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Abstract: The 3,5-disubstituted tetrahydro-2H-1,3,5-thiadiazine-2-thione scaffold has 

found many applications in recent years. This review is aimed at highlighting the most 

important aspects of these compounds: Synthesis, spectroscopic characterization and 

biological activities. How the chemical nature of N-substituents influences the overall 

activity and cytotoxicity profile will also be discussed. 
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1. Introduction 

Although the first representatives of the fully saturated 3,5-dimethyltetrahydro-2H-1,3,5-

thiadiazine-2-thione scaffold (Figure 1) were synthesized for the first time in 1848 [1], their correct 

structure was not assigned until 1944 [2]. Until the 80s, some studies addressed the synthesis [3–5] and 

biological applications of these derivatives [6,7]. 
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Figure 1. The 3,5-dimethyltetrahydro-2H-1,3,5-thiadiazine-2-thione scaffold. 

 

The antiprotozoal [8], antibacterial [9], antifungal [10], anthelmintic [11] and tuberculostatic 

properties [12,13] of tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) have been known for several 

decades. In addition to its renowned antimicrobial activity, this versatile heterocycle has found an 

increasing number of applications in the drug research arena as a biolabile prodrug [14] in the design 

of drug delivery systems (DDSs) due to its high lipid solubility and enzymatic rate of hydrolysis. 

Moreover, the THTT scaffold has been used for arteriosclerosis treatment [15] and recently its 

application in antiepileptic pro-drugs has been reported [16]. In this regard, several amino acids [13,17], 

peptides [18,19], and primary-amine-containing drugs [20–22] have been successfully attached to the 

THTT moiety to enhance their cellular uptake by improving lipophilicity in the area where the drug 

molecule is released by the physiological and/or enzyme catalytic effects. Another important 

advantage of THTT derivatives is their stability in simulated gastric fluid (SGF), which facilitates their 

stomach absorption in a less ionized form than in the case of oral administration [17]. The excellent 

physico-chemical properties of this heterocycle have prompted its use as the main core in many 

integral projects for the development of new bioactive agents. 

Due to the importance of this nucleus, the aim of this review is to highlight the synthesis and 

biological activity of the THTT scaffold reported in the last years, moreover the influence of the 

chemical nature of N-substituent on the overall activity and cytotoxicity profile. The main interest of 

these compounds is due to their higher versatile biological activity, which, at the same time, can be 

conjugated to other activities when THTT derivatives are used as DDS. 

2. Synthesis of Tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) Derivatives 

In recent decades, the main studies on THTT derivatives have taken into account the molecular 

structure of these molecules to obtain an improved activity/cytotoxicity relationship [8]. In this context, we 

found many reports of the synthesis of several compounds with one THTT ring as the central core, 

with a great variety of substituents on the N-3 and N-5 position (mono-THTT) [8–10,13,19,21–26].  

To enhance the biological effect, two THTT rings, connected to each other via their N-3 atom by a 

linear or branch aliphatic backbone and bearing alkyl or carboxyalkyl residues at N-5 (bis-THTT), 

have recently been incorporated into the same molecular structure (Figure 2) [8,27–30]. 

Figure 2. THTT structures. 
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2.1. Synthesis of 3,5-Disubstituted-tetrahydro-2H-1,3,5-thiadiazine-2-thione (Mono-THTT) 

The most used procedure to obtain THTT derivatives in moderate or high yields is the reaction  

of the appropriate amine 1 with carbon disulfide (2) and potassium hydroxide (3) to give the 

dithiocarbamate potassium salt 4 (which was not isolated). This is followed by cyclocondensation with 

formaldehyde (5) and the selected amino acids [10,13,23–25], pseudo peptides [10,13,23–26], and 

amines or amino esters 6 [21] able to provide the nitrogen atom at N-5 of the thiadiazine ring. In the 

first step of these synthetic procedures, water was used as a protic polar solvent to stabilize 4, while in 

the second step phosphate buffer at pH 7–8 was used (Scheme 1) [10–13,23–26]. 

Scheme 1. Synthesis of mono-THTT scaffold. 

 

This methodology allowed new synthesized mono-THTT derivatives to cluster in at least ten series. 

These derivatives differed in the nature (lipophilic or hydrophilic) of the substituent at N-3. Some 

series bore an aromatic (furfuryl [13,23], benzyl or benzyl derivatives [13,31] and D- or L-deacylated 

chloramphenicol [21]) and alkyl or cycloalkyl (ethyl, butyl, octyl, dodecyl, cyclopropyl and 

cyclohexyl) [10–13,23–26] moieties, all of them belonging to a lipophilic group; for others the starting 

amines were hydrophilic (carboxyalkyl) groups [23]. 

Another synthetic method used to obtain these compounds was the solid-phase synthesis of  

3-(5-carboxypentyl)-5-substituted tetrahydro-2H-1,3,5-thiadiazin-2-thione derivatives [32] (Scheme 2). 

N-Fmoc-protected 6-amino-n-hexanoic acid (Fmoc-Ahx-OH) was attached via its C-terminal to 

hydroxymethyl polystyrene using a ‘SASRIN’ linker. The bound amino acid 7 was transformed into 

the corresponding dithiocarbamate 8 followed by cyclization in the presence of formaldehyde and the 

corresponding free amino acids to afford 3-(5'-carboxypentyl)-5-substituted tetrahydro-2H-1,3,5-

thiadiazin-2-thiones 9. The final products were cleaved from the resin and obtained in moderate yields 

as a result of low solubility of the corresponding free amino acids in 1,4 dioxane (Scheme 2) [32]. 

Scheme 2. Solid phase synthesis of mono-THTT scaffolds. 
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However, the use of the solid phase methodology is limited by two factors: the possibility for the 

starting amines to be properly functionalized for efficient coupling to the resin and the low solubility 

of the amino acids in the solvent used. The development of this methodology would allow the 

generation of a combinatorial library for THTT compounds. 

2.2. Synthesis of Alkyl-linked-bis-(2-thioxo-[1,3,5] thiadiazinan-3-yl) carboxylic Acids (Bis-THTT) 

Less information about the synthetic methods to obtain bis-THTTs [27–35] has appeared in  

the literature than for mono-THTTs [27–30]. The general procedure is very similar to that used for 

mono-THTTs. The bis-THTTs were obtained using diamines 10 and the amounts of all reagents were 

duplicated. In the first step the diamine 10 reacted with carbon disulfide (2) in the presence of 

potassium hydroxide (3) to obtain the expected bisdithiocarbamate salt 11. The addition of 

formaldehyde (5) and the corresponding amine or amino acid 6 to 11 resulted in the cyclocondensation 

in a slightly alkaline medium (phosphate buffer, pH 7–8) to generate the desired bis-THTTs, after 

treatment with 15% HCl (Scheme 3) [27–30]. 

Scheme 3. Synthesis of bis-THTTs scaffold. 

 

This procedure allowed the synthesis of new bis-THTT derivatives to cluster in at least four series, 

taking into account the starting diamine (1,6-diaminehexane, 2,2-dimethyl-1,3-propanediamine, 

ethane-1,2-diamine and ethyl 2,3-diaminopropanoate). All compounds were obtained in moderate  

to high yields, except when 2,2-dimethyl-1,3-propanediamine was used. This finding could be 

attributable to the use of a bulky diamine and the resulting steric hindrance at the cyclization stage. 

The feasibility of synthesizing new bis-THTTs using more complex polyamines as linkages than the 

initially reported diamines was recently explored [30]. The N4-benzyl polyamine 14 was previously 

synthesized following a method reported by O’Sullivan et al. [33] via a protection-deprotection 

strategy using ethyl trifluoroacetate as the selective protective group for primary amines in the 

presence of secondary amines. The spermidyl-linked bis-THTT derivatives were obtained as solids in 

moderate yields. The synthetic route leading to spermidyl linked bis-THTT derivatives from the 

benzylated spermidine was similar to the one described above (Scheme 4). 

Scheme 4. Synthesis of spermidyl linked bis-THTT scaffold. 
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2.3. Proposed Reaction Mechanism  

According to the authors [10,28], the formation of the thiadiazine ring is achieved via a one pot 

domino reaction between the pre-formed DTC, formaldehyde and the amino acid component. Despite 

being considered a multi-component reaction, the reactants are actually added in a stepwise fashion. 

Undoubtedly, one of the least explored aspects regarding the synthesis of THTT has been the reaction 

pathway from the corresponding DTC. In one approach (Scheme 5, Path A) the preformed DTC 4  

is allowed to react simultaneously with formaldehyde and the corresponding amine to produce 

[substituted(aminomethyl)methanethionyl]methylidenazanium species 15 [28]. This species has two 

reactive centers in the same molecular backbone, a protonated imine and a thiosulfanylmethylamino 

group. The intramolecular addition of the secondary amino group to the carbon atom of the 

methylidene moiety leads to the THTT ring. The formation of this ring via a {[hydroxymethyl 

(substituted) carbamothioyl] sulfanyl}methanol intermediate 16 [10] was proposed (Scheme 5, Path B). 

This process involves in situ generation of 16 from the corresponding DTC 4 and formaldehyde (5), 

followed by condensation with a primary amine 6. The isolation and characterization of an analog of 

16, via a crystallization process induced by the presence of KOH, was reported [10].  

Scheme 5. Proposed mechanisms for the THTT ring formation. 

 

Recently, a preliminary DFT study aimed at predicting the probable cyclization mechanism of the 

thiadiazinane-2-thione from an intermediate of type 15 has been reported [34]. Based on experimental 

observations and DFT studies, a probable cyclization route to the THTT ring from the corresponding 

{[hydroxymethyl(substituted) carbamothioyl] sulfanyl}methanol intermediate 15 in aqueous medium 

has been proposed. Notably, water not only contributes to the reaction as a mere solvent, but also plays 

an active role in the reaction mechanism.  

2.4. Structural Characterization  

Although numerous studies have been published on the synthesis and characterization of these 

compounds [12,23,35], it was only in 2001 that the first exhaustive structural characterization of 

mono-THTT derivatives was published [36–38]. These studies were considered an important structural 

data base to facilitate the characterization of novel compounds containing a THTT ring. 
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Nuclear Magnetic Resonance (NMR) studies deal with the complete 1H- and 13C-NMR assignments 

of a series of substituted THTTs (Figure 3) endowed with different organic addends on both 

heterocyclic nitrogen atoms. The 300 MHz 1H-NMR spectra of the THTT derivatives showed, in 

general, two singlets corresponding to the H-4 and H-6 ring protons around δ 4.50 and 4.40 

respectively, in addition to other usual signals of the substituents. The 13C-NMR spectra of these 

compounds exhibited signals in the thiocarbonyl, carbonyl, aromatic and aliphatic regions. The 

thiocarbonyl carbon (C-2) in these systems appeared in the narrow range (δ 190.1–192.1 ppm), and the 

signals corresponding to the THTT ring was relatively insensitive to the nature of substituents on N-3 

and N-5. In order to unequivocally assign all NMR signals, 1D and 2D techniques such as DEPT 

(135), HMQC and HMBC were used [36]. It is interesting that all systems showed a similar trend in 

the chemical shift of the common part of the molecular backbone for each type of compounds. 

Figure 3. THTT derivatives characterized by NMR studies. 
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A structural study of 5-carboxy-ethyl-3-(2'-furfurylmethyl) tetrahydro-2H-1,3,5-thiadiazine-2-

thione was made by means of X-ray crystallographic analysis. This study determined the most stable 

conformation in the solid state [37]. The theoretical calculations allowed chemists to gain a better 

picture of the conformational profile of the given compound by means of the semi-empirical AM1 

method, as well as by ab-initio calculations at Hartree-Fock level using 3.21G* and 6-31G* basis sets. 
1H-NOE experiments had also been carried out in order to obtain information about the conformational 

profile of this compound in solution [37]. 

Electrospray ionisation (ESI) in negative mode of pharmacologically significant mono-THTT 

derivatives, and their subsequent fragmentations using an ion-trap mass spectrometer were examined. 

Experiments on sequential product ion fragmentations (MSn) were performed in order to elucidate  

the degradation pathways for these compounds. The data reported show that the fragmentation of the 

even-electron [M−H]− ions proceeds through an internal nucleophilic substitution displacement. 

Decarboxylation and extrusion of carbon disulfide were also observed [38]. 

Alternatively, the spectroscopic information gathered from previously synthesized mono-THTT 

derivatives [36–38] allowed confirmation of the structure of the bis-THTT compounds. The structures 
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of all the bis-THTT derivatives reported in the bibliography were established on the basis of 

spectroscopic data [27–30,34,39]. In general the 1H- and 13C-NMR signals of each THTT-ring were 

undistinguishable and all series show a similar trend in the chemical shift of the common part of the 

molecular backbone. The 1H- and 13C-NMR spectroscopic data of alkyl, and polyamine-linked  

bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids, prepared from alkyl diamines and N4-(benzyl) 

spermidine, were fully assigned by the combination of one- and two-dimensional experiments (DEPT, 

HMBC, HMQC, COSY) [39]. 

3. Biological Activity of THTT Derivatives  

Compounds derived from THTT have received particular attention due to their pharmacological 

properties. Numerous studies have been published on the antiparasitic properties of these derivatives [8]. 

Furthermore, these compounds also present antibacterial [9,13,22,25–28,31], antifungal [9,10,25–28,31], 

antiviral [7], and anticancer activity [24]. In addition, the high lipid solubility and ease of enzymatic 

hydrolysis [14] generally associated with this heterocycle have promoted its use as a biolabile prodrug 

in the design of drug delivery systems. The aforementioned properties and the possibility to attach 

several structurally distinct substituents to the heterocycle ring to modify either the biological or 

physico-chemical properties of these compounds prompted to use this heterocycle as a template in 

many research programs aimed at the development of new bioactive compounds.  

3.1. Antiparasitic Activity  

The promising results of antiparasitic bioactivity of THTT derivatives could be attributed to  

the interaction of cysteine proteinases, present in most groups of parasitic protozoa [40], with 

isothiocyanates [41], generated by hydrolysis of the THTT ring in a protic medium [14]. 

Notwithstanding, the possible interaction of the released amino acids or dipeptides, attached to position 

5 of the THTT ring, with other molecular targets, thereby enhancing the antiparasitic activity observed 

of these derivatives, should not be ruled out. 

Some series of THTT derivatives have been studied as antiparasitic agents against Trypanosoma cruzi, 

Trichomonas vaginalis, Leishmania amazonensis, L. donovani, T. brucei rhodesiens, and Plasmodium 

falciparum [23,27–30,42–45]. Three series of mono-THTT were synthesized and tested against  

T. cruzi and T. vaginalis [23] (Figure 4). The series differ in the nature (lipophilic or hydrophilic) of 

the substituent at N-3 position and all derivatives showed significant in vitro antiprotozoan activity 

(both anti-trichomonas and anti-trypanosoma) at the highest dose tested (100 g/mL). However,  

most of the compounds lost trichomonacidal activity at 10 μg/mL and only 5-carboxyethyl-3-(2'-

furfurylmethyl) tetrahydro-2H-1,3,5-thiadiazine-2-thione (17) (Figure 4) maintained its efficacy at 

1μg/mL with anti-trichomonas activity similar to that of metronidazole. These results would indicate 

that the lipophilic character of R1 does not significantly influence the in vitro trichomonacidal activity. 

In contrast, compounds of series II and III showed trypanosomicidal activity, both at 100 and  

10 μg/mL, whilst compound of series I only showed cytostatic activity at 10 μg/mL. The lipophilic 

substituents at N-3 showed better performance than hydrophilic ones for obtaining active compounds 

against T. cruzi, and at least six of these mono-THTT derivatives maintained trypanosomicidal activity 

at 1 μg/mL, showing a higher activity than nifurtimox (e.g., compounds 17 and 18) [23] (Figure 4). 
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Figure 4. Mono-THTT derivatives tested against T. cruzi and T. vaginalis. 

 

Non-specific toxicity and anti-amastigote activity have been also reported for 24 mono-THTT 

derivatives corresponding to series I, II and III, and nifurtimox and benzidazole were used as 

reference drugs [42]. All the compounds were highly toxic at 100 μg/mL for macrophages and a few of 

them maintained this cytotoxicity even at 10 μg/mL. Of the derivatives assayed against amastigotes,  

3-carboxypentyl-5-(α-dimethyl)carboxymethyl tetrahydro-2H-1,3,5-thiadiazine-2-thione (19) and  

3-cyclohexyl-5-(α-phenyl)carboxymethyl tetrahydro-2H-1,3,5-thiadiazine-2-thione (20) (Figure 5) 

showed relevant activity, which was maintained at 1 μg/mL. Moreover, in vivo assays reported a 

reduction of parasitemia after the administration of 20 to infected mice [42]. 

Figure 5. THTT derivatives with anti-amastigote activity. 

 

Some mono-THTT derivatives of series III were tested in vitro for antiparasitic effects against both 

extracellular promastigotes and intracellular amastigotes of L. amazonensis [43,44]. The compounds 

were active against the amastigote form of the parasite, inhibiting parasite growth by 10 to 89% at a 

concentration of 100 μg/mL [43]. These results confirmed that the THTT compounds exert significant 

in vitro activity against L. amazonensis and indicated that some of them could be considered for further 

study as new therapeutic alternatives [43,44]. All the compounds evaluated caused an irreversible 

inhibition of promastigote growth either after 1h of treatment with 10 μg/mL or after 24 h with  

1 μg/mL. However, the compounds exhibited high toxicity and inhibited phagocytosis in the murine 

host cell [44]. The mono-THTT compounds tested showed strong activity against L. amazonensis at 

low concentrations. 

To enhance the antiprotozoal effects, two rings were incorporated into the same molecular structure 

(bis-THTT). Three series of bis-THTT derivatives have been reported [27–30]. The in vitro activity of 

compounds belonging to series IV and V (Figure 6) against L. donovani, T. b. rhodesiense, and  

P. falciparum was studied. The best activity profiles were found against T. b. rhodesiense. It is 

interesting that the activity against the latter was enhanced for compounds with linear amino acid 

residues as substituents at position N-5 of the THTT ring. Despite exerting a notable activity against  
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T. b. rhodesiense, derivatives belonging to series IV were more cytotoxic than the analogs of series V 

(Figure 6) [45]. 

Figure 6. Bis-THTT derivatives with antiprotozoal activity. 

 

The in vitro antiprotozoal evaluation of novel N4-(benzyl)spermidyl-linked bis-THTT derivatives 

from N4-(benzyl)spermidine (Series VI) was also disclosed [30]. These compounds showed a potent 

protozoocidal activity against T. cruzi and L. donovani, which in turns was comparable or greater  

than that of the currently used chemotherapies. Despite this observation, the novel structures displayed 

a higher cytotoxicity than previously synthesized alkyl ethers analogs with the same amino acidic 

residues attached to position N-5 of the heterocyclic ring. It has been hypothesized that increased 

cytotoxicity is related to interference with polyamine metabolism in mammals (Figure 6) [30]. 

To obtain THTT derivatives with potential antiparasitic activities, the lipophilic and hydrophilic 

nature of the substituents at N-3 and N-5 respectively, was important in order to improve the better 

structure-activity relationship. 

3.2. Anticancer Activity  

The highest cytotoxicity activity shown by some compounds of series I, II and III [23] may be 

indicative of potential anticancer properties. A selection of these compounds has been studied using 

cytotoxicity assays against HeLa, HT-29 and HepG2 cells, to evaluate their anticancer properties. The 

decomposition products of thiadiazinthione 16 have also been studied [24].  

Most of the mono-THTT derivatives showed noticeable cytotoxic properties against HeLa and  

HT-29 cells but not against HepG2 cells. The compounds of series I and II were, in general, less 

cytotoxic than those of series III, none of them showed an IC50 lower than 10 mol against any cell 

line. The nature of R1 modulates the cytotoxicity of these compounds. Compounds bearing the 

aromatic furfuryl moiety (series III) yielded the most interesting thiadiazinones. However, the nature 

of R2 lesser degree influences in the cytotoxicity properties of these derivatives. The derivative  

3-(2-furfuryl)-5-(α-carbamidomethyl)carboximethyl tetrahydro-2H-1,3,5-thiadiazine-2-thione (21) 

(Figure 7), bearing furfuryl and L-asparagine moieties, yielded the most interesting compound, which 

is a candidate for a future anticancer study [24]. These results allowed the application of QSAR 

methodology to study mono-THTT derivatives using the novel hybrid index pMRχ [46].  
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Figure 7. The promising THTT derivatives 21 and 22 for a future anticancer study. 

 

Recently, two series were synthesized to develop new cell cycle inhibitors [47]. Variable and 

promising in vitro antiproliferative activities were shown with the synthesized THTT derivatives. 

Compound 22 with with a 5-cyclopentyl group on N-3 and glutamine residue on N-5 of THTT moiety 

(Figure 7) showed the higher activity. There is no evident relationship between the cytotoxic activity 

of tested compounds and their lipophilicity. 

3.3. Antibacterial and Antifungal Activity  

Numerous studies have addressed the antibacterial and antifungal activity of THTT derivatives as 

prodrugs [9,10,13,22,25–28,31,48]. In general, it has been proposed that the antimicrobial activity of 

these compounds is based on isothiocyanates and dithiocarbamic acids, which are formed by the 

hydrolysis of the THTT ring [12]. 

Isoniazid (INH) is still considered a first line drug for the chemotherapy of tuberculosis [22]. The 

THTT derivatives with INH attached at N-5 showed activity against Mycobacterium tuberculosis, but 

only the methyl derivative 23 was as active as INH (Figure 8). However, all these prodrugs showed greater 

antitubercular activity than INH when molar concentrations of the tested doses were considered [22]. 

Other THTT derivatives have been also tested as antitubercular agents and the compounds 24, 25  

and 26 showed the best performance. Moreover, the in vivo activity of compound 23 was also 

demonstrated (Figure 8) [13]. 

Figure 8. THTT derivatives with antuberculosis activity. 

 

Antibacterial activity (against Staphylococcus aureus, Escherichia coli, and Pseudomonas 

aeruginosa versus chloramphenicol as reference) was achieved by introducing the deacylated 

chloramphenicol amine (D or L-amine) 27 at either N3 or N5 of the THTT system, as found for 
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compounds 28, 29, 30, and 31 (Figure 9) [9]. Furthermore, the presence of simple alkyl groups of these 

THTT systems at N-3 afforded moderate antifungal activity (against Candida albicans, Trichophyton 

rubrun, Penicillium chrysogenum, Aspergillus flavus, Trichothecium roseum, and Drechslera halodes 

versus Trosyd® as reference) [9]. 

Figure 9. THTT derivatives with antibacterial and antifungal activity. 
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Compound 32, with a -alanine residue at N-5 and ethyl group at the N-3 position of the THTT 

moiety, showed significant in vitro antibacterial activity (against Bacillus cereus and Serratia rhadnii) [25]. 

The -alanine derivatives 33 and 34 bearing an aralkyl group at the N-3 position of THTT exhibited 

antifungal activity (against C. albicans and F. oxysporum) (Figure 10) [25]. 

Figure 10. THTT derivatives of -alanine with antifungal activity (against C. albicans and F. oxysporum). 

 

Ozcelik et al., synthesized a series of 3-substituted-5-(4-carboxycyclohexylmethyl)-THTTs that showed 

variable potencies against S. aureus, B. subtilis, E. coli and P. aeruginosa [26]. All these THTT 

derivatives exhibited potent antifungal activities against C. albicans and C. tropicalis. Among the 

synthesized compounds, 35 was the most effective compound with antimicrobial activity (Figure 11) [25]. 

Figure 11. THTT derivative with antimicrobial activity against S. aureus, B. subtilis,  

E. coli and P. aeruginosa. 

 

Thirteen derivatives of 3-substituted-5-(2-hydroxyethyl)-THTT (36) were tested for their in vitro 

antibacterial and antifungal activity against some Gram positive and Gram negative bacteria and 
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dermatophytic, saprophytic, phytopathogenic, and antagonistic fungi, respectively [48]. The results of 

bioactivity revealed the requirement of the lipophilic group at position N-3 and a polar substituent at 

N- for satisfactory antimicrobial activity (Figure 12) [48].  

Figure 12. 3-Substituted-5-(2-hydroxyethyl)-THTT derivatives. 

 

Several THTT derivatives incorporating glycine and glycinamide were tested for their antifungal 

activity In vitro against T. rubrum, C. albicans, P. expansum, T. hazianum, F. oxysporum, and  

A. flavus [10]. The antifungal activity of these synthesized derivatives was greatly affected by the 

position carrying a polar group. The derivatives bearing this group at N3 were active, and the highest 

activity was observed with less bulky groups. Compound 37 showed the highest activity against the 

sporulation of most of the species tested (Figure 13) [25]. 

Figure 13. THTT derivative of glycine with antifungal activity. 

 

In the search for promising antifungal compounds, nine 3,3'-ethylenebis(5-alkyl)-THTTs 38 were 

tested for their antifungal activity in vitro against T. rubrum, C. albicans, P. expansum, T. hazianum,  

F. oxysporum, and A. flavus [27]. The antifungal activity of these derivatives is greatly affected by the 

bulkiness of the side chain. The highest activity was obtained for compound 39, which has the least 

bulky groups (Figure 14) [27]. 

Figure 14. 3,3'-ethylenebis(5-alkyl)-THTTs (37) tested as antifungal compounds. 

 

Others two series of bis-THTT derivatives, 2,3-bis(5-alkyl-2-thiono-1,3,5-thiadiazin-3-yl)propionic 

acids 40 and their corresponding N,N-dimethylpropionamides 41 (Figure 15) were screened in vitro 

against certain strains of Gram-positive and Gram-negative bacteria and compared with nalidixic acid 

and ciprofloxacin [28]. Moreover, the title compounds were tested for their antifungal activity in vitro 

against C. albicans, P. expansum and T. hazianum, and A. flavus. These compounds exhibited varied 

activity against the tested pathogenic bacteria and remarkable inhibitory effects on growth or 

sporulation of some of the tested fungal species [28]. 
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Figure 15. 2,3-bis(5-Alkyl-2-thiono-1,3,5-thiadiazin-3-yl)propionic acids 40 and their 

corresponding N,N-dimethylpropionamides 41 tested as antibacterial and antifungal 

compounds. 

 

Recently, a series of new THTT derivatives were evaluated for their in vitro antibacterial and 

antifungal activities by using the microdilution method in comparison with ampicillin and fluconazole [31]. 

3-Phenyl-5-(1-phenylethyl)-THTT (42) and 3-phenyl-5-hydroxy-THTT (43) were found to be active 

against Staphylococcus aureus and Enterococcus faecalis, respectively. The antifungal activity of  

3-phenyl-5-(1-phenylethyl)-THTT (42) against C. krusei and C. parapsilosis appeared greater than that 

of fluconazole, and this compound also exhibited antifungal activity against C. albicans. The 

antifungal activity of 3-(1-phenylethyl-5-[α-(isobutyl)carboxymethyl]-tetrahydro-2H-1,3,5-thiadiazine-

2-thione (44) and 3-benzyl-5-carboxyethyltetrahydro-2H-1,3,5-thiadiazine-2-thione (45) against  

C. krusei were found to be similar to that of fluconazole (Figure 16) [31]. 

Figure 16. 3-Phenyl-5-(substituted)-THTT derivatives 42 and 43, and others THTT 

derivatives (44 and 45) tested as antibacterial and antifungal compounds. 

 

4. Conclusions  

The most widely reported method to obtain THTT derivatives proceeds via a dithiocarbamate salt 

intermediate. This experimental procedure is simple and allows for a wealth of molecular diversity, 

depending on the nature of groups attached to the two nitrogen atoms of the heterocycle.  

The results presented in this review make it possible to analyze how the chemical nature of N-3 

and/or N-5-substituents in the THTT ring potentially influences the overall activity/cytotoxicity profile 

against some microorganisms. Generally, lipophilic groups at both the N-3 and N-5 positions lead to 

compounds with high antimicrobial activity, but also high toxicity. The presence of a hydrophobic 

group at N-5 favored the antimicrobial activity of the THTT derivatives. In some cases, the introduction 

of two THTT rings in the same molecule strengthened their bioactivity. 3,5-disubstituted tetrahydro-2H- 

1,3,5-thiadizin-2-thione derivatives (THTTs) are of great interest for their biological and pharmacological 

activities, especially for their potential antiparasitic, antibacterial and antifungal properties. 
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