperative character. The application of the 

Ziegler-Rauk method [31,32], as well as the decomposition of energy components according to  

paper [33] into two-body, three-body, etc. terms can be a useful method. However, in the present paper 

we primarily focus on the possible formation and ion binding capacity of this systems, therefore these 

more detailed analyses are beyond the scope of this work. 

3.2. Hexameric Ring with Selected Anions 

The most interesting property of the new structures is that, in contrast to the usual G tetrad, they can 

bind anions in the central position and not just monoatomic anions (Cl− or Br−) but oxoanions  

(e.g., CO3
2− or NO3

−) as well. This kind of binding was suggested theoretically for Cl− at the first time 

by Bickelhaupt et al. in reference [20] where adenine tetramer could bind the anion in the center of the 

structure. In Figure 4 we present unconstrained hexameric complexes where selected anions have been 

investigated in the central position. Bonding energies and anion binding energies are collected in Table 2 

for bent and Cs constrained planar calculations. 

Figure 4. Optimum geometry of m7G hexamer with selected (Cl−, Br−, NO3
−) anions 

without Cs symmetry. 
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Table 2. Bonding energies and ion bonding energies (in kcal/mol) of hexameric m7G ring 

in the presence of selected anions (Cl−, Br− and NO3
−). Optimizations were carried out with 

and without Cs symmetry. 

Hexameric ring 

with anions 

Cl− Br− NO3
− 

Bonding 

energy 

(in kcal/mol) 

Ion bonding 

energy 

Bonding 

energy 

(in kcal/mol) 

Ion bonding 

energy 

Bonding 

energy 

(in kcal/mol) 

Ion bonding 

energy 

without Cs sym. −170.8 −50.3 −168.3 −47.6 −177.0 −56.3 

with Cs sym. −170.3 −50.1 −167.7 −47.6 −174.3 −54.1 

Comparing the bonding energies of free systems to the plane-constrained one we found that in the 

presence of a central anion the energy difference between bent and planar structures is much smaller 

than in the absence of the anion. For monoatomic cases it is less than 1 kcal/mol and even for the NO3
− 

ion it is only 2.7 kcal/mol. The rest of the change comes from the ion bonding energy difference 

between planar and bent geometries, more precisely from the deformation energy. 

One can conclude from the results that these facts demonstrate the possible coordination role of 

anions in the formation of ring structures. In other words, hexameric ring formation at solid-liquid or 

solid-gas interfaces is more probable in the presence of anions. 

It is worth to note that if one substracts the ion bonding energy from the bonding energy the results 

were always between −120.1 kcal/mol and −120.7 kcal/mol, independently from the chosen anion or 

the presence/absence of Cs symmetry. Taking into account that the bonding energy of the freely 

optimized hexameric ring is −120.4 kcal/mol, while the one with Cs constrain is −114.0 kcal/mol, we 

can interpret this result in such a way that the anion drives the ring structure to the most suitable state. 

4. Conclusions  

We have demonstrated that density functional theory calculations on m7G forecast the formation of 

ring clusters with or without anion in the center position. The coordination of anions stabilizes and thus 

favors the formation of planar aggregates. Comparing the calculation results of Cs restrained m7G 

ribbon structure to 7H-guanine crystal geometry we found an excellent accordance between the 

experimental and the calculated geometries. Based on this good agreement, we believe that the 

predicted planar structures stabilized by anions (Cl−, Br−, NO3
−) are good models for self-assembly 

structures formed at solid-liquid or solid-gas interfaces. 

The bonding and average H-bond energy differences between ring or ribbon structures can be 

interpreted very well by presence or absence of the previously introduced cooperativity effect. In the 

ring structures with their unidirectional hydrogen bonds, there is a cooperativity effect that increases 

with the number of monomers, in line with and explained in our previous work [30]. Such a 

cooperativity is not present in the ribbon structures in which oppositely directed H-bonds quench the 

cooperative effect.  
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