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Abstract: Polypharmacy increasingly has become a topic of public health concern, 

particularly as the U.S. population ages. Drug labels often contain insufficient information 

to enable the clinician to safely use multiple drugs. Because many of the drugs are  

bio-transformed by cytochrome P450 (CYP) enzymes, inhibition of CYP activity has long 

been associated with potentially adverse health effects. In an attempt to reduce the 

uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency 

collaborative group developed a consensus approach to prioritizing information concerning 
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CYP inhibition. The consensus involved computational molecular docking, spectral  

data-activity relationship (SDAR), and structure-activity relationship (SAR) models that 

addressed the clinical potency of CYP inhibition. The models were built upon chemicals 

that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme.  

The categorization was carried out using information from clinical trials because currently 

available in vitro high-throughput screening data were not fully representative of the  

in vivo potency of inhibition. During categorization it was found that compounds, which 

break the Lipinski rule of five by molecular weight, were about twice more likely to be 

inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors 

that break the rule, potent inhibitors were 2–3 times more frequent. The molecular docking 

classification relied on logistic regression, by which the docking scores from different 

docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were 

combined in a unified probabilistic model. The SDAR models employed a multiple linear 

regression approach applied to binned 1D 13C-NMR and 1D 15N-NMR spectral descriptors. 

Structure-based and physical-chemical descriptors were used as the basis for developing 

SAR models by the decision forest method. Thirty-three potent inhibitors and 88 weak 

inhibitors of CYP3A4 were used to train the models. Using these models, a synthetic 

majority rules consensus classifier was implemented, while the confidence of estimation 

was assigned following the percent agreement strategy. The classifier was applied to a 

testing set of 120 inhibitors not included in the development of the models. Five 

compounds of the test set, including known strong inhibitors dalfopristin and tioconazole, 

were classified as probable potent inhibitors of CYP3A4. Other known strong inhibitors, 

such as lopinavir, oltipraz, quercetin, raloxifene, and troglitazone, were among 18 

compounds classified as plausible potent inhibitors of CYP3A4. The consensus estimation 

of inhibition potency is expected to aid in the nomination of pharmaceuticals, dietary 

supplements, environmental pollutants, and occupational and other chemicals for in-depth 

evaluation of the CYP3A4 inhibitory activity. It may serve also as an estimate of chemical 

interactions via CYP3A4 metabolic pharmacokinetic pathways occurring through 

polypharmacy and nutritional and environmental exposures to chemical mixtures. 

Keywords: structure-activity relationship; SAR; QSAR; SDAR; docking; molecular 

modeling; inhibitor; CYP3A4; drug-drug interaction; drug-chemical interaction; DDI; DDCI 

 

1. Introduction 

Life is an open biological system of co-interacting chemicals, i.e., it is a mixture of chemicals that is 

continuously exposed to ambient chemicals through respiratory, ingestive, and transdermal intake. 

Although toxicological or pharmacological effects are commonly associated with a single chemical, 

exposure to a single chemical entity does not take place. Instead, people are exposed to a mixture of 

drugs, nutrients, and environmental pollutants simultaneously. The magnitude of systemic health 

effects caused by exposure to a chemical mixture could be additive if the components of the mixture 
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act independently or non-additive if appreciable interactions between at least some of the components 

take place [1]. When chemical interactions take place, the estimation of joint response from the known 

responses to individual components of the mixture and their interactions becomes a problem of 

combinatorial complexity. Dosage of individual components (“dose makes the poison”), duration of 

exposure, and the intrinsic strength of interactions between the chemicals are some of the factors 

determining the overall clinical manifestation. Often at low doses, when biochemical pathways are far 

from saturation, the interactions are additive. Additivity is typical of long-term systemic exposures to 

environmental pollutants at hazardous waste sites [1,2]. However, the magnitude of the response to an 

otherwise low-hazard dose or exposure may change dramatically if the dosage of even one component 

in an exposure mixture is significantly increased (e.g., a medication is administered) [3]. 

Exacerbated effects of drug/environment interactions are encountered in the rapidly growing 

subpopulation of elderly because: (1) body functions steadily diminish and physiological sensitivity 

increases as aging progresses; (2) pre-existing chronic conditions are common and multiple, and they 

are being treated by chronic administration of multiple drugs; and (3) contaminants that are lipophilic 

or stored in bone tissue are being released as bone density and the overall fat slowly dissipate with the 

increasing age of seniors [4]. The released contaminants may result from: (1) past exposures, including 

occupational; and (2) exposures to persistent pollutants that are now banned, such as lead in gasoline, 

dichloro-diphenyl-trichloroethane (DDT), polychlorinated biphenyls (PCBs), and polychlorinated 

dibenzo-dioxins (PCDDs) [5,6]. 

Due to polypharmacy, drug-drug/chemical interactions (DDCIs) may be responsible for many 

detrimental health effects, yet at present their unequivocal characterization is difficult during the 

preclinical evaluation stage of drug development. Because many drugs are metabolized by cytochrome 

P450 (CYP) enzymes, other concurrently administered drugs, nutrients, and environmental pollutants 

that bind to these enzymes may alter blood and tissue concentration of the drug and, therefore, increase 

the potential for adverse health effects [7–13]; this circumstance is especially important for drugs with 

narrow therapeutic indices. Such DDCIs can either increase or decrease the metabolic activity of a 

CYP enzyme, much like genetic polymorphisms alter patient’s enzymatic activity. 

As a part of the microsomal mixed-function oxidase (MFO) enzyme system, CYP enzymes 

comprise a large group of multifunctional heme-thiolate monooxygenases involved in phase I 

metabolism. The activity of CYP enzymes is regulated at multiple levels. First, there are multiple 

binding sites on some, if not all, CYPs [14]. Effector molecules bound to these sites may activate or inhibit 

the catalysis. Competitive, non-competitive, and mixed inhibition of CYP enzymes can occur [15,16]. 

Next, the CYP catalytic cycle requires a transfer of two electrons that are delivered by the NADPH 

regeneration system. Components of this system include NADPH-CYP reductase as a primary 

component, and at least cytochrome b5 and NADH-cytochrome b5 reductase [17]. Altering the electron 

transfer or oxygenation may also affect the CYP activity. The macroscopic rate of catalysis depends on 

enzyme concentration. Therefore, CYP inducers, blockers, and dependent nuclear factors play an 

important role in CYP metabolism. The concentration of substrate available for oxidation often 

depends on the active transport of substrate to endoplasmic reticulum. Induction and inhibition of 

transporters is another mechanism that controls DDCIs [18]. In addition, other pharmacokinetic 

factors, dosage, partial overlap of CYP phenotypes, sequential metabolism, and unaccountable or 

unknown factors may affect the apparent in vivo drug inhibition and DDCIs. 
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The complex picture of apparent (e.g., clinical) CYP inhibition represents a challenge for 

unambiguous in vitro-to-in vivo extrapolation [19,20]. Recommendations for “dosing and labeling,” 

formulated by the U.S. Food and Drug Administration (FDA) in vetted [21] and draft [18] documents, 

describe distinctions between the clinical pharmacokinetic- (in vivo) and in vitro-derived information. 

The pharmacokinetic picture of DDCIs is more complex. Many DDCIs are transient and context 

dependent, so they only apply under specific time frames, doses, or other environmental or genetic 

conditions. This information may or may not be on a drug label, especially when the drug is first 

released on the market and full understanding of its therapeutic mode of action and contraindications is 

still emerging. Often, it takes years after the drug is released on the market to find out the optimal 

dosage, contra-indications, or both—a process that may involve multiple passes between the clinic, 

FDA, and industry, conjugated to iterative revisions of the drug label, before an optimal and safe 

regimen of drug administration is established [22]. Because DDCIs are dose and time dependent,  

a DDCI may occur when the putatively interacting substances are administered around the same time, 

but not when they are administered several hours apart. Similar considerations would apply to the 

route of administration; recently it was pointed out that “contraindications with intravenous midazolam 

are inconsistent” [23]. However, “oral midazolam has the most potential for serious reactions. Because 

of the high first-pass metabolism with oral midazolam, higher doses are often used. When first-pass 

metabolism is inhibited, the amount of drug reaching the system is much higher” [23]. To help with  

the initial assessment of putative DDCIs in which new drugs may be involved, the FDA documents 

also formulate guidance to using in vitro data for the purpose of drug labeling [21] (also, see the 

Experimental Section). We are unaware of statistics about drug labels on which the in vitro 

information is present, but it is known that some DDCIs observed in vitro are not clinically significant, 

while others observed in vivo are not captured by in vitro methods [24]. The scientific literature rises a 

concern that DDCI warnings on some drug labels may be ineffective [22,23,25–28]. Van der Sijs et al. [28] 

have suggested that European drug labels may contain “false positive” alerts (from the clinician point 

of view, also known as clinician’s “alert fatigue” [29]) and that “these alerts should be further 

evaluated for possible improvements in specificity, information content or handling efficiency” [28]. 

According to a meta-analysis study from the same author, clinicians override up to 96% of drug safety 

alerts [25–27]. To tackle the problem, some health care providers develop their own electronic clinical 

decision support systems (incorporated in the computerized provider order entry systems as a part of 

electronic medical record systems), while others use DDCI information formulated by proprietary 

third-party vendors [30–32]. To reduce the effect of false-positive alerts on in silico modeling, the 

present work relied on inhibition potency knowledge from similar clinically relevant sources [32,33]. 

A reliable clinically-relevant in silico DDCI system of alerts has the potential to become an effective  

risk-management alternative compared with in vitro testing. 

Extrapolation from preclinical results is intricate. Currently, high-throughput screening (HTS) is 

often used in drug development. The HTS data are usually collected from in vitro microsomal 

bioassays in which: (1) an ersatz MFO system is reconstructed from recombinant components [34];  

(2) a chemical derivative of luminescent beetle luciferin (which is converted by CYP to luciferin) is 

used as a substrate; and (3) libraries of drugs and drug-like compounds, perhaps, synthesized in the 

process of drug discovery, are tested for activity of CYP inhibition, activation or both. In an HTS 

experiment, the rate of substrate conversion to products may either increase (activation) or decrease 
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(inhibition), or either remain unaffected or mutually contradictory at multiple concentrations of the 

tested compound (inconclusive). The activity is usually expressed by a concentration of the tested 

compound, which changes the rate of reaction at a specified concentration of substrate by 50%. This is 

an inhibition constant of 50% (IC50) if the activity is decreased. By theory (see the Experimental 

Section), IC50 itself is inappropriate for in vivo inference; however, it can be related to in vivo health 

effects under certain assumptions if the physiological concentration of the inhibitor (drug or other 

chemical) in microsomes of the liver is known. Unfortunately, the latter is difficult to appropriately 

determine prior to clinical trials. 

The first and potentially most severe DDCIs observed in the clinic are expected to be caused by 

strong binders to phase I enzymes involved in drug metabolism. Potentially, any chemical that is 

metabolized by, or inhibits, CYP P450 enzymes can competitively inhibit the same enzyme 

metabolism of other drugs or chemicals. CYP3A4 is the most abundant CYP P450 isoform in the 

human liver, constituting 30–40% of the total amount of spectroscopically detectable CYP P450 

enzymes [35,36]; the amount of hepatic CYP3A4 can be even further increased by induction as much 

as 60% [37]. It is also the dominant CYP isoform in the small intestine, comprising more than 80%  

on the enteric-CYP pie chart [36]. It biotransforms endobiotics such as steroids, fatty acids, 

prostaglandins, lipid-soluble vitamins, and many structurally diverse xenobiotics, including drugs, 

carcinogens, and environmental pollutants [38]. Overall, it is responsible for the metabolism of nearly 

50% of known drugs on the market [39]. Among steroids, hepatic CYP3A4 catabolizes testosterone, 

progesterone [40], and, together with CYP1A2, as much as 80% of estradiol [41,42]. In this way, 

CYP3A4 contributes to regulation of endocrine homeostasis. Changes in the levels of reproductive 

hormones and their metabolites are associated with a gamut of physiologic and adverse health effects [43], 

ranging from changes in physical appearance to cancers [41–46]. Inhibition and transcriptional 

modulation of CYP3A4 activity by drugs and environmental pollutants (such as DDT, PCBs, and 

PCDDs) may inadvertently affect these processes by changing the levels of steroid hormones and their 

metabolites [47,48]. The effects of interference of drugs and environmental pollutants with steroid 

metabolism may be more significant among special populations. For instance, the activity of CYP3A4 

is greater among the residents of Danish Faroe Islands who are dietary exposed to high levels of PCBs 

and other persistent organohalogen pollutants through traditional consumption of pilot whale blubber [5]. 

Consistent with its importance, extensive modeling efforts have been made to identify compounds that 

inhibit the CYP3A4 activity [33,49–51]. Efforts have been made to estimate the IC50 of in vitro 

inhibition of CYP3A4 by chemical compounds using quantitative structure-activity relationship (QSAR) 

modeling [51,52]. However, we are unaware of attempts to model the in vivo strength of inhibition. 

Kinetic and crystallographic studies reveal unusually wide substrate adaptability of CYP3A4, which 

makes it susceptible to inhibition by a wide variety of chemical groups, and, consequently, difficult to 

model chemical interactions. Chemicals can act as inducers, effectors, substrates, or inhibitors of 

CYP3A4 [53], which makes accurate modeling even more challenging. Therefore, using information 

from clinical trials, we developed multiple in silico models of chemical binding and inhibition of the 

CYP3A4 isozyme, which can be used to estimate in vivo DDCIs. 

Each method targets different features of the chemicals or drugs: Spectral data-activity relationship 

(SDAR) modeling relates nuclear magnetic resonance (NMR) spectra to its activity [54]; structure-activity 

relationship (SAR) estimates its activity by sub-structural fragments, physical-chemical properties or 
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both [52]; and molecular docking combined with logistic regression (DLR) targets the intimate details 

of protein-ligand interactions [55,56]. We also aimed to gain from the consensus of these in silico 

models instead of relying on a single method. These models of DDCIs may be useful for regulatory 

agencies and public health because they provide a priori estimates of DDCIs before they are 

introduced into patients [57]. 

2. Results and Discussion 

2.1. Comparison of in-Vitro-Bioassay and Clinical Data 

With the advances in laboratory robotic technologies, increasing attention has been drawn to CYP 

HTS data and its use in DDCI model development [52,57–65]. FDA recommends using these data at 

the drug-development stage but the final drug labeling is based on clinical trial data [18]. Therefore,  

it is of interest to compare the HTS bioassay and clinical inhibition data (since the latter were used for 

supervised machine learning in the present work). 

The data from two HTS bioassays for CYP3A4 inhibition were available in the PubChem™ 

database [66], assay identification numbers (AIDs) 884 [67,68] and 1851 [67,68]. AID 1851 was a 

combined bioassay with inhibition data for five CYP isoforms, including 3A4; both bioassays covered 

large chemical libraries. AID 884 tested 14,155 substances for 13,072 compounds [67,68], and AID 

1851 tested 17,143 substances for 16,555 compounds [67,68]. However, many tested compounds were 

not on the list of FDA-approved drugs. Presumably, these non-drugs were compounds rejected at the 

research and development stages of the drug discovery process. Fewer than 7% of the compounds in 

AID 1851 have been identified in PubChem™ as drugs, and no compounds have been tagged as drugs 

in AID 884. A query of the bioassays with a 121-compound dataset of the present work revealed that 

only 46 and 34 of them were present in the libraries of AIDs 884 and 1851, respectively. Extrapolation 

from these numbers (7/100 × 16555 × 46/34/13072) suggests that about 12% of drugs may be present 

in AID 884, assuming equal ratios of the overlap between our database and the subsets of drugs in each 

of the bioassays. Consequently, FDA-approved drugs were poorly represented in each of the bioassays. 

A tested outcome of the AID 1851 bioassay was “whether a compound inhibited pro-luciferin 

conversion with any of the five isozymes” [67]. Our reanalysis of the raw kinetic data recorded in 

PubChem™ for the aforementioned 34 chemicals did not provide additional information (as compared 

with AID 884). Therefore, only the outcomes of AID 884 were used for the comparative analysis 

presented in Table 1. In AID 884, the dose-response curve has been constructed using a luciferin-

labeled CYP3A4 substrate (6'-phenylpiperazinylyl) [68]. For most chemicals, the dose-response curve 

has been measured only once. Multiple curves were only present for chemicals obtained from more 

than one vendor. For these chemicals, a mean IC50 and its 95% confidence interval (CI) were 

calculated. For single-curve chemicals, a single-point IC50 value (as given by the dose-response curve) 

and a mean CI, averaged over all multiple-curve CIs, were applied. 
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Table 1. Extrapolation from in vitro bioassay to in vivo pharmacokinetic CYP3A4 inhibition data, and data categorization. 

Name 
Clinical *

Category

IC50 (95% CI), 

AID #884 (µM) 
MRDD BA (%) R-1 (95% CI) C-1

BA-

ADME 
R-2 (95%CI) C-2 R-3 (95% CI) C-3 Cmax (µM) R-4 (95%CI) C-4 

clotrimazole P 0.07 (0.00,0.17) 6.67 ‡ [69] 100 280.33 (115.25,∞) P 30–70 196.53 (80.98,∞) P 280.33 (115.25,∞) P 0.087 [70] 2.26 (1.51,∞) ND 

isoniazid P 9.92 (0.00,26.37) 15 [71] 80 [72,73] 12.03 (5.15,∞) P >70 12.03 (5.15,∞) P 12.03 (5.15,∞) P 76.61 [70] 8.73 (3.91,∞) P 

diltiazem P 3.98 (0.00,10.88) † 8 [74] 38 [72,73] 2.84 (1.67,∞) ND <30 2.45 (1.53,∞) ND 5.85 (2.77,∞) P 0.356 [70] 1.09 (1.03,∞) ND 

ketoconazole P 0.13 (0.00,7.03) † 8 [75] 50 [76] 60.79 (2.07,∞) P 30–70 84.70 (2.50,∞) P 120.58 (3.14,∞) P 7 [77] 56.60 (2.00,∞) P 

glibenclamide W 5.99 (0.00,12.80) 0.29 [78] 80 [72,73] 1.08 (1.04,∞) ND 30–70 1.07 (1.03,∞) ND 1.10 (1.05,∞) ND 0.2 [77] 1.03 (1.02,∞) ND 

methoxsalen W 10.50 (3.39,17.61) 0.6 [74] 26 [79] 1.07 (1.04,1.21) W >70 1.26 (1.16,1.82) ND 1.26 (1.16,1.82) ND 0.184 [80] 1.02 (1.01,1.05) ND 

omeprazole W 10.00 (3.10,16.9) † 2 [74] 47 [72,73] 1.27 (1.16,1.88) W 30–70 1.41 (1.25,2.31) W 1.58 (1.34,2.87) W    

clemastine W 5.01 (0.00,13.48) 0.134 [81] 37 [72,73] 1.03 (1.01,∞) ND 30–70 1.05 (1.02,∞) ND 1.08 (1.03,∞) ND 0.00233 [82] 1.00 (1.00,∞) ND 

dexmedetomidine W 0.16 (0.00,7.06) † 0.2 ‡ [83] 100 7.30 (1.14,∞) ND 30–70 5.71 (1.10,∞) ND 7.30 (1.14,∞) ND    

lansoprazole W 20.48 (7.63,33.33) 0.5 [74] 81 [72,73] 1.05 (1.03,1.14) ND 30–70 1.05 (1.03,1.12) ND 1.07 (1.04,1.18) ND 1.92 [84] 1.09 (1.06,1.25) ND 

nifedipine W 11.29 (7.70,14.88) 1.71 [85] 50 [72,73] 1.22 (1.17,1.32) ND 30–70 1.31 (1.23,1.45) ND 1.44 (1.33,1.64) W 0.027 [86] 1.00 (1.00,1.00) ND 

pilocarpine W 15.85 (8.95,22.75) † 0.5 [74]    <30 1.05 (1.03,1.08) ND 1.15 (1.11,1.27) ND 0.099 [70] 1.01 (1.00,1.01) ND 

mitoxantrone W 25.12 (18.22,32.02) † 2 ‡ [87] 100 1.18 (1.14,1.25) ND <30 1.05 (1.04,1.07) ND 1.18 (1.14,1.25) ND 0.36 [70] 1.01 (1.01,1.02) ND 

irbesartan W 15.85 (8.95,22.75) † 5 [74] 70 [72,73] 1.52 (1.36,1.91) W 30–70 1.52 (1.36,1.91) W 1.74 (1.51,2.30) W 7.98 [88] 1.50 (1.35,1.89) W 

losartan W 19.95 (13.05,26.85) † 1.67 [74] 36 [72,73] 1.07 (1.05,1.11) ND 30–70 1.14 (1.10,1.21) ND 1.20 (1.15,1.30) ND 0.596 [89] 1.03 (1.02,1.05) ND 

sildenafil W 10.00 (3.10,16.9) † 1.67 [74] 38 [72,73] 1.13 (1.08,1.43) ND 30–70 1.25 (1.15,1.79) ND 1.35 (1.21,2.14) ND 0.447 [90] 1.04 (1.03,1.14) ND 

pergolide W 12.59 (5.69,19.49) † 0.05 [74] 38 [72,73] 1.00 (1.00,1.01) ND <30 1.00 (1.00,1.01) ND 1.01 (1.01,1.03) ND    

* P = potent inhibitor, W = weak inhibitor; † only a single measurement was available for this chemical, therefore an average error bar for multiple measurements of ±6.9 µM was applied; 

MRDD: Maximum recommended daily dose in units of mg/kg/day per oral administration, except when labeled with ‡, which denotes intravenous administration; BA: bioavailability;  

BA-ADME: BA calculated using the Human Oral Bioavailability module of the ACD/ADME™ suite, and then the greatest BA in the range was used for calculating R; Cmax: in vivo peak 

plasma concentration of inhibitor; R: in vivo AUC fold change; R-1: R extrapolated from the reference MRDD and BA using Equation 6; R-2: R calculated using BA-ADME;  

R-3: R calculated assuming BA of 100%; R-4: R extrapolated from Cmax; C-1, -2, -3, -4: Inhibitor categorization based on R-1, -2, -3, -4, respectively. 



Molecules 2012, 17 3414 

 

As shown in Table 1, CIs on the IC50 values were large. A 95% CI exceeded the mean for 71% of 

the 17 analyzed drugs. For inhibitors with low IC50 values, which included the potent inhibitors, the 

statistics was even poorer: A CI exceeded the mean for 100% of inhibitors with IC50 < 10 µM. 

Obviously, the power of analyzed HTS data was hardly sufficient for making inferences, which 

highlights the importance of study design in HTS experiments and suggests that a single-point cut-off 

on IC50 [58,91] is inappropriate for categorizing HTS data. 

Two kinds of changes in activity were observed in the HTS bioassay: Compounds with positive 

activity readings, which increased the rate of catalysis of the test substrate, have been categorized as 

activators; compounds with negative activity readings have been categorized as inhibitors.  

The dose-response curve has been interpreted in PubChem™ for 19 of the 46 drugs of the training set 

covered by AID 884, while the kinetics results for 27 drugs have been inconclusive. Of the 19 drugs, 

17 were inhibitors and two were activators. These numbers suggest an approximate 10% mismatch 

between the clinical and HTS inhibition data (because all drugs recruited in the present study were 

categorized as inhibitors based on clinical reports). 

In vitro IC50 values have been reported for many compounds in the AID 884 bioassay, but their 

relation to in vivo inhibition has not been determined. To map the in vitro data to clinically observable 

in vivo bioactivity, the IC50 values were extrapolated to pharmacokinetically relevant quantities. 

Following the FDA guidance [18], a ratio, R, of the inhibited area-under-the-curve (AUC) to 

uninhibited AUC was used to quantify the in vivo inhibition activity. The extrapolation was carried out 

using Equation 6 provided in the Experimental Section. Two approaches were conducted to estimate 

the physiological concentration of the inhibitor: One by the maximum recommended daily dose 

(MRDD) and bioavailability, and another by the greatest reported clinical plasma peak concentration, 

Cmax, which was taken as the maximum hepatic inlet concentration. The results of calculations and 

subsequent categorization are presented in Table 1. A threshold of 2 on R was applied for inhibition 

strength categorization. Drugs with R > 2 were categorized as potent inhibitors (P = “strong” ∪ 

“moderate”), while those with 1.25 ≤ R ≤ 2 as weak inhibitors (W). Compounds with R lower than a 

threshold of 1.25 were considered to be irrelevant to clinical manifestations of CYP3A4 inhibition. 

An agreement between the in vivo and in vitro categorization was poor. More than half of the  

in vitro inhibitors could not be categorized. The categorization was not feasible either because the CI 

was crossing a threshold on R or because the calculated R was outside the range of in vivo inhibition. 

When reported bioavailability values were used for calculating R-1, three of four potent inhibitors and 

three of 12 weak inhibitors were identified correctly by in vitro data, giving a 37.5% rate of success. 

Calculations of R with bioavailability derived using ACD/ADME™ and with the default  

bio-availability of 100% were carried out to test a hypothesis about their utility in the calculations of R. 

Bioavailability is a challenging topic for both ab initio modeling and cross-chemical extrapolation [72,92]. 

Hypothetically, a bioavailability surrogate could be applied to non-drugs in HTS libraries and other 

compounds, for which bioavailability has not yet been determined. When using the ACD-calculated 

bioavailability or a default bioavailability of 100%, the results of R calculations were similar to 

aforementioned R-1. With the ACD-calculated bioavailability, three of four potent inhibitors and two 

of 13 weak inhibitors were correctly attributed, giving a 29% success rate; with the default 

bioavailability, four of four potent inhibitors and three of 13 weak inhibitors were correctly attributed, 
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giving a 41% success rate. Thus, based upon the results of the present study, no evidence suggested 

that the default bioavailability of 100% in calculations of R was not appropriate. 

Given a well-recognized uncertainty associated with experimentally determined MRDD and 

bioavailability values, directly measured plasma Cmax values may be thought of as an appealing 

alternative. When Cmax values compiled from the literature and clinical trials (Dr. Minjun Chen 

personal communication) were attempted in R-4 calculations, only two of four potent and one of 10 

weak inhibitors were assigned correctly. This translates into a 21% success rate, which is almost twice 

as poor as the success rate of R-3 calculations with reported MRDD and default bioavailability values. 

Within the groups of inhibitors, which were successfully categorized using the in vitro data  

(non-NDs in Table 1), no gross miscategorization upon in vitro to in vivo extrapolation was observed, 

although an overlap between the clinical dataset and PubChem™ data was small. However, little of the 

PubChem™ data were useful for potency categorization because of the low power of underlying IC50 

values. Similarly, the IC50 values alone, without extrapolation to in vivo, were of little utility for 

inhibitor categorization. Perhaps, deficiencies in the in vitro data can be eliminated in the future with 

improved study design, after which the HTS information may become appropriate for modeling 

DDCIs. Still, about a 10% mismatch between the HTS measurements and results of clinical trials may 

be anticipated. This number is relatively small provided the complexity of the in vivo responses;  

the latter is especially important for CYP3A4. CYP3A4 regulation is perhaps the most complex of all 

CYP isoforms, because of both peculiarities in the structure/kinetics and system-biological effects.  

For instance, both hepatic and enteric forms of CYP3A4 are expressed in large relative amounts, and it 

has been shown that these forms are kinetically distinct [93] and may contribute differently to the 

pharmacokinetic profile of a xenobiotic. Also, the activity of CYP3A4 is regulated at multiple levels 

by inducers, transporters, and other factors [53]. Altogether, a 10% mismatch does not seem 

unreasonable but suggests that, even in theory, the performance of HTS data in dissecting DDCIs is 

capped below 100% because of causal oversimplification by an in vitro system. To the contrary,  

in vivo clinical data are exempt of such a limitation, while their utility depends on a technical 

implementation of supervised machine learning; hypothetically, an advanced machine classifier based 

on clinical data can be fully successful. However, in vitro systems enable the study of more 

combinations of agents than the clinical approaches do. Perhaps, future computational approaches 

bearing on both strategies will become most effective. 

The PubChem AID 884 bioassay was also used to examine an association between the molecular 

weight (MW) and inhibition properties of chemical compounds. A histogram of MWs of compounds 

tested for CYP3A4 activity in the AID 884 bioassay was unimodal. It followed a skewed bell-shape 

distribution with the mode at 330 ± 30, median at 331 Da, mean at 344 Da, and geometric mean at  

316 Da. There were 3,680 compounds active in the test for CYP3A4 inhibition, and 7,418 were 

inactive. The histograms of active and inactive compounds were also unimodal and similarly shaped, 

but the descriptive statistics were different. The mode, median, mean, and geometric mean of inactive 

compounds were 285 ± 20, 294, 311, and 280 Da. Those of active compounds were 350 ± 10, 373, 

397, and 378 Da. The 95% parametric CIs on the means were less than 5 Da. These data suggested that 

inactive and active compounds dominated different bands on the MW range: The low- and high-MW 

bands were populated with inactive and active compounds, respectively. 
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The MW histograms of active and inactive compounds were much overlapped and skewed. Because 

of that, the optimal point for MW banding was not immediately clear. Ostensibly, the point could be 

determined if the underlying theoretical distributions of the active and inactive compounds would have 

been known. However, the histograms were imperfectly shaped. An expectation was that MW of a 

randomly drawn organic compound follows the lognormal distribution. Descriptive statistics of the 

lognormal distribution satisfy the following inequality: {mode = e ( − ^2)} < {median = e } <  

{mean = e [ + (^2)/2]}, where  and 2 are the mean = median = mode and variance of the reciprocal 

normal distribution on the logarithmic scale. Only the descriptive statistics of active compounds 

satisfied the inequality. The MW of active compounds was approximately lognormally distributed with 

an estimated mean of 2.578 and standard deviation (SD) of 0.1313 on the log10 scale. For inactive 

compounds and dominated by them the full library, the inequality did not hold. It means that although 

the general tendency in these histograms was lognormal (as indicated by the median < mean),  

the lognormal distribution was inappropriate because the theoretical and observed bell shapes did not 

match. Moreover, the histograms of inactive compounds and of the full library could not be 

meaningfully fit with neither of normal, lognormal, or Weibull distributions. In these histograms, the 

low-MW side of the bell shape seemingly followed the normal distribution, while the high-MW side 

resembled a lognormal density. Therefore, unlikely the library of AID 884 compounds was a balanced 

random draw. The structure of the distribution suggested an unidentified bias in the HTS dataset that 

was caused, perhaps, either by different vendors of the tested substances, or different subsets of the 

substances, or maybe several biased draws from the chemical space. Conceivably, the poor-fit 

histograms could be described by a superposition of several random processes, but such level of details 

was outside the scope of the present study. Therefore, an alternative approach was adopted, in which a 

threshold for MW banding was empirically extracted directly from the histograms. 

Instead of a ratio of two theoretical distributions, the enrichment with active compounds was 

studied using a normalized histogram (Figure 1). Clearly, there was an association between MW and 

the frequency of active compounds. The bins were most populous in the low-MW range. There,  

a fraction of active compounds increased in a quasi-linear fashion from zero at about 60–172 Da to a 

quasi-plateau that began at 450–550 Da (Figure 1). Poor statistics above 1,000 Da prevented confident 

characterization of the fraction of active compounds at high MWs. However, there was no evidence 

that the fraction was increasing with increasing MW. In the high-MW band the fraction was either 

constant at about 0.5, or maybe decreasing at very high MWs. However, in the area of high counts,  

the normalized histogram could be almost equally-well fitted with a linear, sigmoid, or bell-shaped 

dependence (Figure 1). The shapes of different kind intersected at about 450 Da, which was taken as a 

threshold for MW banding.  

Among the active compounds, 2,733 had MW lesser and 947 greater than the threshold.  

The respective proportions of active/(active + inactive) were 1 = 2733/9278 = 0.2946 (95% CI: 

0.2853–0.3039) and 2 = 947/1820 = 0.5203 (95% CI: 0.4974–0.5433). One-tailed Z-test for two 

proportions suggested that these proportions were statistically significantly distinct; there was an 

almost 100% chance (p < 2.235 × 10−78) that the proportion of active compounds in the low-MW band 

was less than the proportion of active compounds in the high-MW band. This was in agreement with 

Lipinski's rule of five, which MW condition postulates that MW of drugs with favorable ADMET 

properties shall not exceed 500 Da [94]. The ratio of proportions was 2/1 = 1.766 (95% CI: 1.670–1.862), 
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i.e., it was about twice more likely to encounter an inhibitor of CYP3A4 among compounds in the 

high-MW band compared to the low-MW band. 

Figure 1. Normalized histogram of MW of compounds active in AID 884. The number of 

active compounds in each bin was normalized by the total number of active and inactive 

compounds in that bin. The proportions of active compounds are labeled at the bottom.  

The histogram shape was fitted with functions from the bell-shaped and sigmoid families 

and with a linear function. In the each family, only the best fit was retained. A fit with a 

four-parameter Weibull function (as implemented in the SigmaPlot® software; a = 0.5670,  

b = 686.7269, c = 2.0494, x0 = 639.5385) was carried out on the entire domain of MW,  

r2 = 0.5837. A fit with the logistic function (y = 0.5047/[1 + (285.1/x)6.266]) was carried out 

for MW ≤ 950 Da, r2 = 0.8970. A line (y = 0.001437x − 0.1825) was fitted to the bins in 

the range 150–550 Da, r2 = 0.9479. The fitted shapes intersected at about the same point of 

450 Da, which was taken as a threshold separating the MW range in a low-MW band that 

was depleted with active compounds and a high-MW band that was enriched with  

active compounds. 

 

2.2. Docking Classifier of Potent and Weak Inhibitors of CYP3A4 

Crystal structures of human CYP3A4 with and without inhibitor correlated with the well-known 

structural flexibility of the protein. The flexibility and consequent substrate adaptability of CYP3A4 

observed in the structures were consistent with atypical kinetic behavior that has been described for 

CYP3A4 [95–97]. MW of CYP3A4 inhibitors studied crystallographically ranged from 226 to 734 Da, 

while the volume of active site [98], conjugated to the size of substrate, increased up to 80%. Multiple 

substrate binding modes (productive and non-productive) as well as multiple binding sites (at the site 

entrance, the catalytic site, and even the secondary binding site) were observed in the crystallographic 



Molecules 2012, 17 3418 

 

complexes. Based on the structural analysis, four protein data bank (PDB) structures with seven 

possible binding pockets were selected for docking studies (refer to the Experimental Section for 

details). Four molecular docking programs were applied and, thus, 28 sets of docking scores  

were generated. 

The docking scores were combined using a logistic regression (LR) procedure. LR variables were 

selected either by using the forward-stepwise, backward-stepwise, or a manual selection procedure. 

Although the stepwise variable selection procedures are widely used, they are not perfect, and their 

drawbacks are well understood [99]. Therefore, an emphasis in the present work was made on manual 

selection (a so-called “full” model [99]). 

The LR models were trained using 33 potent and 88 weak CYP3A4 inhibitors (see the Experimental 

Section for details). Receiver operating characteristic (ROC) curves of the refined interim models are 

shown in Figure 2. ROC curves were calculated by varying the cutoff probability point from one on 

the left side to zero on the right side of the ROC plot; which cutoff is theoretically most appropriate is 

a matter of debate. In practice, the choice of cutoff is often driven by the utility or by cost-effectiveness 

considerations. Common choices are 0.5 (SAS® default), or a cutoff point based on prior or posterior 

probabilities. The prior or posterior cutoff points are appealing when categories are highly unbalanced, 

that is when events in one of the categories are very rare. In this case, a rare-events correction to the 

model intercept can be used [100]. In the present work, the categories of the training set were split 

approximately 1:3, which suggests that the minority type was unbalanced but not rare. In this case, 

increasing the size of the training set and using the default cutoff of 0.5 is a preferred way of handling 

the data; appropriately increased size of the training set allows for the adequate representation of 

patterns that comprise the minority distribution. 

Figure 2. ROC plot of the interim DLR models for potent and weak inhibitors of CYP3A4. 

A, B, C, and D denote maximum specificity, maximum correct classification, equal 

sensitivity and specificity, and maximum sensitivity points on the ROC curves, respectively. 
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As shown in Figure 2, maximum correct classification and equal sensitivity/specificity could not be 

achieved with the same cutoff point. A balanced model with equal sensitivity and specificity could be 

obtained using a cutoff based on the prior probability of categorization of potent inhibitors (33/121), 

which comprised the minority population (Table 2). However, because the training set was 

unbalanced, the maximum correct classification could not be achieved with the prior cutoff.  

The maximum correct classification was achieved with the default cutoff of 0.5. To maximize the 

correct classification, a cutoff of 0.5 was adopted in the present study. 

Table 2. Effect of LR probability cutoff on model performance. 

Model Cutoff point 
Probability 

cutoff 
Sensitivity Specificity 

Correct 
classification

Forward model 

maximum specificity 0.60 0.15 1.00 0.77 
maximum correct classification 0.50 0.36 0.94 0.79 

specificity = sensitivity 0.24 0.55 0.57 0.56 
maximum sensitivity 0.04 1.00 0.00 0.27 

Backward model 

maximum specificity 0.80 0.36 1.00 0.83 
maximum correct classification 0.50 0.64 0.94 0.86 

specificity = sensitivity 0.28 0.79 0.78 0.79 
maximum sensitivity 0.08 1.00 0.73 0.47 

Manual model 

maximum specificity 
0.50 0.42 1.00 0.84 

maximum correct classification
specificity = sensitivity 0.26 0.68 0.69 0.69 
maximum sensitivity 0.10 1.00 0.27 0.47 

Manual model, 
MW > 450 

maximum specificity 
0.50 0.72 1.00 0.87 

maximum correct classification
specificity = sensitivity 0.43 0.78 0.76 0.77 
maximum sensitivity 0.07 1.00 0.38 0.64 

ROC AUC is often used as an empirical statistic for model comparison (and its close relationship to 

rank tests in non-parametric statistics can be shown). The ROC AUC is interpreted as a measure of 

model quality. Clearly, if ROC AUC is 1, the model is perfect, and if it is 0.5 (the diagonal), the  

model is worthless. The calculated ROC AUCs were 0.66, 0.89, and 0.80 for the forward-stepwise,  

backward-stepwise, and manual selection LR models, respectively. The results suggest that the 

backward-stepwise and manual selection models were not excellent (ROC AUC > 0.9), however, but 

they were good (ROC AUC > 0.8). 

The AUCs were roughly proportional to the number of docking scores recruited in the model: There 

were 3, 13, and 7 scores in the forward-stepwise, backward-stepwise, and manual selection LR models, 

respectively. As can be seen in Figure 2, the backward-stepwise and manual selection models were 

opposite in terms of specificity and sensitivity, i.e., the backward-stepwise model was better at 

sensitivity and the manual selection model was better at specificity. Namely, adding more parameters 

to the model improved representation of the major category of weak inhibitors but it did not help the 

machine classifier to better learn about the minor category of potent inhibitors, perhaps, because of 
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under population of the latter. There were 121 compounds in the training set. Applying a 1:20 rule for 

candidate predictor variables in a LR model [101], it was perceived that the backward-stepwise model 

may be over-trained, while the forward-stepwise may be under-trained. A conservative choice was 

made in favor of the manually selected “full” model with a balanced number of parameters.  

The manual selection model showed 100% specificity at the cutoff point of maximum correct 

classification of the model on the ROC curve (Figure 2), which was achieved using the default 

categorizing probability cutoff. Thus, the manual selection model with a categorizing probability 

cutoff of 0.5 was adopted as the final model at the LR parameter-optimization stage. 

Docking scores included in the final model are presented in Table 3. The table also shows the 

contribution and significance of each score. A docking score that was calculated using Surflex™ at the 

1W0F-catalytic site gave the highest contribution, while the score that was calculated using FRED™ at 

the 2V0M-catalytic site was the next highest contribution. All docking scores were significant for the 

final model with p-values of less than 0.05, except for the 1W0F-entrance site score from FRED™, 

with a p-value less than 0.1. Six of seven selected scores were pertinent to the catalytic site.  

This circumstance suggests that competitive inhibition at the active site is perhaps the major 

determinant of the high potency of CYP3A4 inhibition, as given by the chemicals of the training set. 

Thus, allosteric sites, which often result in atypical Michaelis-Menten kinetics, must be those that 

contribute mostly to weak inhibition of CYP3A4. 

Table 3. Summary of the final DLR model. 

Analysis of Maximum Likelihood Estimates 

Parameter DF 
Estimated 
Coefficient 

Standard 
Error 

Wald 
χ2 

Pr > χ2 

1W0F-catalytic site-by Surflex™ 1 5.5653 1.5783 12.4342 0.0004 
2V0M-catalytic site-by FRED™ * 1 −2.2601 0.8146 7.6972 0.0055 
2J0D-catalytic site-by Surflex™ 1 −1.7176 0.6328 7.3684 0.0066 
2V0M-catalytic site-by Glide™ 1 1.5078 0.5545 7.3927 0.0065 

2V0M-full active site-by 
FRED™ † 

1 1.4618 0.5385 7.3740 0.0066 

1W0F-catalytic site-by Glide™ 1 −1.2597 0.5007 6.3288 0.0119 
1W0F-entrance site-by FRED™ 1 −1.0350 0.6189 2.7967 0.0845 

Intercept 1 −1.8088 0.3556 25.8789 <0.0001
* The “catalytic site” of 2V0M is referred to the ketoconazole molecule in the active site, which has 
its imidazole nitrogen atom within the bonding distance of the heme iron atom; † The “full active 
site” of 2V0M also includes a binding site for the second ketoconazole molecule bound to 2V0M in 
a non-productive orientation. 

The final DLR model constructed using the full training set (the joint model) had a 100% 

specificity, 42.4% sensitivity, and a rate-of-correct-classification of 84.3%. A tenfold cross-validation 

(CV) was carried out by splitting the training set in a proportion of 1:9 and leaving out the 10% of the 

sample. The average model rates-of-correct-classification for ten random splits of the training subsets 

(i.e., each subset contained 90% of the total sample) and the CV subsets (10% of the total sample in 

each subset) were 83.8% and 79.3%, respectively. 
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As shown in the previous section, MW was an important factor affecting inhibition properties of 

chemical compounds. Similarly to compounds active in the HTS assay, a histogram of MWs of the 

training-set inhibitors also followed the lognormal distribution (p = 0.217, the Shapiro-Wilk test for 

normality). The mean was estimated at log10(381), which was indistinguishable from the HTS 

geometric mean, and the estimated SD was 0.1885. 

When inhibitors of the training set were ranked by MW, the DLR model showed a stepwise 

increase in sensitivity at the threshold of 450 Da described in the previous section (Figure 3, Table 2). 

Below the threshold, the DLR model recognized only one potent inhibitor (tetracycline), whereas 

above the threshold the model recognized almost 75% of potent inhibitors. Nonetheless, it correctly 

classified all weak inhibitors, regardless of MW, i.e., there was no false positive error. 

Figure 3. Performance of the DLR model. Potent and weak CYP3A4 inhibitors were 

sorted by molecular weight, which is shown in blue; their clinical categorization is shown 

in green; calculated probability scores are depicted in red. The dashed line denotes a 

chosen probability cut-off for the LR model. 

 

Adding MW to the pool of docking scores of LR as the 29th independent variable was not helpful: 

The coefficient at MW was not statistically significant in the 29- and 7-parameter models (p-value of 

0.1375 and 0.2217, respectively). The forward- and backward-stepwise procedures also did not select 

MW as a LR variable. MW was not helpful, perhaps, because it was 35–75% correlated with the 

docking scores, i.e., it carried redundant information. 

To determine if the training set was enriched with potent inhibitors in the high-MW band,  

a statistical test was carried out. Among 82 inhibitors in the low-MW band, only 15 were categorized 

as potent; among 39 inhibitors in the high-MW band, the number of potent inhibitors was 18.  

The respective proportions were 1 = 15/82 = 0.1829 (95% CI: 0.1141–0.2801) and 2 = 18/39 = 0.4615 

(95% CI: 0.3157–0.6143). According to the one-tailed Z-test for two proportions, there was a greater 

than 99.9% chance that the proportion of potent inhibitors in the low-MW band was less than the 

proportion of potent inhibitors in the high-MW band, i.e., that H0: 1 − 2 = 0 could be rejected in 

favor of H1: 1 − 2 < 0 (p < 6.50 × 10−4). The power of the test was 93% ( = 0.0676 at  = 0.05).  
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It meant that the examined inhibitor data were such that the chance of committing a type II error, when 

accepting the null hypothesis, was almost as low as the targeted chance of type I error (i.e., 5%). 

Commonly, a study design with the power of 80% is considered acceptable (which implies a four times 

lesser penalty for a type II error as compared to a type I error) [102]. Thus, chances of committing both 

type I and type II errors were small, which suggests that the size of the training set was sufficient to 

confidently conclude that the compounds in the high-MW band were enriched with potent inhibitors of 

the CYP3A4 isozyme. 

The enrichment of the high-MW band with potent inhibitors was about 50%, i.e., it was similar to 

the enrichment with general CYP3A4 inhibitors described in the previous section. In the low-MW 

band, however, the fraction of potent inhibitors did not exceed 20%, which was approximately by 30% 

less than that described for general CYP3A4 inhibitors in the previous section. Combined, these data 

suggested that in the high-MW band CYP3A4 inhibitors were 2–3 times more likely to be potent 

compared to inhibitors in the low-MW band. Thus, the effect of MW on potency of CYP3A4 

inhibition was more profound than on the category of inhibition itself described in the previous 

section. Profusion of inhibitors and potent inhibitors in the high-MW band may be related to a greater 

probability of finding a chiral center in large organic compounds. Because CYP3A4 is stereo- and 

regio-specific, involvement of enantiomeric decoys unlikely improves but hinders the rate of metabolic 

reactions. Preliminary examination of inhibitors of other CYP isozymes (data not shown) suggested 

that (1) a similar dependence between MW and inhibition potency can be observed for inhibitors of 

other isozymes with adaptive active site, such as 2C9, but unlikely of rigid isozymes, such as 2D6; and 

that (2) the MW threshold may be unique for each adaptable isozyme. It is not clear at this point, if the 

MW effect is determined by the volume of the active site, or the active-site adaptability, or the number 

of binding pockets at the active site (see also Section 2.5). More crystallographic complexes of CYP 

isozymes and ligands resolved in the future may help to clarify the topic. Also, if the observed 

phenomenon is indeed related to the probability of a chiral center in the ligand, perhaps, the MW effect 

will best manifest in isozymes, which spectrum of specificity includes large compounds, i.e., such 

CYP isozymes as 3A4 and 2C9. 

Now, since the actual proportions of potent inhibitors and their respective CIs were known, they 

could be applied to examine the results of machine classification. Suppose that the number of potent 

inhibitors in the training set has been forgotten; how many of them will be expected after application 

of a machine classifier? The prior suggested an expected range for the number of potent inhibitors.  

If the number of machine-classified potent inhibitors would be within 9–23 in the low-MW band and 

12–24 in the high-MW band, that would not contradict a statistical expectation at the 95% confidence 

level. Similarly, for the whole training set the proportion of potent inhibitors was 0.2727 (95% CI: 

0.2013–0.3582). Thus, from 24 to 43 machine-classified potent inhibitors would be expected. 

The DLR model correctly classified only 14 potent inhibitors among the 121 compounds of the 

training set. That was less than categorized 33 potent inhibitors at 99.9% probability (p < 1.01 × 10−3). 

The underestimation stemmed from the low-MW band, in which the correct classification (1/82) was 

less than expected (15/82) at more than 99.99% probability (p < 1.15 × 10−4). In the high-MW band, 

however, the null hypothesis (that the proportion of correctly classified potent inhibitors, 13/39, is the 

same as the proportion of categorized ones, 18/39) could not be rejected (p > 0.123, 87.6%). Thus,  

the natural bias in the number of potent inhibitors categorized across the MW range was exaggerated 
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in the classification results of the DLR model. Perhaps, it was caused either by a bias in model training 

towards weak inhibitors, which constituted the dominant major category in the low-MW band in a 

proportion greater than 4:5, or a statistical fluctuation in the data. Taking into account the results  

of DLR model application to the testing set (see Section 2.6), the latter appeared as a quite  

likely possibility. 

As evident from Figure 3, lowering the probability cutoff point was not helpful, because the domain 

of probability scores of weak inhibitors almost exactly overlapped with the domain of potent inhibitors 

in the low-MW band. At 450 Da, the probability scores of potent inhibitors displayed a stepwise 

increase, which was appropriate for correct classification. The phenomenon could be related either to 

an almost 1:1 balance between potent and weak inhibitors in the high-MW band, or to an increase in 

the probability of a chiral center discussed above, or, likely, to the number of contacts that ligand 

makes at the docking site, i.e., ultimately with the large size and adaptability of the active site pocket 

on CYP3A4 (see Sections 2.5 and 3). Another reason could be that the docking study did not cover all 

binding sites, especially those with a preference for small molecules such as extra-allosteric sites. It is 

also possible that an effector molecule(s) binding may take place when the substrate/inhibitor is small. 

For instance, two ketoconazole molecules are bound in one of the crystal structures of CY3A4 used for 

docking in the present study [98]. However, at least four molecules of 7-benzyloxyquinoline, which 

has MW less than half that of ketoconazole, bind simultaneously to CYP3A4 [14]. Moreover, unlike 

other CYP isozymes, the active site pocket of CYP3A4 is enriched with water molecules; the mean 

coordination number of water molecules in proximity of the heme is at least two to three times greater 

than in other CYP isozymes [103]. However, the docking procedures employed in the present study did 

not imply the use of explicit water molecules in docking simulations (although, the mean-field solvent 

effects were implicitly accounted for in several of the scoring functions). Water molecules in the active 

site may play an important role in protein-ligand binding. On the one hand, shielding the transition 

state from water (and thus reducing the activation energy barrier of the transition state) is the main 

purpose of enzymatic catalysis (which can be achieved either by elasticity of the active site, or by 

presence in the active site of hetero- or homo-effector molecule(s), similar to the 2V0M structure); but 

on the other hand, water molecules at high-occupancy hydration sites can mediate the hydrogen-bond 

network of the active site and stabilize the protein-ligand complex (along with the conformation of the 

protein and the transition state). Also, they contribute to the free energy of binding. Indeed, the process 

of ligand binding is also a process of dislodging water from the active site. As water molecules are 

released from the active site, the entropy of the protein-ligand complex usually goes down, while the 

entropy of the full system (which also includes the solvent) usually goes up (more free water). 

However, the arrangement of water molecules in the active site is often different for different ligands. 

Docking software used in the present study did not offer modeling of explicit water molecules. Ligand 

interactions with water molecules were either neglected or taken into account using a mean-field 

approach as implemented in the scoring functions. Recent studies have shown a modest success in 

incorporating explicit water molecules in docking simulations [104–106]. Similar methodology applied 

to CYP3A4 may improve the accuracy of the DLR model in the future. Also, additional 

crystallographic studies on CYP3A4 ligands from the low-MW band may help in understanding the 

modalities of small ligand binding and expand the database of docking scores of the model. 
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Figure 4 represents the ROC curve and shows performance of the DLR model in the high-MW  

band of CYP3A4 inhibitors. The ROC AUC of the model using thus truncated applicability domain  
(TD-DLR) was 0.85, i.e., the area outside the ROC curve shrunk by one quarter compared to the  
full-domain DLR model (FD-DLR). Similar to FD-DLR, the TD-DLR joint model had 100% 
specificity, while sensitivity and the rate-of-correct-classification improved to 72.2% (from 42.4%) 
and 87.1% (from 84.3%), respectively (Table 4). The average model rates-of-correct-classification for 
the split subsets (90% of the sample) and CV subsets (10% of the sample) of TD-DLR were 84.1% and 
70.8%, respectively. That is, the cross-validated model rate-of-correct-classification for TD-DLR was 
almost 10% less than for FD-DLR. The latter, perhaps, was related to a smaller volume of training data 
in TD-DLR, which training set comprised less than one third of that of FD-DLR. 

Figure 4. (a) ROC curve of the DLR model for the high-MW band (18 potent and 21 weak 

inhibitors). A, B, C, and D represent maximum specificity, maximum correct classification, 

equal sensitivity and specificity, and maximum sensitivity points, respectively.  

(b) Performance of the DLR model in the high-MW band. 
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Table 4. Comparison of SDAR-, SAR- and DLR-modeling * methods. 

Modeling 
method 

Correct 
classification 

Sensitivity Specificity Type II error Type I error 
Number 

of descriptors 

Joint Split CV Joint Split CV Joint Split CV Joint Split CV Joint Split CV Joint Split/CV 

SDAR 99.2 95.7 64.9 97.0 90.5 53.3 100 97.7 68.8 3.0 9.5 46.7 0 2.3 31.2 27 12 to 40 

SAR 95.0 92.5 66.9 81.8 76.1 27.3 100 97.5 81.8 18.2 23.9 72.7 0 2.5 18.2 5 6.6 

FD-DLR 84.3 83.8 79.3 42.4 44.1 35.5 100 98.7 95.7 57.6 55.9 64.5 0 1.3 4.3 7 7 

TD-DLR 87.1 84.1 70.8 72.2 71.5 63.3 100 94.6 83.3 27.8 29.5 36.7 0 5.4 16.7 7 7 

Consensus 95.0   81.8   100   18.2   0     

* The models reported are: “joint”, when all data of the training set was used in the model development (a single value is reported in the 
table), and “split”, when only 90% of the data were used in model development, while the remaining 10% were used for CV. The latter two 
sets of numbers are the averages over either 10 (DLR) or 100 (SDAR and SAR) random splits of the training set. 
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Only five drugs in the high-MW band were misclassified by TD-DLR. However, all of the drugs 

belonged to the category of potent inhibitors (as specificity of the model was 100%). The misclassified 

drugs were amiodarone, amprenavir, delavirdine, clarithomycin, and erythromycin. 

Amiodarone is a vasodilator. It is metabolized in the liver primarily by CYP3A4 and, at low 

concentrations, by CYP2C8 (see the Supplemental Material). The rate of catalysis of substrate 

luciferin-6'-phenylpiperazinylyl in the in vitro CYP3A4 system has increased in the presence of 

amiodarone, as given by PubChem™ bioassay AID 884 (Figure 5); therefore, amiodarone has been 

classified in PubChem™ as an activator and not inhibitor of CYP3A4 [68,107]. Although, potency of 

CYP3A4 inhibition may vary widely depending on a test substrate [57], we are unaware of examples 

in which the sign of reaction rate changes from the inhibition to activation. Of course, hypothetically, 

amiodarone can bind to an allosteric site outside the analyzed binding sites within the CYP3A4 active 

site pocket in such a way that it acts as an activator for the luciferin-6’-phenylpiperazinylyl substrate 

and an inhibitor for some other substrate(s).  

Figure 5. Dose-activity data of amiodarone as reported in PubChem™ bioassay  

AID 884 [68,107]. A four-parameter Hill equation was fitted to the data. 

 

Amprenavir and delavirdine are the first-generation antiretroviral drugs for treatment of human 

immunodeficiency virus (HIV) infection. Amprenavir is a HIV protease inhibitor, while delavirdine is 

a non-nucleoside inhibitor of the HIV reverse transcriptase. Both amprenavir and delavirdine are 

mechanism-based inhibitors of CYP3A4. Presumably, delavirdine, binds covalently to the apoprotein 

and inactivates it; amprenavir is a substrate but its unknown reactive metabolites also inactivate the 

CYP3A4 isozyme [108–110]. Clarithromycin and erythromycin are macrolide ring antibiotics and also 

mechanism-based inactivators of CYP3A4. They are first metabolized by CYP3A4 to form reactive 

nitrosoalkanes via N-demethylation, which then impair the enzyme [108–110]. 

DLR is a mechanistic model. As such, it depends on and takes into account the potency of affine 

ligand binding of the parent compound. However, to exhibit potent clinical CYP3A4 inhibition effects, 
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a mechanism-based inhibitor does not have to be a potent affine binder to CYP3A4, especially if the 

isozyme is inhibited by reaction metabolites but not the parent compound. If the parent compound does 

not have superior affine-binding properties, a high-fidelity DLR method shall not recognize it as a 

potent inhibitor. 

In brief, one of the inhibitors (amiodarone) misclassified by the DLR model was, probably, also 

miscategorized in the literature, while all other misclassified compounds (amprenavir, clarithromycin, 

delavirdine, and erythromycin) were mechanism-based irreversible inactivators, to which the 

computational molecular docking approach does not necessarily apply. Taking into account that 

machine learning was conducted using clinical, not in vitro, data, it is surprising how reasonably well 

the DLR method performed on inhibitors from the high-MW band. It supports a conclusion of the 

previous section that only a small part of clinically-characterized CYP3A4 inhibitors disagrees with in 

vitro binding-assay data, while most of the clinically observed CYP3A4 inhibition effects originate 

from the potent affine binding of interfering agents directly at the active center of CYP3A4. Together 

with two other classifiers described in the following sections, the DLR model was incorporated in the 

consensus classifier, which was then applied to the EV set (see Section 2.6). 

2.3. SDAR Classifier of Potent and Weak Inhibitors of CYP3A4 

The average rate-of-correct-classification, sensitivity, and specificity of the SDAR discriminant 

analysis (DA) models were 95.7%, 90.5%, and 97.7%, respectively, during the training sessions with a 

randomly split dataset (retaining 90% of the data). The complementary 10% of the training set data 

were used for CV. During CV the average rate-of-correct-classification, sensitivity, and specificity 

were 64.9%, 53.3%, and 68.8%, respectively. Because each time the data selection was repeated  

(no information about independent variables was carried over from one run to another), CV for SDAR 

DA that is shown in Table 4 essentially was similar to external validation (EV). EV is also often called 

the “testing set” if the split of training data is conducted only once. In this sense, the rigor of the SDAR 

DA model was examined at a level deeper than conventional SAR/QSAR found in the literature 

(because the model never sees the EV until after the training is complete). 

Rates of the type I and II errors for the SDAR DA model at the repeated-split training were only 

2.3% and 9.5%, respectively. However, they increased to 31.2% and 46.7%, respectively,  

at conjugated EV. The low rates of false-positive and false-negative estimates at training and much 

higher rates at EV, perhaps, indicate that both the minor and major categories of inhibitors were  

under-represented by SDAR descriptors, i.e., that the size of the training set was insufficient to extract 

a robust collection of spectral patterns representative of the minority and majority distributions. 

Although, the F-score was set to greater than four when selecting the spectral bins for the SDAR DA 

model, yet, overtraining of the classifier, perhaps, took place. Expansion of the training set is expected 

to stabilize the model. 

The final model built using the full training set (referred as the “joint” model in Table 4) showed a 

99.2% rate-of-correct-classification, 97.0% sensitivity, and 100% specificity. Only propofol, a potent 

inhibitor, was misclassified. Twenty-one of the 157 populated 13C-NMR bins and 6 of the 37 populated 
15N-NMR bins were used during training of the joint SDAR DA model. A number of bins populated 

during the tenfold CV ranged from 12 to 40. Of the 27 bins in the joint SDAR DA model, several bins 
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had higher coefficients. The 13C bin #176 was a major contributor to the class of potent inhibitors in 

the model. It was seen predominantly in the spectra of compounds with cyclic carbon atoms connected 

to the oxygen atom of a ketone group. Likewise, the 13C bin #193 was also important and had hits from 

two potent inhibitors, doxycycline and tetracycline. The 13C-NMR bin #47 was often present only in 

weak inhibitors (19 weak versus one potent inhibitor). The 15N bin #75 was present in five potent 

inhibitors, including four conazoles, and one weak inhibitor. The 15N bin #75 was found in inhibitors 

with heterocyclic five-member rings that contained more than one nitrogen atom, while the potent 

inhibitor ritonavir had a five-member heterocyclic ring with a nitrogen and sulfur atom. The SDAR, 

DLR, and SAR (see below) models were merged together by a consensus approach and then applied to 

the EV set as described in Section 2.6. 

2.4. SAR Classifier of Potent and Weak Inhibitors of CYP3A4 

The performance of the SAR classification model of potent and weak inhibitors of CYP3A4 was 

estimated by using a tenfold CV. Each cycle of the CV was repeated ten times by randomly splitting 

the training set into a training and testing subsets. In total, 100 decision forest (DF) classification 

models were generated and tested. At each iteration step the classifier was retrained, i.e., no 

information was carried over from one step to another. CV carried out this way is at least as good as 

EV repeated ten times. The results showed an average split-training rate-of-correct-classification of 

92.5% with a SD of 0.8%, and an average rate-of-correct-classification of 66.9% at testing with a SD 

of 3.3%. The results indicated that stable (low SD) classification models of potent and weak inhibitors 

of CYP3A4 can be constructed using the given training set. However, the prognostic power of the 

models was moderate. Perhaps, it was caused by chemical and structural diversity of compounds in the 

training set, for which accurate SAR/Mold2 classification models could be constructed but which could 

not be confidently extrapolated to the testing sets. With a larger training set, if coverage of the 

chemical space of CYP3A4 inhibitors becomes denser, the accuracy of cross-chemical extrapolation, 

perhaps, will increase. 

The hypothesis about poor coverage of the chemical space was further evidenced by the analysis of 

the molecular descriptors used in the DF classification models. Each DF model had five decision trees; 

thus, a molecular descriptor could be used as many as 500 times (100 DF times 5 trees per DF model). 

Figure 6 depicts descriptors that were used in the classification models during tenfold CV. The x-axis 

indicates the number of trees in which a descriptor was used, while the y-axis shows the number of 

descriptors that were used by the same number of trees. A total of 145 molecular descriptors were used 

in the models. The average number of descriptors per tree was 6.6. Figure 6 shows that most of the 

descriptors were used by a small number of decision trees, indicating chemical and structural diversity 

among the different splits of the training set. 

There were only three molecular descriptors that were used by more than half of the decision trees 

at CV. These top three contributors to the SAR DF models were the Balaban electronegativity 

weighted with Pauling-scale index, reciprocal Wiener-type maximum path index, and Balaban-type 

polarizability weighted index. These indices reveal that molecular shape (represented by the Wiener 

index), electronegativity, and polarizability are the most important quantities relevant to the potency of 

CYP3A4 inhibition. Most likely they express molecular properties of inhibitors that bind to CYP3A4, 
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such as the activation energy and regioselectivity [111] and interactions of ionizable groups and 

permanent dipoles on CYP3A4 [112]. In this case, it would mean that the binding properties are 

essential for proper classification of potent and weak inhibitors, and that one of the categories in the 

training set, probably potent inhibitors, consists predominantly of CYP3A4 binders. 

Figure 6. Distribution of molecular descriptors by DF decision trees built in the process of 

CV. Abscissa: the number of decision trees in which the same descriptor was used; 

ordinate: the number of descriptors that entered in the same number of decision trees. 

 

During CV, specificity of the SAR DF models was persistently greater than sensitivity. The 

specificity and sensitivity were 97.5% and 76.1% at split training, and 81.8% and 27.3% at testing, 

respectively (Table 4). The misbalance between specificity and sensitivity was caused perhaps by a 

disparity in the training set between positive (33 chemicals) and negative (88 chemicals) outcomes. 

Although, more fundamental reasons described above in the docking section could also take place, 

especially taking into account that the descriptors picked by SAR DF during training expressed more 

the mechanism of binding rather than other possible mechanism of CYP3A4 inhibition. 

The final SAR model developed using the full training set showed 81.8% sensitivity and 100% 

specificity at the 95% rate-of-correct-classification of potent inhibitor classification (Table 4). Six 

potent inhibitors (amiodarone, clotrimazole, diltiazem, haloperidol, propofol, and sertraline) were 

misclassified. Only amiodarone had MW greater than 450 Da. Thus, the number of correctly classified 

potent inhibitors was 9, 18, and 27 for the low-MW and high-MW range, and the whole training set, 

respectively. All numbers were within the limits of statistical expectation described in the docking section. 

2.5. Comparison of the DLR, SDAR, and SAR Classifiers  

Three very different machine learning classifiers were developed in the present study, and each of 

them showed a fairly high rate-of-correct-classification. Table 4 shows a comparison of the DLR, 
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SDAR, and SAR model performances during 9:1 split training and CV. The rate-of-correct-

classification of the models during tenfold CV was 79.3% and 70.8% for FD- and TD-DLR, 

respectively, 64.9% for SDAR, and 66.9% for SAR. Although the methodologies of DLR, SDAR, and 

SAR model development were vastly different, the produced models shared a deep fundamental 

connection in terms of classification features that were employed by the models to describe the 

CYP3A4 inhibitors. The similarities embraced: (1) two major descriptors of the SAR model were 

based on electronegativity, while (2) the 13C and 15N-NMR spectra used in SDAR models were 

dependent on the electronegativity of the substituent groups connected to the atom; similarly, (3) most 

significant independent variables of the DLR model represented scores of the Hammerhead, FRED™, 

and Glide™ scoring functions. These scoring functions incorporate electronegativity either in the form 

of electrostatic potential, which determines the electronegativity, or its derivatives such as repulsive, 

polar, and salvation terms of the Hammerhead scoring function [113]. Because the DLR model 

essentially was a mechanistic binding model, the observed descriptor commonality suggested its 

association with the potency of CYP3A4 binding. In other words, all methods indicated that the 

category of potent inhibitors consisted mostly of potent CYP3A4 binders, while the category of weak 

inhibitors consisted either of predominantly weak binders or compounds that set off clinical 

manifestations of CYP3A4 inhibition by other mechanisms. 

The question arises as to whether a potent clinically observed inhibitor of CYP3A4 must be its 

potent binder. An answer may reside with the sensitivity and specificity of the models. During CV the 

specificity was consistently higher than the sensitivity as given by all methods, and the final models 

came out as 100% specific (Table 4). This suggests that the probability of recognizing a weak inhibitor 

as potent was smaller than the probability of recognizing a potent inhibitor as weak. Since a pattern of 

potent inhibitors learned by the classifiers seemingly was associated with affine binding to CYP3A4, 

other mechanisms related to clinically devised potent inhibition probably were underrepresented in the 

training set and, i.e. potent inhibitors of CYP3A4 present in the training set that were not potent affine 

binders to CYP3A4 comprised a minor class. They were not appropriately learned by the classifiers 

because the size of training set was insufficient for that, and, therefore, they were misclassified by the 

models. This could be a likely reason for persistent inferior sensitivity observed for all models. 

Similarly, all classification methods summarized in Table 4 showed a relatively high, 37–73% rate 

of false-negative estimates during CV. SAR and FD-DLR models had the highest rate of false-negative 

estimates. The false-negative rate was high for FD-DLR because the model identified in the training 

set only one of 15 potent inhibitors in the low-MW band. For the SDAR model, the true positive rate 

was low and the false-negative rate was high, perhaps, because the 1D NMR spectra did not contain 

enough chemical structure-specific information to adequately represent diversity of the training set in 

the chemical space. Inhibition of CYP3A4 is unlikely to originate from a single carbon or nitrogen 

atom as expressed by 1D NMR spectra, but rather from the entire chemical structural entity. The 

accuracy of SDAR models may improve as more structural information is added to the spectra, as has 

been shown for 3D-QSDAR models [114,115]. Supplementing the carbon and nitrogen chemical shifts 

with information about distances between the atoms provides an additional opportunity to more 

comprehensively describe the chemical properties of a compound and, thus, improve SDAR modeling. 

Extrapolation from the classification results of the final joint models suggests that from 3% to 30% 

of non-affine inhibitors of CYP3A4 may be detected as potent in clinical studies. As discussed in the 
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docking section, these non-affine inhibitors may be inducers, mechanism-based inhibitors, or perhaps 

agents intervening with the active transport and others. The suggested range of numbers is wider but 

similar to the 10% mismatch between the HTS measurements and results of clinical trials reported and 

discussed in Section 2.1. 

Also, there could be compounds that were incorrectly assigned to a wrong category based on 

information that was available when the training set was compiled; propofol may be one of them. 

Initially, it was attributed to the category of potent CYP3A4 inhibitors based on information external 

to the Merck Manual (refer to the Supplemental Material). FD-DLR, SDAR, and SAR classified 

propofol as a weak inhibitor of CYP3A4 (while for TD-DLR it was outside the MW domain of the 

model). However, later after the work had been completed, propofol was categorized as a weak 

inhibitor of CYP3A4 in a new release of the Merck Manual [32]. 

SAR and TD-DLR both classified amiodarone (MW of 645 Da) as a weak CYP3A4 inhibitor.  

As summarized in the docking section, the mechanism of amiodarone interference with catabolism 

mediated by the CYP3A4 isozyme is at least more complex than trivial inhibition by affine binding. 

However, the final joint SDAR model classified amiodarone as a potent inhibitor. Taking into account 

that SDAR showed the lowest of all methods rate-of-correct-classification at CV, SDAR model over-

training may be a reasonable explanation for the discrepancy. 

As the SDAR model showed signs of overtraining, and applicability of the DLR model to the 

training set was restricted by MW, four additional compounds within the low-MW band shared  

false-negative classification from the final joint SAR model. These four compounds were clotrimazole, 

diltiazem, haloperidol, and sertraline. It remains to be seen whether these compounds were indeed 

misclassified by the SAR and FD-DLR models, or were they miscategorized during compilation of the 

training set (perhaps, due to erroneous or incomplete literature information). However, the following 

information was subsequently found in the literature: 

(1) Clotrimazole is one of the most potent specific reversible inhibitors of CYP3A4 in vitro; it is even 

more potent than ketoconazole [116]. However, unlike ketoconazole, its clinical potency is 

uncertain [117], and its kinetics is unique in vitro [118], which suggests a uniqueness in the 

mechanism of its affinity to CYP3A4, perhaps, involving a distinctive binding modality different 

from the “mainstream” affine inhibitors; 

(2) Diltiazem is an irreversible (mechanism-based) inactivator of CYP 3A4 [119]; 

(3) Haloperidol inhibition potency is substrate-specific, ranging from potent (with nifedipine as 

substrate) to weak (with testosterone) and less than weak (with felodipine or simvastatin) [120]; 

(4) Sertraline has been recently asserted as a weak inhibitor of CYP3A4 [121]. 

It appears that all low-MW drugs misclassified by both DLR and SAR show variability in terms of 

CYP3A4 inhibition, which singles out their unique machine learning patterns from the “major” pattern 

of potent inhibitors. Perhaps, these minor patterns were on the one hand, distinct enough from the 

“mainstream” to deserve separate clusters in the SAR analysis, but on the other hand, statistically 

underrepresented in the training set to form well-resolved-mode-of-action based clusters. Therefore, 

they were segregated by the SAR model in the group of false-negative estimates. 

For compounds in the low-MW band, multiple ligand binding could be thought as a putative 

molecular-biologic reason for distinctions between the minor- and major-type learning patterns.  



Molecules 2012, 17 3432 

 

At multiple ligand binding, some of the molecules may be actual inhibitor(s) of the enzymatic 

catalysis, while others may carry a role of homo- or hetero-effectors that change the molecular basis of 

the affinity patterns of the actual inhibitors. Apart from several examples of such “molecular 

symbiosis” (e.g., ketoconazole molecules in the active site of 2V0M [98]) little is known about the 

effectors. It is quite possible that the affinity patterns would be unique for each combination of 

multiple ligands. In this case, unlikely even a large database of CYP3A4 inhibitors would be 

representative of multiple discretized minority types that may be typical of CYP3A4 inhibitors in the 

low-MW band, which would mean the greatest challenge for both experimental (in vitro or clinical) 

and computational methods; the smaller is the molecular size (and the larger is the active site),  

the more likely misclassification and miscategorization will take place. 

2.6. Development of a Consensus Classifier and Its Application to an External Set of Compounds 

The developed classifiers were applied to an external testing set of 120 known inhibitors of 

CYP3A4 [122], which potency of inhibition has not been documented in the Merck Manual [32].  

The DLR, SDAR, and SAR methods identified 25, 34, and 29 compounds, respectively, as potent 

inhibitors of CYP3A4. Presuming, both the training and testing sets were drawn from the same general 

population, and using proportion priors of the training set, the obtained numbers were within the 

expected CI range of 24–43. DLR, SDAR, and SAR identified of the testing set 9, 23, and 13 potent 

inhibitors among the 89 low-MW-band compounds, and 16, 11, and 16 potent inhibitors in the high-MW 

band (31 compounds), respectively (Table 5). Except for the low-MW-band-FD-DLR result, all  

other numbers were within the anticipated ranges of 10–25 and 9–20 for the low- and high-MW  

band, respectively. 

For the FD-DLR model, the number of potent inhibitors in the low-MW band was slightly outside 

the calculated 95% confidence bounds on the mean. However, the direct one-tailed Z-test for two 

proportions, in which the calculated potent inhibitors in the low-MW band of the testing set (9/89) 

were gauged against the potent inhibitors observed in the low-MW band of the training set (15/82), 

suggested that the difference between the two proportion was insignificant at the 95% level  

(p > 0.0619), i.e., FD-DLR performed as it is supposed to on the low-MW band of the testing set. 

Comparison of proportions of true positive outcomes of the FD-DLR model (i.e., the calculated potent 

inhibitors) in the low-MW band using the testing and training sets produced a different result. The null 

hypothesis (9/89 = 1/82) was rejected at the 95% level (p < 6.65 × 10−3), and the alternative (9/89 > 1/82) 

was accepted. In the high-MW band, the test for proportions did not identify abnormalities in model 

performance using both the testing and training set data; the null hypothesis (16/31 = 13/39) was 

accepted at the 95% level (p > 0.0615). From these analyses it was concluded that FD-DLR did train 

appropriately on the training set, so that it could perform as expected in both the high- and low-MW 

bands, as suggested by the results of its application to the testing set. However, in the low-MW band of 

the training set it failed to identify a statistically significant number of potent inhibitors for an 

unknown reason, perhaps, because of a statistical fluctuation in the data. 
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Table 5. External-test compounds classified as potent inhibitors (P) of CYP3A4 by DLR, 

SDAR, and SAR in the low- (a) and high-MW (b) bands. 

(a) 
Compound * 

FD-
DLR 

SDAR SAR 
(b)

Compound * 
TD-
DLR 

SDAR SAR 

 tioconazole P P P  dalfopristin P P P 
 corticosterone P P   delapril P P P 
 ditiocarb P P   gallopamil P P P 
 econazole  P P  glipizide P P P 
 oltipraz  P P  astemizole P  P 
 piroxicam P P   calcium folinate P P  
 quercetin  P P  dirithromycin P P  
 salbutamol P P   irinotecan P  P 
 trimethoprim  P P  lopinavir P  P 
 troglitazone  P P  midecamycin P  P 
 almotriptan  P   paclitaxel P P  
 bifonazole  P   raloxifene  P P 
 carvedilol  P   reserpine P  P 
 dihydralazine  P   avasimibe   P 
 dimethyl sulfoxide P    barnidipine  P  
 disulfamide   P  benidipine P   
 flutamide  P   buprenorphine  P  
 ipriflavone  P   cerivastatin  P  
 malathion  P   efonidipine   P 
 mequitazine  P   flurithromycin   P 
 mizolastine P    josamycin   P 
 nilvadipine P    lercanidipine   P 
 nimodipine P    mibefradil P   
 oxiconazole   P  roxithromycin P   
 pantoprazole   P  terfenadine   P 
 papaverine   P  vindesine P   
 pioglitazone  P * Confidence in compound classification as 

potent inhibitor of CYP3A4 is denoted by bold, 
regular and italics font for probable, plausible, 
and uncertain consensus estimates, respectively. 
Probable and plausible estimates were taken as 
positive majority rules consensus outcomes for 
potent inhibition. 

 prednisone  P   
 quinelorane  P   
 ranitidine   P  
 sertindole  P   
 sulpiride  P   
 theophylline   P  
 valdecoxib  P   

A literature search suggested that of 14 low-MW inhibitors of the training set misclassified by 

DLR, four were mechanism-based inhibitors of CYP3A4 (cimetidine [123,124], diltiazem [119], 

isoniazid [121], and diclofenac [125]); six were, in fact, either relatively weak inhibitors or inhibitors 

of questionable potency (fluconazole [126–129], metronidazole [126,130,131], miconazole [129], 

propofol [32], sertraline [132], and voriconazole [133]); and for two of the inhibitors the experimental 

data were controversial (clotrimazole [117,118] and haloperidol [120]). The literature on norfloxacin 

and doxycycline was scant, which prevented interpretation of classification/categorization of these 

compounds. Nevertheless, even changing categorization of the six “relatively weak inhibitors or 
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inhibitors of questionable potency” from potent to weak (i.e., using 9/82 and 27/121 in hypothesis 

testing for the fraction of potent inhibitors in the low-MW band and on the whole domain, 

respectively) did not change any of the reported above results. Thus, no systematic reason in DLR 

misclassification of the low-MW compounds of the training set was identified, although the docking 

method, in general, is expected to perform better on larger compounds [134]. In this connection, the 

validity of classification of dimethyl sulfoxide (DMSO) as a potent inhibitor (Table 5a) was  

intriguing. DMSO (MW = 78 Da) was among the smallest compounds in both the training and testing 

sets. Surprisingly, DMSO has been reported as a strong inhibitor, which inhibits testosterone  

6-hydroxylation by CYP3A4 in a concentration-dependent manner [135]. On the other hand, the  

1'-hydroxylation activity of midazolam, which is another standard laboratory substrate for CYP3A4, is 

only weakly inhibited by large amounts of DMSO [135]. DMSO was classified as a potent inhibitor 

only by DLR. Therefore, it seems that different classifiers partially learned from different aspects of 

the minority type populations of the training set.  

To increase confidence in classification, the classification methods developed in the present study 

were combined using a consensus approach. Several consensus strategies may apply to Boolean 

outcomes. They could be either of conjunction, disjunction, majority rules, percent agreement [136],  

or even artificial intelligence [60]. Conjunction and disjunction resulted, respectively, in five and 60 

inhibitors of the testing set classified as potent. Both numbers were outside the expected CI range.  

The null hypotheses about proportions equality to the training set prior were rejected by the one-tailed 

Z-test test for two sample proportions at a more than 99.99% probability level. 

Synthesis of results was carried out following the strategy of majority rules consensus. Using it,  

23 inhibitors of the testing set were classified as potent (Table 5). Similar numbers for the low- and 

high-MW bands were 10 and 13, respectively. All the numbers were within the expectancy range.  

A hypothesis about identity of the fractions of estimated potent inhibitors in the low- and high-MW 

bands was rejected with a 99.99% probability in favor of the alternative that the high-MW range was 

enriched with potent inhibitors. This result, obtained by using the estimated potent inhibitors of the 

testing set, was similar to one reported above for the actual potent inhibitors of the training set.  

This circumstance suggests that the synthetic consensus model accurately learned information that was 

available in the training set, so that even a subtle statistical attribute was carefully reproduced. 

A percent agreement consensus strategy was applied to assign confidence levels to the classification 

results. If potency of inhibitor classification was in full agreement among the DLR, SDAR, and SAR 

methods, classification of the inhibitor as potent was regarded as a ‘probable’ outcome. If the 

agreement was less than that but more than 50%, the outcome was deemed ‘plausible’. Estimates with 

below than 50% agreement between the methods were considered ‘uncertain’. 

Dalfopristin, delapril, gallopamil, glipizide, and tioconazole were classified by the consensus model 

as probable potent inhibitors, and 18 other inhibitors were classified as plausible potent inhibitors of 

CYP3A4. Among the latter, seven chemicals were classified as potent inhibitors by both DLR and 

SDAR, five chemicals by DLR and SAR, and six chemicals by SAR and SDAR; i.e., the frequencies 

of dual-model conjunction on the testing set of 120 compounds were similar. 

A search revealed that about a third of the compounds attributed to the class of potent inhibitors 

have been described in the literature as potent inhibitors of CYP3A4. Two of the five probable potent 

inhibitors—dalfopristin, a Gram-positive antibiotic, and tioconazole, an antifungal imidazole—have 
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been characterized in the literature as strong inhibitors of CYP3A4 [137,138]. Among the 18 plausible 

potent inhibitors of CYP3A4, potency information was found for lopinavir, oltipraz, quercetin, 

raloxifene, and troglitazone. 

Lopinavir is a HIV reverse transcriptase inhibitor, i.e., a drug from a class with many potent 

inhibitors of CYP3A4. It has also been reported as a strong inhibitor of CYP3A4 [32,139]. Quercetin 

is a plant flavanoid with anti-inflammatory properties. It has been described as a moderate-to-strong 

inhibitor of CYP3A4 [140]. Troglitazone belongs to the glitazone family of drugs, which are used to 

treat diabetes. Oltipraz and raloxifene are multiple action drugs, although both are often used as 

chemo-preventive anti-cancer agents. Troglitazone, oltipraz, and raloxifene form reactive metabolites 

(during CYP3A4 metabolism) that have been shown to covalently bind to CYP3A4 [141–143].  

As mechanism-based inactivators, they may be considered potent inhibitors of CYP3A4. Interestingly, 

neither troglitazone nor oltipraz or raloxifene were classified as a potent inhibitor by DLR. These 

drugs corroborate a hypothesis that was formulated in the context of potent inhibitors of the training 

set misclassified by DLR (amprenavir, clarithromycin, delavirdine, and erythromycin). This hypothesis 

suggests that mechanism-based inactivators together with inhibitors, which affinity-based inhibition 

activity is confounded either by effector molecules or at a higher level of biochemical machinery (such 

as transcriptional induction), may be outside the domain of potent inhibitors recognized by DLR.  

So far, it appears that the docking method associates such inhibitors predominantly with weak potency 

of CYP3A4 inhibition. 

Mechanism-based inhibitors, perhaps, can be modeled more accurately using inhibitor-structure-

based methods, such as SDAR and SAR. Also, the LR part of the DLR model can be supplemented 

with inhibitor-structure-based QSAR descriptors, but that would be equivalent to using docking scores 

alongside structure-based descriptors in SDAR, SAR or other structure-activity methods. In any case, 

improvements in the machine classification of mechanism-based and other minority-type inhibitors 

would be possible only if they are sufficiently represented in the training set. 

For the other 13 plausible potent inhibitors of CYP3A4 relevant information was not found. Thus, 

where experimental data were available, there was a fair correlation between the consensus estimates 

and experimental data. The proposed models may be useful in setting priorities for the experimental 

testing of drugs and chemicals for interactions with CYP3A4, for screening virtual libraries of 

compounds, and for interpreting HTS in vitro data and results of machine learning classifiers that rely 

on these data. 

3. Experimental Section 

3.1. Data Selection 

The chemicals used for modeling in the present study were from a dataset of Yap and Chen [33,122]. 

These authors have compiled information on inhibitors and substrates of CYP isozymes from several 

literature sources that are used by clinicians. Inhibition properties of the chemicals have been  

cross-checked across several sources to ensure that interlaboratory variations in experimental protocols 

do not significantly affect the quality of the information in the dataset [33,122]. There were 241 

CYP3A4 inhibitors in the Yap and Chen dataset, which were borrowed for the present study.  
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The inhibition potency of these chemicals was attributed based on clinical categorization by the Merck 

Manual [32]. The compiled database contained potency information for more than the CYP3A4 

isozyme, including 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 2E1 (see the Supplemental Material for 

details). Among them, 88 chemicals were identified as weak, 16 as moderate, and 17 as strong 

inhibitors of CYP3A4. Since the groups were grossly unequal, the strong and medium inhibitors were 

combined together to form a set of 33 ‘potent’ inhibitors. This way the training set of the models 

became more balanced, with a ratio of potent-to-weak inhibitors of 0.375. Tables 6 and 7 list the 

training set of 121 potent and weak inhibitors of CYP3A4 that were used for training of the DLR, 

SDAR, and SAR models. The remaining 120 compounds (listed in the Supplemental Material) could 

not be categorized by their inhibition potency based on the information provided by the Merck  

Manual [34]. These 120 chemicals were used as a set for EV of the developed models. The inhibition 

potency of EV compounds was estimated using the three developed classification models and then the 

literature was searched to determine the accuracy of these estimates. 

Table 6. Training set of potent (P) and weak (W) inhibitors of CYP3A4 in the high-MW band. 

Compound 
Molecular 

weight 
Inhibitor 
category 

Outcome 
bioassay-884 

Average IC50 (µM) 
bioassay-884 * 

verapamil 455 P   
delavirdine 457 P   
pimozide 462 W Inactive  
cisapride 466 W   

nefazodone 470 P   
clofazimine 473 W Inactive  
sildenafil 475 W Active 10 † 

nicardipine 480 P   
glibenclamide 494 W Active 5.99 ± 6.81 (3) 

imatinib 494 P   
amprenavir 506 P   

ketoconazole 531 P Active 0.13 † 
aprepitant 534 P   

doxorubicin 544 W   
atorvastatin 559 W   
nelfinavir 568 P   
zafirlukast 576 W   
ergotamine 582 W   

dihydroergotamine 584 W   
etoposide 589 W   
indinavir 614 P   

amiodarone 645 P Inactive  
bromocriptine 655 W   

teniposide 657 W   
saquinavir 671 P   
atazanavir 705 P   

itraconazole 706 P   
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Table 6. Cont. 

Compound 
Molecular 

weight 
Inhibitor 
category 

Outcome 
bioassay-884 

Average IC50 (µM) 
bioassay-884 * 

ritonavir 721 P   
clarithromycin 748 P   
azithromycin 749 W Inconclusive  
vinorelbine 779 W   
tacrolimus 804 W   
docetaxel 808 W   

vinblastine 811 W   
troleandomycin 814 P   

vincristine 825 W   
sirolimus 914 W   

quinupristin 1022 W   
* Number of repeated measurements (same compound provided by different manufactures) in the 
bioassay is shown in brackets and a 95% confidence; † an average standard error on the IC50 with 
multiple measurements was 6.90 µM. 

Table 7. Training set of potent (P) and weak (W) inhibitors of CYP3A4 in the low-MW band. 

Compound 
Molecular 

weight 
Inhibitor 
category 

Outcome 
bioassay-884 

Average IC50 (µM) 
bioassay-884 * 

thiamazole 114 W Inactive  
isoniazid 137 P Active 9.92 ± 16.45 (2) 

valproic acid 144 W Inactive  
acetaminophen 151 W Inconclusive  

hydralazine 160 W Inconclusive  
chlorzoxazone 170 W Inactive  
metronidazole 171 P Inactive  

propofol 178 P Inconclusive  
selegiline 187 W Inactive  

dexmedetomidine 200 W Active 0.16 † 
pilocarpine 208 W Active 15.85 † 

methoxsalen 216 W Active 10.50 ± 7.11 (3) 
acetazolamide 222 W Inactive  

lomustine 234 W   
phencyclidine 243 W   

cimetidine 252 P Inconclusive  
primaquine 259 W   

cyclophosphamide 261 W   
ifosfamide 261 W Inactive  
ticlopidine 264 W Inconclusive  
mirtazapine 265 W   
nevirapine 266 W Inactive  

orphenadrine 269 W   
venlafaxine 277 W Inactive  
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Table 7. Cont. 

Compound 
Molecular 

weight 
Inhibitor 
category 

Outcome 
bioassay-884 

Average IC50 (µM) 
bioassay-884 * 

diazepam 285 W   
testosterone 288 W Inactive  
anastrozole 293 W   
diclofenac 296 P   

cocaine 303 W   
entacapone 305 W   
fluconazole 306 P Inconclusive  
sertraline 306 P   
fluoxetine 309 W   
methadone 309 W   
olanzapine 312 W Inactive  
pergolide 314 W Active 12.59 † 
efavirenz 316 W   

fluvoxamine 318 W   
norfloxacin 319 P Inactive  

chloramphenicol 323 W Inactive  
quinine 324 W   

midazolam 326 W   
clozapine 327 W Inconclusive  
paroxetine 329 W   

ciprofloxacin 331 W Inactive  
fentanyl 336 W   
danazol 337 W   

dextropropoxyphene 339 W   
methylprednisolone 339 W   

clemastine 344 W Active 5.01 ± 8.47 (3) 
clotrimazole 345 P Active 0.07 ± 0.10 (3) 
omeprazole 345 W Active 10 † 
nifedipine 346 W Active 11.29 ± 3.59 (2) 

voriconazole 349 P   
oxybutynin 357 W   
rabeprazole 359 W   
nitrendipine 360 W   
prednisolone 360 W   
drospirenone 367 W   
lansoprazole 369 W Active 20.48 ± 12.85 (2) 
tamoxifen 372 W Inconclusive  
haloperidol 376 P Inactive  
mefloquine 378 W   
azelastine 382 W   
loratadine 383 W Inactive  
felodipine 384 W   
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Table 7. Cont. 

Compound 
Molecular 

weight 
Inhibitor 
category 

Outcome 
bioassay-884 

Average IC50 (µM) 
bioassay-884 * 

nisoldipine 388 W   
betamethasone 392 W   

sulconazole 398 W   
amlodipine 409 W   
risperidone 410 W Inactive  
fluvastatin 411 W   
ziprasidone 413 W   
diltiazem 415 P Active 3.98 † 

miconazole 416 P   
losartan 423 W Active 19.95 † 

pravastatin 424 W   
irbesartan 429 W Active 15.85 † 

mifepristone 430 W   
doxycycline 444 P   
mitoxantrone 444 W Active 25.12 † 
tetracycline 446 P   

*,† The same as in Table 6. 

3.2. Analysis of CYP3A4 Inhibition using HTS Bioassays 

HTS bioassay outcomes were obtained from PubChem™ [28]. A query for CYP3A4 inhibition was 

performed, and 1,333 hits were found. However with few exceptions, all datasets contained less than a 

hundred chemicals. The exceptions were two HTS bioassays, AID 884 and 1851, both conducted by 

the National Institutes of Health Chemical Genomics Center. AID 1851 was a combined bioassay with 

inhibition data for five CYP isoforms, including CYP3A4 [67]. An IC50 has been reported for the 

chemical tested in the bioassay but the strength of their inhibition has not been categorized. AID 884 

was a dedicated CYP3A4 inhibition assay, in which the inhibitors were categorized as active, inactive, 

and inconclusive [68]. 

Extrapolation from the in vitro data to in vivo inhibition activity was carried out following the FDA 

guidance [18]. The guidance is based on Michaelis-Menten kinetics for competitive inhibition. It can 

be shown that, under conditions of competitive inhibition, the apparent Michaelis constant of the 

substrate-to-product enzymatic conversion reaction, Km,i, is scaled from its uninhibited value Km by a 

factor of 

 (1)

where [I] is the concentration of inhibitor and Ki is the dissociation constant of the enzyme-inhibitor 

complex called the inhibition constant. At low concentrations of substrate, the Michaelis-Menten 

equation becomes 

 (2)
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where V and Vmax are the reaction velocity and maximum reaction velocity, respectively, and [S] is the 

concentration of substrate. When the substrate is bioconverted, i.e., cleared, the reaction velocity can 

be expressed in terms of apparent intrinsic clearance, CL, as V = [S] × CL, and, therefore, 

 (3)

Since the dose or exposure expressed in terms of pharmacokinetic AUC is inversely proportional to 

the clearance, and the maximum velocity of reaction does not change under conditions of competitive 

inhibition, 

 (4)

A concentration of inhibitor that decreases the rate of reaction at a specified concentration of 

substrate by half, IC50, is related to the inhibition constant by the equation of Cheng and Prusoff [144]: 

 (5) 

At low concentrations of substrate, Ki ≈ IC50. Therefore, 

 (6)

The equation implies competitive inhibition and that the substrate is metabolized by only one 

enzyme isoform in one metabolic pathway. The equation also holds for noncompetitive inhibition. 

Equation 6 becomes more complicated in case of uncompetitive inhibition or if several 

enzymes/pathways are involved. 

Two approaches were exercised to estimate the concentration of inhibitor [I]: one by the MRDD 

and per oral bioavailability, and the other by the maximum concentration of inhibitor in serum (Cmax) 

that has been reported in clinical trials. The latter approximates the maximum hepatic inlet 

concentration. For the analysis presented in Table 1, a cutoff of 2 on R was applied for inhibition 

strength categorization. Drugs with R greater than 2 were categorized as P (potent, i.e., a strong or 

moderate inhibitor), while those with R between 1.25 and 2 as W (weak inhibitor). This was in 

compliance with FDA guidance, in which inhibitors that increase the substrate AUC by fivefold or 

higher are labeled as ‘strong’, inhibitors that increase it between twofold and fivefold are labeled as 

‘moderate’, and those that increase it between 1.25-fold and twofold are labeled as ‘weak’ [18]. 

3.3. Selection of CYP3A4 Crystal Structures for Docking 

Six crystal structures of human CYP3A4 isozyme were available from PDB [145] (codes: 1TQN, 

2J0D, 1W0E, 1W0F, 1W0G, and 2V0M, 2.80 [98,146,147]). Their resolution and a free R-factor  

(i.e., a statistics collected in crystallographic refinement using a EV set) ranged from 2.05 Å to 2.80 Å 

and from 0.271 to 0.318, respectively. Only the best quality structures among the structurally similar 

PDB codes were selected for docking studies. They included four structures, one without inhibitor 

(1TQN) and three with inhibitors (1W0F, 2J0D, and 2V0M) [98,146,147]. The heme group with a 
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catalytic iron ion was well refined in all structures, as given by relatively low B-factors on the heme 

atoms. The substrate binding site was located next to the heme. A profound conformational change was 

observed in the structures with bound substrate/inhibitor. The conformational rearrangement involved 

opening of two loops flanking the active site to a different extent to accommodate the inhibitors of 

different sizes (Figure 7). Five residues in the loop connecting the F and F′ helices were absent in the 

2J0D structure due to poor quality of the electron density in this region. Perhaps, the F-F′ loop in 2J0D 

was too flexible for adequate description by a single static set of mean coordinates, unlike the rest of 

the structure. CYP3A4 can metabolize various classes of substrates, and it does not follow the 

Michaelis-Menten type kinetics. Based on kinetic studies, Kenworthy’s group has proposed that three 

sub-pockets may exist within the active site of CYP3A4 [119]. Another hypothesis is that multiple 

kinetically distinguishable conformations of CYP3A4 are present, with or without substrate, effector, 

or inhibitor [14,146,148,149]. External factors such as interactions with CYP-reductase, cytochrome b5 

and its reductase, and the presence of membrane phospholipids may stabilize particular conformations 

of CYP3A4 and affect its activity toward certain chemicals [146,150]. As shown in Figures 7 and 8, 

the four selected structures represented different binding sites as well as different sizes/conformations 

of the CYP3A4 active site pocket, including expanded ones. 1TQN is a ligand-free structure with the 

smallest empty pocket [147]. A hydrophobic phenylalanine (Phe) cluster is located in proximity of the 

catalytic heme. A peripheral auxiliary binding site can be observed in the CYP3A4-progesterone 

complex (1W0F). It is located at the gate to protein surface, i.e., it is distal to the heme and Phe cluster. 

It may be involved in the initial recognition of substrates or allosteric effectors [146]. The catalytic site 

of 1W0F was almost identical to 1TQN, 1W0G, and 1W0E. However, unlike these four structures, 

2J0D and 2V0M revealed dramatic conformational changes upon ligand binding (Figure 7). In these 

two structures, the volume of active site was significantly increased (by more than 80% in 2J0D [98]). 

These two complexes represented two distinct expanded conformations of CYP3A4 because 

erythromycin A and ketoconazole induced different types of coordinate shifts in the isozyme. 

In 2J0D, one erythromycin molecule is bound in a non-productive mode with the reactive  

D-desosamine group located 17 Å away from the heme iron atom [98]. However, in 2V0M a 

ketoconazole molecule resides within the bonding distance between its imidazole nitrogen atom and 

the iron atom of heme (referred to as first binding site in the docking procedure). Moreover, the active 

site of 2V0M enfolds the second ketoconazole molecule. It is stacked on the first one in an anti-parallel 

orientation [98] (referred as second binding site in the docking procedure), as shown in Figure 7. These 

structural features were consistent with wide substrate adaptability that is well-known for CYP3A4, 

suggesting that this isozyme possesses an extremely flexible and multifunctional active site pocket. 

Multiple binding modes and multiple binding sites on CYP3A4 were seen in the present study, which 

is consistent with atypical kinetics data for this isozyme [95–97]. 
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Figure 7. An active site view of superimposed crystal structures of the human CYP3A4 

isozyme. 1TQN (no bound molecule) is shown in orange, 1W0F (with bound progesterone) 

in magenta, 2J0D (with bound erythromycin A) in green, and 2V0M (with bound 

ketoconazole) in cyan. The catalytic iron atom of the heme moiety is shown as a red van 

der Waals sphere. The active site volume is confined by the heme on the left and a flexible 

F–F′ loop that flanks the active site on the right. Nitrogenated sites-of-metabolism (SOM) 

on the ligands are shown in blue. As evidenced by the disposition of ketoconazole SOM in 

respect to the heme, ketoconazole is regioselectively bound at the substrate site next to the 

catalytic heme group (on the left), while erythromycin, although at the same site, is bound 

in a non-productive (inhibiting) orientation. Progesterone is bound at an allosteric binding 

pocket at the entrance of the active site of 1W0F (on the right). The active site of 1W0F is 

ligand-free and, thus, similar to ligand-free 1TQN as evidenced by overlapping positions of 

the flanking loop (left end of the white arrow). Upon substrate binding, the loop expands 

first to accommodate two ketoconazole molecules (2V0M, middle of the white arrow) and 

then further, to accommodate an even larger erythromycin A (2J0D, right end of the white 

arrow). Thus, the white arrow points at the most contracted and the most expanded 

conformations of the flanking F–F′ loop. The active site expands from the left to the right 

of the arrow to fit the size of substrate, and when the loop is at the right-most position 

(2J0D), volume of the active site is increased by more than 80% [98]. The green dashed 

trace denotes five disordered residues of the flanking loop, for which the coordinates have 

not been resolved in the 2J0D structure because of poor electron density in that region. 

Note the second ketoconazole molecule at the bottom (thin white); it is bound to the same 

crystal structure 2V0M but in a non-productive pose at an auxiliary pocket within the 

active site of CYP3A4, which expands to accommodate both molecules. 
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Figure 8. Superimposed docking sites of the human CYP3A4 isozyme. The trace of 1W0F 

structure (with bound progesterone) is denoted by the magenta ribbon. Each box represents 

a docking area of interest. The progesterone allosteric binding pocket area at the entrance 

of the 1W0F active site is represented by the magenta box; the catalytic site area of 2J0D 

(where erythromycin A is bound) is represented by the green box; the catalytic site area of 

2V0M (where one of the ketoconazole molecules is bound) is represented by the cyan box; 

the auxiliary pocket area in the active site of 2V0M (that holds the second ketoconazole 

molecule) is represented by the white box; the area of the full active site in 2V0M is 

represented by the red box. The areas occupied by the catalytic site in 2V0M, 1W0F, and 

1TQN structures are almost identical upon superposition. Therefore, the latter two are not 

shown for clarity. 

 

3.4. DLR Methods 

Docking studies were carried out using four programs: eHiTS®/CheVi® (SimBioSys, Inc.; Toronto, 

Canada); FRED™ as a part of the OpenEye software suite (OpenEye Scientific Software, Inc.; Santa 

Fe, NM, USA); Surflex™ as implemented in Sybyl® (Tripos, Inc.; St. Louis, MO, USA); and Glide™ as 

a part of the software suite from Schrödinger, Inc. (Portland, OR, USA). 

No protein heavy atom minimization (or other resampling) was carried out in the present study. 

Coordinates of heavy atoms in modern crystallographic structures are already a product of geometry 

optimization consistent with experimental electron density. The electron density in turn is a time- and 
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volume-averaged quantity. In the present work computational molecular docking was carried out using 

a PDB-deposited structure (rather than a thermodynamic ensemble of microscopic structural states in 

aqueous environment), thus, employing an unperturbed average structure was appropriate because it 

naturally represented the best averaging over a real physical-chemical thermodynamic ensemble 

observed in crystallographic experiments. The grand canonical ensemble was imitated by combining 

scores from four different crystallographic structures. 

High chemical diversity of CYP3A4 substrates added complexity to docking modeling. Thus,  

for each of the four docking programs, seven docking sites were considered: 1TQN-catalytic site, 

1W0F-catalytic site, 1W0F-entrance site, 2J0D-catalytic site, 2V0M-catalytic site, 2V0M-secondary 

binding site and 2V0M-full catalytic site. To avoid artifacts, the missing residues on the flanking loop 

of the 2J0D structure were left unreconstructed because molecular docking in this structure was 

focused at the catalytic site next to the heme and away from the unresolved part of the loop. 

3.4.1. eHiTS® 

eHiTS® implements a docking algorithm that involves a flexible ligand/rigid receptor methodology. 

It uses an exhaustive flexible-docking method starting with dividing the 3D structure of the ligand into 

rigid fragments and flexible chains. The rigid fragments are then docked independently into the 

receptor site and their poses, with flexible chains, are reconstructed by a graph-mating algorithm.  

The final poses are locally minimized and the score of each pose is reported. 

3D coordinates for each the 121 training chemicals were generated using the Corina™ software 

(Molecular Networks, GmbH; Erlangen, Germany) as implemented by the Computer-Aided Drug 

Design Group at the National Cancer Institute [151]. Hydrogen atoms were added to each ligand. 

eHiTS® automatically took into account all possible protonation states of each ligand–receptor pair,  

so no preliminary preparation of specific protonation states of ionizable ligands was necessary. 

Docking was performed by eHiTS® Version 6.2 at the maximum accuracy setting. The docking area 

was set to 7 Å from the residues forming the active site. All other settings were kept at defaults.  

The score.sh script supplied with eHiTS® Version 6.2 was used to calculate and rank the scores of 

docked compounds. 

3.4.2. FRED™ 

FRED™ relies on another exhaustive configurational searching algorithm. Unlike eHiTS®, instead 

of splitting ligand into fragments, it first generates all appropriate conformations of the ligand. Then it 

examines each pose within the protein active site, filtering them by shape complementarity and 

pharmacophoric features before selecting the final pose based upon a consensus of scoring functions. 

Before actual docking, pKas, protonation states and AM1-BCC partial charges were assigned to all 

atoms of the ligand using the Pkatyper™ and Molcharge™ programs from the QuACPAC™ 1.3.1 

package. Then the Tautomers™ program from the same package was applied to enumerate possible 

tautomers. Tautomers at all possible levels were generated. The enantiomers and 3D coordinates of 

each compound were constructed by Omega™ 2.3.2 package. The default Omega™ settings were kept 

except for the following: the maximum number of output conformers (“maxconfs” option) was set to 

500 and a root-mean-square Cartesian distance (“rms” option), below which two conformations were 
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deemed duplicates, was set to 0.8 Å. Both QuACPAC™ and Omega™, along with FRED™, are parts of 

the OpenEye software suite. Receptor proteins were prepared using FRED-receptor™ 2.2.5. The shape 

of active site was described by two contours of the shape potential, an inner and outer one. The inner 

contour was set to 80–120 Å3, while the outer to 1,200–1,500 Å3. Docking was performed using 

FRED™ 2.2.3 in two steps, the shape fitting and optimization. During the shape-fitting step, a ligand 

was put into a 0.5-Å-resolution grid box around atoms of the active site using a smooth Gaussian 

potential. Several scoring functions were provided with FRED™, including Shapegauss, PLP, Chemgauss2, 

Chemgauss3, and CGO functions [152,153]. To rank the poses, a consensus scoring was used. 

3.4.4. Surflex™ 

3D structures of inhibitors from the training and test sets were generated using the Unity translator, 

which was a part of the local Sybyl® 8.1 package. Subsequent docking was performed using the 

Surflex-Dock™ module. Surflex-Dock™ combines a scoring function from the Hammerhead docking 

system with a search engine that relies on a surface-based molecular similarity method [153–155]. 

Similar to eHiTS®, the ligand is fragmented into pieces before docking. 

Each crystal structure was first preprocessed. Hydrogen atoms were added and minimized using the 

Structure Preparation Tool. The active site was identified and a conservative residue-based protomol 

was built with “proto_thresh” and “proto_bloat” set at 0.5 and 0.0, respectively. Then the protomol 

was visualized, its stray fragments were trimmed, and then the protomol was used to match the 

docking ligand fragments. Starting with the head fragment, other fragments were aligned one by one. 

A maximum limit of 50 conformations per fragment was set in each stage of the incremental 

construction process. Default settings were kept for all other parameters. Finally, the combined poses 

were refined and the 30 top-scored poses were reported. 

3.4.5. Glide™ 

The Glide™ algorithm aims for a complete systematic search of the conformational, orientational, 

and positional space of the docked ligand [156,157]. In this search, ligand conformations were first 

enumerated using LigPrep™, including the ionization states (a tool, Epik™, was used with target pH set 

at 7.0 ± 3.0), tautomers (as many as 16 tautomers per ligand), and enantiomers that specified which 

chiralities were retained; chiralities at other chiral centers were varied. The lowest energy ring 

conformation was produced for each inhibitor with a ring component. All enumerated structures were 

then filtered to remove structures that could cause subsequent processing failures either at the stage of 

energy minimization or at other stages, for instance, because of improper ionization state. After that, 

the geometries of retained structures were optimized. 

The protein structure was pre-processed using the Protein Preparation Wizard. Bond order 

topologies were generated. Hydrogen atom positions were calculated and optimized for hydrogen 

bonding. For docking, Glide™ uses two boxes to define the active site: an outer grid-enclosing box and 

an inner ligand-diameter-midpoint box. The center of the outer box was determined by the centroid of 

the bound ligand as given by the original PDB file, or centroid of selected binding site residues if the 

ligand in the binding site was not present. Then the box was expanded to cover the whole active site.  

A 12-Å inner grid box was set to confine the ligand center. All other parameters were kept at their 
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defaults. Docking precision was set at the extra precision (XP) level. During docking, the receptor was 

represented by the rigid grid, while the ligand was flexible. In the process of docking, an initial rough 

positioning and scoring was implemented to eliminate most unfavorable poses, which was followed by 

the grid energy optimization. Schrödinger GlideScore™ XP, a proprietary, empirical, multi-ligand 

scoring function, was applied. The geometry of poses of top-scored candidates was further optimized 

by full post-docking minimization, which relaxes strained ligand geometries and eliminates poses with 

unfavorable energy, i.e., suboptimal bond length and angles, with eclipsing interactions, too many 

intraligand close contacts, and so on. The all-atom OPLS-2001 force field [158] was used. After that 

the poses were rescored using the GlideScore™ with a scaled OPLS term for non-bonded interactions. 

As many as 15 poses for each ligand were kept for reporting. 

3.4.6. Logistic Regression Modeling of Docking Scores and Statistical Analysis 

LR models were built to combine the docking scores from 28 docking runs (four programs by seven 

binding sites in four CYP3A4 crystal structures). The docking scores were converted to standard 

scores (or Z-scores) before LR model construction. The SAS® version 9.0.2 software was used  

(SAS Institute, Inc.; Cary, NC, USA). An automated stepwise regression procedure (forward and 

backward methods) [159,160] and manual selection of the best predictive variables were carried out. 

The selection of variables for the model was based on the Wald 2 test. Variables, whose coefficients 

were statistically significantly different from zero with p-value of 0.05 or less, were recruited in the 

model. Note, when formation of the model is completed and the significance of coefficients is 

recalculated, the new and old p-values may not be the same. Models were evaluated based on their 

performance, number of parameters, and the ROC curves. Only models with ROC AUC greater than 

0.8 were given further consideration. Therefore, in the manual selection procedure first variables, 

whose coefficients remained significant at  = 0.05 in the full model, were selected. Then, the manual 

model was supplemented with the least number (one) of additional variables with less-significant 

coefficients (p-value lesser than 0.1), which made model’s ROC AUC greater than 0.8. Chosen this 

way, the final manual LR model with the least number of parameters (seven) was adopted as a 

classifier of potent/weak CYP3A4 inhibitors, in which a LR probability cutoff of 0.5 was used to 

perform classification. 

CIs for population proportions were calculated using Wilson’s method without continuity  

correction [161]. The identity of population proportions was tested using two-sample proportions 

procedures, as implemented in JMP® 9.0.1 (SAS Institute, Inc.; Cary, NC, USA). SigmaPlot 10.0 

(Systat Software Inc.; Chicago, IL, USA) was used for curve fitting. 

3.5. SDAR Methods 

SDAR modeling relates NMR spectra of a chemical to its activity [54], and SAR modeling relates 

substructural fragments, physical-chemical parameters of a chemical or both to its biological or 

toxicological activity or physical properties. 

A *.mol file of each of the chemicals shown in Tables 6 and 7 was processed using ACD/CNMR 

Predictor™ of the ACD/Labs™ version 12.0 software suite (Advanced Chemistry Development, Inc.; 

Toronto, Canada), its 13C-NMR spectrum calculated, and the spectrum exported in a text file. The 15N 
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spectra for each compound were calculated using the ACD/NNMR Predictor™ software module from 

the same vendor. The 13C spectrum of each compound was binned by software written at NCTR using 

bin widths of 1 ppm (C1), while the 15N spectra were binned using the same software for bin widths of 

5 ppm (N5). All discriminant analyses were performed using a Statistica® version 8.0 software package 

(StatSoft, Inc.; Tulsa, OK, USA). DA training models of potent and weak inhibitors to CYP3A4 were 

built using C1 and N5 bins populated with at least three hits and using forward regression F > 4.0 to 

enter a bin to the DA model. No bins with only three hits were selected and only one bin had four hits. 

Previously, the forward regression on lower F was used to develop models for classification of 

inhibitors and non-inhibitors of CYP3A4 [122]. A more conservative SDAR DA model with smaller 

bin sizes was chosen for classifying potent and weak inhibitors in the present study, because there were 

expected to be fewer spectral and structural differences between potent and weak inhibitors than 

between inhibitor and non-inhibitors of CYP3A4. The SDAR classification DA models were 

constructed with prior probabilities of classifications (potent inhibitors/ weak inhibitors) set as equal 

for all DA SDAR models [162]. 

3.6. SAR Methods 

Molecular descriptors are used to extract structural information in a form of numeric representation 

that is suitable for model development. Thus, the descriptors serve as the bridge between the molecular 

structure and biological activity of the chemical. Previously we developed Mold2, a software package 

for calculating 777 molecular descriptors [163]. Mold2 was used to calculate molecular descriptors for 

the training and test compounds used in the present work. Thereafter, Shannon entropy, also known as 

information entropy, was used to filter descriptors with low information content. This resulted in 327 

of the descriptors remaining for modeling potent and weak inhibitors of CYP3A4. The resulting 

informative descriptors, with the assignment of compounds as potent or weak inhibitors of CYP3A4, 

were used to construct classification models. 

DF [163–165], a classification method developed in our laboratories, is a novel pattern recognition 

method that combines the results of multiple distinct but comparable decision tree models to reach a 

consensus estimation. In training a DF model, five decision trees were generated by using Gini's 

diversity index for splitting the nodes in the trees. This process was used to construct classification 

models for estimating potent and weak inhibitors of CYP3A4 isozymes. 

3.7. Cross-validation of SAR, SDAR, and DLR Models 

Tenfold CV was used to measure the classification performance of SAR, SDAR, and docking 

models. At each iteration, the training data set was first randomly divided into ten equal portions, and 

then each was successively excluded from the training set and calculated using a model developed 

from the remaining nine portions. The rate-of-correct-classification at CV was taken as an average 

over ten iterations. Each random division of the data set into ten portions leads to ten specific pairs of 

training and test sets that could be biased in terms of the rate-of-correct-classification. The training  

and cross-validation models were evaluated in terms of their sensitivity, specificity, and the  

rate-of-correct-classification. 
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4. Conclusions 

The CYP3A4 isozyme biotransforms a plethora of drugs and environmental xenobiotics. As such,  

it is instrumental in controlling the physiological levels of drugs and their metabolites. The mechanism 

for ligation to CYP3A4 can be either mediated by covalent bonding of the agent or its reactive 

metabolites, or by reversible binding of the inhibitor [166]. The binding of an inhibitor can occur at 

multiple sites on the isozyme, the structure of which appears to be very flexible [14,95,96,119,167].  

In addition, modulation of the apparent catalytic activity in vivo may also occur at higher levels of 

biochemical organization [17,18]. Therefore, modeling potent and weak inhibitors of CYP3A4 can be 

challenging. Because of these potential complications, multiple independent modeling methods to 

classify potent and weak inhibitors of CYP3A4 were applied. Each of the models performed 

adequately, but not perfectly, as each method viewed the problem differently. The SDAR and SAR 

methods were primarily based on structure and physical descriptors that can be related to the chemical 

itself, while the DLR relied on scores of interaction energies between the chemical inhibitor and the 

enzyme. In this regard, the SDAR and SAR approaches are more general. Conceivably they can learn 

from different minority patterns embedded in the training set, provided that the training set is 

representative of each of them. In the present study, however, the size of the training set prevented 

realization of the full potential of SDAR and SAR methods, limiting their performance to largest 

uniform mode-of-action groups of inhibitors, which were either direct reversible binders or 

mechanism-based inactivators of the isozyme. In this situation, the DLR results appeared very 

favorable. Although, the DLR method hardly identified any mechanism-based inhibitor, it performed 

extremely well on reversible binders showing the highest overall results in CV. Taking into account 

the complexity of CYP3A4 and diversity of regulatory mechanisms, such an outcome was surprising. 

It confirmed a proposition that selective strong binders to the isozyme carry the greatest clinical 

importance. Also, it suggested that the large size of a reversible inhibitor is an important determinant 

of its high potency of inhibition. In this regard, comparison of clinical and HTS in vitro data was 

insightful. It indicated that in clinical trials, perhaps only a small fraction of modern drugs inhibits 

CYP3A4 activity by means other than direct interference with MFO. As the cost of in vitro screening 

decreases and study design improves, the HTS assessment of DDCIs may become a valuable adjunct 

in public health practice. 

To increase confidence in machine classification, the DLR, SDAR, and SAR methods were 

combined by consensus modeling. When the consensus model was applied to an external testing set of 

120 inhibitors, the consensus estimates were within the limits of statistical uncertainty (extrapolated 

from the testing set). Using a majority-rules consensus, five compounds of the testing set were 

classified as probable potent inhibitors (by all three methods). Subsequently, two of them were 

identified in the literature as known potent inhibitors. Eighteen additional compounds were classified 

as plausible potent inhibitors (by two of the three methods), and a literature search confirmed 

approximately a third of them. Likewise, when all of the models agreed that the chemical was a weak 

inhibitor of CYP3A4, no information was found in the literature stating that these chemicals are potent 

inhibitors. Many of these inhibitors may be partially responsible for changes in pharmacokinetics, 

pharmacodynamics, and possibly adverse reactions in people taking multiple drugs (polypharmacy), 

nutritional supplements, or exposed to hazardous chemicals. Therefore, these people should be either 
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monitored by physicians or, at minimum, the chemical mixture, to which they are exposed to, be 

computationally evaluated for possible DDCIs before the polychemical therapy or exposure is started. 

The consensus methodology described in the present report provides means to do that. In the 

consensus, computational molecular docking supplied information that was complementary to 

traditional SAR and SDAR. Combined, these modeling methods provided a promising assessment of 

CYP3A4-mediated DDCIs, and suggested that a consonant use of multiple models may facilitate 

investigation of other complex systems in pharmaceutical and environmental toxicology. 
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