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Abstract: Benzo[c]phenanthridine (BCP) derivatives were identified as topoisomerase I 

(TOP-I) targeting agents with pronounced antitumor activity. In this study, a support vector 

machine model was performed on a series of 73 analogues to classify BCP derivatives 

according to TOP-I inhibitory activity. The best SVM model with total accuracy of 93% 

for training set was achieved using a set of 7 descriptors identified from a large set via a 

random forest algorithm. Overall accuracy of up to 87% and a Matthews coefficient 

correlation (MCC) of 0.71 were obtained after this SVM classifier was validated internally 

by a test set of 15 compounds. For two external test sets, 89% and 80% BCP compounds, 

respectively, were correctly predicted. The results indicated that our SVM model could be 

used as the filter for designing new BCP compounds with higher TOP-I inhibitory activity. 

Keywords: support vector machine; SVM; classification; topoisomerase; anticancer; 

benzo[c]phenanthridine; drug design; pharmacoinformatics 
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1. Introduction 

The topoisomerases (TOP) are enzymes involved in processes such as replication, repair, 

transcription, recombination and segregation of DNA. Those of type I are the target of several 

anticancer agents based on their ability to stabilize the DNA-enzyme cleavage complex that causes 

DNA damage and cytotoxicity [1,2]. Among the agents expressing a targeted anti-topoisomerase 

activity, alkaloids of the benzo[c]phenanthridines (BCPs) family are well known [1–4]. Many BCP 

analogues were synthesized and evaluated for their activity on topoisomerase I as well as their 

cytotoxicity. Of those, ethoxidine, NK-109 and topovale (ARC 111) are potential candidates for cancer 

chemotherapy [1–5] (Figure 1). 

Figure 1. Chemical structures of benzo[c]phenanthridine derivatives. 
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The in vitro TOP-I inhibitory activity is valued by REC value, which is the relative effective 

concentration of TOP-I related to topotecan [6–17]. Therefore, compounds having TOP-I inhibitory 

activity could be divided into two classes of compounds based on the topotecan threshold. In this 

study, a support vector machine (SVM) approach was used to build up a classification model based on 

the anti-topoisomerase-I activity for BCP analogues. The SVM model could be applied to seek out 

new BCP analogues which are inhibitors of TOP-I for cancer treatment. 

2. Results and Discussion  

2.1. Feature Selection 

Three feature selection approaches, namely mRMR (Max-Relevance, Min-Redundancy), GA 

(genetic algorithm) and RF (random forest) were applied to the dataset to figure out a set of chemical 

descriptors related to bioactivity properties from 2,032 molecular descriptors calculated by Dragon. 

Based on the calculation, three sets of molecular descriptors were selected, including a set of 10, 16 

and seven descriptors for the mRMR, GA and RF methods, respectively. Table 1 shows the molecular 

descriptors selected via the RF method. After that, these sets of descriptors were used to develop the 

SVM models. For any SVM, it is necessary to select the optimal parameters of the Kernel function  
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(C, γ) and these values for each set of descriptors were figured out and are shown in Table 2. The 

results of classification based on three different descriptor sets (by mRMR, GA and RF) by the SVM 

algorithm (the e1071 package in R) are shown in Table 3. The total accuracies of these SVM models are 

greater than or equal to 0.91 on training sets and are greater than or equal to 0.74 for cross-validation. 

However, the basic principle of SVM is a supervised learning approach. Hence, the classification 

results regarding test set and external set showed the relatively accurate performance of models. The 

SVM model which was developed from descriptors selected by RF method gave a better classification 

power than the two other methods.  

Table 1. Molecular descriptors from RF feature selection method. 

Class Symbol Definition 
Topological descriptors 

 
D/Dr05 distance/detour ring index of order 5 
D/Dr06 distance/detour ring index of order 6 

Walk and path counts 
 

MPC06 molecular path count of order 06 
MPC08 molecular path count of order 08 
MPC10 molecular path count of order 10 

2D frequency fingerprints 
F05[C–C] frequency of C–C at topological distance 05 
F08[N–O] frequency of N–O at topological distance 08

Table 2. Optimal parameters (C, γ) for SVM approach. 

Feature selection 
method 

Number of features 
selected 

Range of 
γ 

Best 
γ  

Range of 
C 

Best 
C 

Cross-validation 
error 

mRMR 10 5[−10:10] 3.125 5[−10:10] 1 0.21 
GA 16 2[−10:10] 0.125 2[−10:10] 16 0.15 
RF 7 2[−10:10] 0.25 2[−10:10] 4 0.17 

Table 3. Classification results of 3 SVM models corresponding with 3 descriptor sets 

selected successively via mRMR, GA and RF methods. 

Feature selection method 
Training set Test set External set 

mRMR GA RF mRMR GA RF mRMR GA RF 
Number of support vectors 51 40 35       

Total accuracy 0.98 0.91 0.93 0.80 0.93 0.87 0.67 0.78 0.89
Sensitivity 0.93 0.73 0.87 0.33 1.00 1.00 0.40 0.60 0.80
Specificity 1.00 0.98 0.95 0.92 0.92 0.83 1.00 1.00 1.00

Positive precision  1.00 0.92 0.87 0.50 0.75 0.60 1.00 1.00 1.00
Negative precision  0.98 0.91 0.95 0.85 1.00 1.00 0.57 0.67 0.80

Matthews correlation cofficient 
(MCC) 

0.96 0.77 0.82 0.29 0.83 0.71 0.48 0.63 0.80

Total accuracy of  
cross-validation 

0.76 0.78 0.74       
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2.2. SVM Classification Model 

A total of 82 compounds were used for SVM and classified into actives or inactives based on the 

the relative effective concentration (REC) compared to topotecan and the respective threshold points. 

For the separation of active/inactive, REC of topotecan (REC = 1) was selected as a threshold point. 

TOP-I active compound having equal or stronger activity than that of topotecan is presented as “1” and 

vice versa, “0” is presented TOP-I inactive compound having weaker activity than that of topotecan. 

The set of molecular descriptors selected via RF method was used to create the final SVM (the e1071 

package in R) classification model based on anti-topoisomerase-1 activity. Moreover, two other 

classification approaches namely the SVM kernlab and “randomForest” (RF) in R are also applied and 

the classification results are presented in Table 4. In general, both of SVM packages (the e1071 

package, the package kernlab) gave better results than those of observed for random forest methods 

with the different values in the total accuracy of 20%.  

Table 4. Classification results from three classified approaches. 

 Training set Test set External set 
Application 

set 

Evaluation criteria 
SVM 
e1071

SVM 
Kernlab 

RF SVM 
e1071

SVM 
kernlab

RF SVM 
e1071

SVM 
kernlab 

RF SVM 
e1071 

TP 13 13 6 3 3 3 4 3 3 5 

TN 41 41 36 10 8 10 4 4 3 3 

FP 2 2 9 0 0 0 1 2 2 0 

FN 2 2 7 2 4 2 0 0 1 2 

Total accuracy 0.93 0.93 0.72 0.87 0.73 0.87 0.89 0.78 0.67 0.80 

Sensitivity 0.87 0.87 0.46 0.60 0.43 0.60 1.00 1.00 0.75 0.71 

Specificity 0.95 0.95 0.80 1.00 1.00 1.00 0.80 0.67 0.60 1.00 

Positive precision  0.87 0.87 0.40 1.00 1.00 1.00 0.80 0.60 0.60 1.00 

Negative precision  0.95 0.95 0.84 0.83 0.67 0.83 1.00 1.00 0.75 0.60 

MCC 0.82 0.82 0.25 0.71 0.54 0.71 0.80 0.63 0.35 0.65 

Cross-validation error 0.22 0.20 0.28 a        

Y-scrambling total 

accuracy 
0.59          

a “out of bags” of RF method is based on principle of cross-validation. 

Regarding the training set, two SVM packages (e1071, kernlab) expressed similar classification 

power. However, regarding the test set and the external set, the SVM package e1071 showed the better 

results. The Matthews correlation coefficient (MCC) of this package was stable for training, test and 

external test sets with values 0.82, 0.71 and 0.80, respectively. For the kernlab package, the MCC 

value for the training set was as high as 0.82 whereas the MCC of the test set was only 0.54. Normally, 

a model with MCC larger than 0.4 indicates that it has the predictive power [18]. The RF classification 

method in combination with a set of descriptors chosen by RF gave MCC = 0.35 on the external set 

and this result indicates that the RF classification model has no ability to predict the biological activity 

of compounds in this study. The SVM-e1071 in R classification model with a set of descriptors 

identified from a large set via a RF algorithm showed the best results. 
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To further validate the use of SVM-e1071 for TOP-I classification, a 50-fold Y-scrambling 

procedure for the training sets was performed [19–21]. The total accuracy of 0.59 was obtained  

from the Y-scrambling analyses. The results showed that our models show a significantly better 

performance than those obtained when class assignments are randomly achieved with total accuracy 

values of 0.93 versus 0.59, respectively. However, it has to be noted that the principle of SVM is 

supervised learning and the learning strategy tries to keep the error to a minimum values which 

explains the relative “good” performance of this method for the y scrambled data sets. 

2.3. Validation and Application 

The final SVM model was validated not only by cross-validation procedure but also by an external 

dataset (not belonging to the dataset used to create the SVM classification model). The power for 

classification of BCPs by anti-TOP-I activity was 0.87–0.93 for total accuracy and 0.22 for  

cross-validation error. Moreover, the final SVM model was applied to classify a set of 10 BCP 

analogues recently synthesized by Lavoie et al., which so-called application set or external test set 2 

and detailed chemical structures and TOP-I activities are shown in Table 5 [22–26]. According to 

literature, among these 10 BCP analogues, seven compounds have stronger anti-TOP-I activity than 

topotecan and three compounds are weaker than topotecan. The results indicated that the classification 

model was achieved a correct prediction of 80% (8/10) and the detailed results are presented in Table 4. 

The positive accuracy gained the value of 100% i.e., the classification model is more accurate for 

predicting compounds wtith stronger activity than topotecan.  

Table 5. Chemical structure of ten benzo[c]phenanthridine derivatives in application set 

and their topoisomerase I inhibitory activity REC and classification results from final SVM 

model. Classification term: “1” presented TOP-I active compound having equal or stronger 

activity than that of topotecan; “0” presented TOP-I inactive compound having weaker 

activity than that of topotecan. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified 

result from 
final SVM 

model 

A1 

 

BMC_08_7824_7a 0.03 1 1 

A2 

 

BMC_08_7824_7b 0.08 1 1 
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Table 5. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified 

result from 
final SVM 

model 

A3 

 

BMC_08_7824_9 0.2 1 1 

A4 

 

BMC_08_7824_11 0.1 1 1 

A5 

 

BMC_08_8598_9 >10 0 0 

A6 

 

BMC_08_8598_10 0.2 1 0 

A7 

 

BMC_08_8598_12 0.2 1 0 

A8 

 

BMC_08_8598_13 0.2 1 1 

A9 

 

BMC_08_8598_14 >10 0 0 

A10 

 

BMC_08_8598_15 >10 0 0 

This result completely meets our goal, which is aiming to look for new inhibitors of TOP-I for 

cancer chemotherapy. However, one limitation of all machine learning approaches is their inability to 

indicate the important role of functional groups related to biological activity. Hence, the combination 

of this SVM classification model with molecular docking studies [27,28] and also related 2D- and  

3D-QSAR model on cytotoxicity of BCPs [5] could provide insight into the molecular basis of  

TOP-I inhibitors. 
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2.4. Discussions 

In this study, the TOP-I inhibitory activity of topotecan, the synthetic derivative of camptothecin 

and the most potent anticancer drugs in clinical use, is used as threshold points for SVM classification 

models. Topotecan, ethoxidine, fagaronine and BCP related compounds indicated the selectivity on 

TOP-I than TOP-II. These novels acted as DNA intercalators and having two mechanisms including  

(i) TOP-I poison as fagaronine; and (ii) TOP-I suppressor as ethoxidine [27,28]. Our preliminary 

results from in silico modeling indicated that BCP compounds may inhibit the TOP-I activity via 

suppression mechanism. 

SVM is a machine learning method, which has been used for many kinds of pattern recognition 

problems. SVMs have been successfully adapted to treat both regression and classification [29]. In this 

study, mRMR, GA and RF algorithms were used for the selection of descriptors from large descriptors 

set derived from Dragon software and the results showed that the descriptors selected from the RF 

method gave a better classification power than others. The SVM also indicated the better results on 

classification of BCP analogues with anti-TOP-I activity than that of RF. This final SVM model with 

its high accuracy (80–90%), fast calculation without the need of 3D conformation and accurate 

prediction on the substances having positive activity could be applied to look for and design new 

analogues of BCPs with higher topoisomerase I inhibitory activity. SVMs are a black box technique 

and deliver information about their predictions other than the relationship between molecular 

descriptors and bioactivity. The SVM model’s explanatory in term molecular descriptors and 

bioactivity could be performed if the weights of each descriptor are explicitly solved [29].  

It should be noted that our SVM model could be applied in screening prior to synthesis procedures for 

new BCP-like compouds to identify potential TOP-I inhibitors. However, the development of a useful 

drug has to be dealt on systems level of drug discovery and development and take into consideration 

many factors including solubility, ease of drug formulation, selectivity and ADME-Tox.  

3. Experimental 

3.1. Dataset  

BCP analogues in the study (82 compounds) with topoisomerase I inhibitory activity evaluated by 

testing of DNA cleavage were collected from the work of LaVoie et al. [6–17]. The biological activity 

data is represented by the relative effective concentration (REC) compared to topotecan whose value is 

arbitrarily set at 1.0 (as reference compound). This parameter allows the comparison of molecules 

based on the cleavage of plasmid DNA in the presence of human topoisomerase I. Therefore, with a 

compound having the REC value higher than 1, that means its topoisomerase I inhibitory activity 

lower than topotecan and vice versa. Based upon the REC values, the data set was grouped into two 

classes: 58 analogues were assigned to inactive class (REC value > 1, negatives or inactives) and 24 

analogues were classified as active class with REC value ≤ 1 (high TOP-I blockade, positives or 

actives). Chemical structure of 82 benzo[c]phenanthridine derivatives and their topoisomerase I 

inhibitory activity REC values were presented in Table 6.  
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Table 6. Chemical structure of 82 benzo[c]phenanthridine derivatives and their 

topoisomerase I inhibitory activity REC and classification results from final SVM model. 

Classification term: “1” presented TOP-I active compound having equal or stronger 

activity than that of topotecan; “0” presented TOP-I inactive compound having weaker 

activity than that of topotecan. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

1 Nitidine 10 0 0 

2 BMC_03_3795_10a 8 0 0 

3 BMC_03_3795_10b 200 0 0 

4 

 

BMC_03_3795_10c 200 0 0 

5 

 

BMC_03_3795_10d >1000 0 0 

6 
 

BMC_03_3795_10e 500 0 0 

7 BMC_03_3795_10f 10 0 0 

8 

 

BMC_03_3795_11a >1000 0 0 

9 

 

BMC_03_3795_11b 100 0 0 

10 

 

BMC_03_3795_12d >1000 0 0 

11 

 

BMC_03_2061_03a 0.5 1 0 
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Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

12 BMC_03_2061_03b >1000 0 0 

13 

 

BMC_03_2061_03c 0.3 1 1 

14 

 

BMC_03_2061_03d 1000 0 0 

15 

 

BMC_03_2061_03e 1 1 0 

16 

 

BMC_03_2061_03f 1000 0 0 

17 

 

BMCL_02_3333_03c 10 0 0 

18 

 

BMC_03_2061_03h 50 0 0 

19 

 

BMC_03_2061_03i 1 1 0 

20 

 

BMC_03_2061_03j >1000 0 0 
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Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

21 

 

BMC_03_2061_03k 0.8–1.0 1 1 

22 

 

BMC_03_2061_04a 0.8 1 0 

23 

 

BMC_03_2061_04b 100 0 1 

24 

N

N
O

OO

O

O

O

 

BMC_03_2061_09k 10 0 0 

25 

 

JMC_03_2254_02 0.3 1 0 

26 N

N

O

O

O
N

JMC_03_2254_03 6 0 0 

27 

 

JMC_03_2254_05a 1000 0 1 

28 

 

JMC_03_2254_05b 0.1 1 1 
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Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

29 

 

JMC_03_2254_06a 15 0 0 

30 

 

JMC_03_2254_06b 0.5 1 0 

31 

 

JMC_03_2254_05c 0.2 1 0 

32 

 

JMC_03_2254_06c 8.0 0 0 

33 

 

JMC_03_2254_16a 10 0 1 

34 

 

JMC_03_2254_17a 500 0 0 

35 

 

JMC_03_2254_02 0.5 1 1 

36 

 

BMCL_02_3333_02 >1000 0 0 

37 

 

BMCL_02_3333_03 200 0 0 
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Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

38 

 

BMCL_02_3333_04a 0.3 1 1 

39 

 

BMCL_02_3333_04b 1000 0 0 

40 

 

BMCL_02_3333_04c 30 0 0 

41 

 

BMCL_02_3333_04d 1.0 1 0 

42 

 

LDDD_04_198_01 0.03 1 0 

43 

 

LDDD_04_198_02 2.0 0 0 

44 

 

LDDD_04_198_03 2.0 0 0 

45 BMC_04_3731_03a 9 0 0 
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Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

46 

 

BMC_04_3731_03b 6 0 0 

47 

 

BMC_04_3731_03c 2 0 0 

48 

N

N

O

O

O

NO2

N

BMC_04_3731_03d >300 0 0 

49 BMC_04_3731_04a 100 0 0 

50 

 

BMC_04_3731_04b 12 0 0 

51 

 

BMC_04_3731_04c 6 0 0 

52 BMC_04_0795_04 >300 0 0 

53 BMC_04_3731_05 10 0 0 
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Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

54 

 

BMC_04_0795_01b 0.3 1 0 

55 

 

BMC_04_0795_01f 0.2 1 1 

56 

 

BMC_04_0795_01g 2.0 0 0 

57 

 

BMC_04_0795_01h 20 0 0 

58 BMC_04_0795_03 10 0 0 

59 BMC_04_0795_02 >1000 0 0 

60 

 

BMC_04_0795_04 0.8 1 1 

61 

 

BMC_04_0795_05 5 0 0 

62 

 

BMC_05_6782_07c 1.0 1 0 
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Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

63 BMC_05_6782_07d 8 0 0 

64 

N

O

O

H
N

O

O

O
N

 

BMC_05_6782_08 0.6 1 1 

65 

 

BMC_05_6782_09c 0.4 1 0 

66 

 

BMC_05_6782_09d 10 0 0 

67 

 

BMC_05_6782_09e 0.7 1 1 

68 

 

BMC_05_6782_09f 12 0 0 

69 

N

O

O

H
N

O

O

O
N

 

BMC_05_6782_09g 60 0 0 



Molecules 2012, 17 4575 

 

 

Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

70 

 

BMC_05_6782_09h 0.6 1 1 

71 

 

BMC_05_6782_09i 1.5 0 0 

72 

 

BMC_05_6782_09j 0.3 1 1 

73 

N

O

OO

O

ON
N

N

BMC_05_6782_10 3 0 1 

74 

 

BMC_06_3131_10c 1.2 0 0 

75 

 

BMC_06_3131_10d 0.07 1 1 

76 

 

BMC_06_3131_10g 9 0 0 



Molecules 2012, 17 4576 

 

 

Table 6. Cont. 

No Chemical structure Name 

REC TOP-I 
mediated DNA 

cleavage 
(Experimental) 

TOP-I 
Active/ 
Inactive 

TOP-I 
classified result 
from final SVM 

model 

77 

 

BMC_06_3131_10i 0.45 1 1 

78 

 

BMC_06_3131_10j >100 0 0 

79 

 

BMC_06_3131_10f 3 0 0 

80 

 

BMC_06_3131_10k 13 0 0 

81 

 

BMC_06_3131_10l 0.35 1 1 

82 

 

BMC_06_3131_10m 0.15 1 1 

3.2. Training and Test Sets 

The training and test sets were generated by random division. Firstly, a set of nine compounds was 

selected and not used to develop the models. These compounds were separated from the others and 

considered as external set. The remaining analogues were split randomly for five times into 80% for 
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training sets and 20% for test sets using the R software [30,31]. The numbers of compounds in each 

subset are presented in Table 7. 

Table 7. BCPs datasets division. 

Dataset Total compounds Actives a Inactives b 
Whole set 82 24 58 

Training set 58 15 43 
Test set 15 5 10 

External set 9 4 5 
Application set (External set 2) 10 7 3 

a Actives: Compounds whose activity is equal or stronger than topotecan; b Inactives: compounds 
whose activity is weaker than topotecan. 

3.3. Molecular Descriptors and Feature Selection 

The Dragon software was applied to calculate 2,032 molecular descriptors [32,33]. In this study, 

several feature selection algorithms were performed to reduce dimensionality of descriptor space. 

Firstly, chemical descriptors only containing the value of zero were eliminated before using the 

mathematic methods. Only 533 descriptors were selected for next steps. In addition, highly correlated 

descriptors (r > 0.90) were removed to avoid redundancy and to manage the data more efficiently in 

terms of computation resources and intuitive perception of the chemical space. A total of 103 descriptors 

were selected and scaled to unit variance to be used as input value to SVMs. Finally, three feature 

selection methods namely mRMR (Max-Relevance, Min-Redundancy), GA (genetic algorithm) and RF 

(random forest) were applied in order to select the optimum set for the molecular descriptors [30,34]. 

3.4. Support Vector Machine 

Support vector machine (SVM), the most successfully applied new classification algorithms, were 

introduced to the machine learning community by Vapnik. Smola and Schölkopf provided an extensive 

tutorial on SVMs [30–34]. The underlying idea of an SVM classifier is to map linearly inseparable 

input data into a higher dimensional space where the data can be linearly separated, using a maximal 

separating hyperplane. Support Vector Machines (SVM) is the classification system based on the 

supervised learning approach. In this study, SVM algorithm in the e1071 package in R with Kernel 

function was used [30,31]. The strategies for the SVM classification model are shown in Figure 2. 

Selection of optimal parameters of Kernel function: RBF Kernel function has two parameters  

(C and γ) and the selection of these parameters is one of two critical issues to develop the good SVM 

model (the other is the feature selection) [35–37]. To find the optimal parameters, an algorithm Grid 

(function tune in R) is made following the process described in Figure 3. The training set and test set 

are used to find a pair of optimal parameters (C and γ) of the Kernel function. Pairs of parameters were 

tested in intervals reduced step by step an algorithm Grid. The pair is chosen when the error of cross 

validation is minimal [30,34]. 
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Figure 2. Process of SVM classification model. 

 

Figure 3. Selection of optimal parameters of Kernel function using Grid algorithm. 

 

3.5. Evaluation Criteria for Classification Model 

Performance of the SVM models was measured by using standard parameters for classification 

models [18,19,38–40]. They are described as follows:  
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(i) The overall classification accuracy of a prediction model, accuracy = (tp + tn)/(tp + fp + tn + fn),  

(ii) Sensitivity (recall, accuracy on actives) = tp/(tp + fn),  

(iii) Specificity (accuracy on inactives) = tn/(tn + fp),  

(iv) Precision on actives = tp/(tp + fp),  

(v) Precision on inactives = tn/(tn + fn) and, 

(vi) Matthews correlation coefficient (MCC): 

    FNTNFPTNFNTPFPTP

FPxFNTPxTN
C




  

The quality of a classification model is generally measured by using these parameters, which are 

estimated for the whole set and by applying a cross-validation protocol based on a leave-one-out 

(LOO) procedure. In all equations, tp = number of true positives, tn = number of true negatives,  

fp = number of false positives, and fn = number of false negatives. 

4. Conclusions  

In this study, the SVM was used to build up a model for prediction and classification of 73 BCP 

analogues based on their anti-topoisomerase-1 activity. The best model was derived from the  

SVM-e1071 package in R with the optimal settings of the Kernel function (C = 4, γ = 0.25) and the set 

of descriptors selected by RF method. This final SVM model is able to correctly predict the  

anti-topoisomerase activity for 93% of compounds in the training set and 87% of those in a test set. It 

was also validated on external sets not involving in the dataset used with the developed model and then 

on the application set. Total accuracies of 89% (the prediction is correct for eight out of nine 

compounds) and 80% (the prediction is correct for eight out of 10 compounds) were obtained for the 

external set and application sets, respectively. Furthermore, this model has also proved its ability to 

classify correctly BCP analogues that have the positive activity, with an accuracy from 80 to 100% 

overall. With its high accuracy (80–90%), fast and accurate prediction on the substances having 

positive activity, our SVM model could be applied to look for and design new analogues of BCPs with 

higher topoisomerase I inhibitory activity.  
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