Molecules 2012, 17(4), 4435-4451; doi:10.3390/molecules17044435

Investigation on the Protective Effects of Cranberry Against the DNA Damage Induced by Benzo[a]pyrene

1 Institute of Health Sciences, Autonomous University of Hidalgo State, Ex-Hacienda de la Concepción. Pachuca, Hidalgo, 42080, Mexico 2 Laboratory of Biochemistry and Experimental Medicine, Division of Biomedical Research, National Medical Center “20 de Noviembre”, ISSSTE. México D.F., 03229, Mexico 3 Faculty of Dentistry, School Circuit S/N. UNAM. México D.F., 04510, Mexico 4 Secretary of Research and Graduate Studies, Autonomous University of Nayarit, “City of the culture Amado Nervo”, Boulevard Tepic-Xalisco S/N. Tepic, Nayarit, 28000, Mexico 5 National School of Biological Sciences, IPN. Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. México D.F., 07700, Mexico
* Author to whom correspondence should be addressed.
Received: 27 February 2012; in revised form: 19 March 2012 / Accepted: 20 March 2012 / Published: 12 April 2012
PDF Full-text Download PDF Full-Text [205 KB, Updated Version, uploaded 16 April 2012 09:48 CEST]
The original version is still available [223 KB, uploaded 12 April 2012 11:12 CEST]
Abstract: There are few reports that demonstrate the antigenotoxic potential of cranberries. Although the types of berry fruits consumed worldwide are many, this paper focuses on cranberries that are commonly consumed in Mexico (Vaccinium macrocarpon species). The purpose of the present study is to determine whether cranberry ethanolic extract (CEE) can prevent the DNA damage produced by benzo[a]pyrene (B[a]P) using an in vivo mouse peripheral blood micronucleus assay. The experimental groups were organized as follows: a negative control group (without treatment), a positive group treated with B[a]P (200 mg/kg), a group administered with 800 mg/kg of CEE, and three groups treated with B[a]P and CEE (200, 400, and 800 mg/kg) respectively. The CEE and benzo[a]pyrene were administered orally for a week, on a daily basis. During this period the body weight, the feed intake, and the determination of antigenotoxic potential were quantified. At the end of this period, we continued with the same determinations for one week more (recovery period) but anymore administration of the substances. The animals treated with B[a]P showed a weight increase after the first week of administration. The same phenomenon was observed in the lots combined with B[a]P and CEE (low and medium doses). The dose of 800 mg/kg of CEE showed similar values to the control group at the end of the treatment period. In the second part of the assay, when the substances were not administered, these experimental groups regained their normal weight. The dose of CEE (800 mg/kg) was not genotoxic nor cytotoxic. On the contrary, the B[a]P increases the frequency of micronucleated normochromatic erythrocytes (MNNE) and reduces the rate of polychromatic erythrocytes (PE) at the end of the treatment period. With respect to the combined lots, a significant decrease in the MN rate was observed from the sixth to the eighth day of treatment with the two high doses applied; the highest protection (60%) was obtained with 800 mg/kg of CEE. The same dose showed an anticytotoxic effect which corresponded to an improvement of 62.5% in relation to the animals administered with the B[a]P. In the second period, all groups reached values that have been seen in the control group animals. Our results suggest that the inhibition of clastogenicity of the cranberry ethanolic extract against B[a]P is related to the antioxidant capacity of the combination of phytochemicals present in its chemical composition.
Keywords: cranberries; benzo[a]pyrene; micronucleus assay; antigenotoxic effect

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Madrigal-Santillán, E.; Fragoso-Antonio, S.; Valadez-Vega, C.; Solano-Solano, G.; Pérez, C.Z.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Gutiérrez-Salinas, J.; Esquivel-Soto, J.; Esquivel-Chirino, C.; Sumaya-Martínez, T.; Fregoso-Aguilar, T.; Mendoza-Pérez, J.; Morales-González, J.A. Investigation on the Protective Effects of Cranberry Against the DNA Damage Induced by Benzo[a]pyrene. Molecules 2012, 17, 4435-4451.

AMA Style

Madrigal-Santillán E, Fragoso-Antonio S, Valadez-Vega C, Solano-Solano G, Pérez CZ, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Gutiérrez-Salinas J, Esquivel-Soto J, Esquivel-Chirino C, Sumaya-Martínez T, Fregoso-Aguilar T, Mendoza-Pérez J, Morales-González JA. Investigation on the Protective Effects of Cranberry Against the DNA Damage Induced by Benzo[a]pyrene. Molecules. 2012; 17(4):4435-4451.

Chicago/Turabian Style

Madrigal-Santillán, Eduardo; Fragoso-Antonio, Sonia; Valadez-Vega, Carmen; Solano-Solano, Gloria; Pérez, Clara Zúñiga; Sánchez-Gutiérrez, Manuel; Izquierdo-Vega, Jeannett A.; Gutiérrez-Salinas, José; Esquivel-Soto, Jaime; Esquivel-Chirino, César; Sumaya-Martínez, Teresa; Fregoso-Aguilar, Tomas; Mendoza-Pérez, Jorge; Morales-González, José A. 2012. "Investigation on the Protective Effects of Cranberry Against the DNA Damage Induced by Benzo[a]pyrene." Molecules 17, no. 4: 4435-4451.

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert