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Abstract: Non-fused 3,6-dihydro-2H-1,3-thiazine-2-thiones constitute a so far rather 

unexplored class of compounds, with the latest report dating back more than two decades. 

Thiazine-2-thiones contain an endocyclic dithiocarbamate group, which is often found in 

pesticides, in substrates for radical chemistry and in synthetic intermediates towards thioureas 

and amidines. We now report the multicomponent reaction (MCR) of in situ-generated  

1-azadienes with carbon disulfide. With this reaction, a one-step protocol towards the 

potentially interesting 3,6-dihydro-2H-1,3-thiazine-2-thiones was established and a small 

library was synthesized. 

Keywords: 3,6-dihydro-2H-1,3-thiazine-2-thiones; cyclic dithiocarbamates; multi-component 

reactions; molecular complexity; carbon disulfide; 1-azadiene 

 

1. Introduction 

Multicomponent reactions (MCRs) are very powerful tools in the quest for molecular diversity in 

the exploration of chemical space [1]. Combining three or more simple starting materials in a one-pot 

protocol provides quick and easy access to diverse products. In the development of novel MCRs, the 

use of modular reaction sequences (MRSs) is a useful way of creating diverse scaffolds [1]. MRSs 

involve the use of an in situ generated reactive intermediate, which can be reacted further with a range 
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of different reaction partners, giving rise to a wide variety of scaffolds. An example of the use of 

MRSs in diversity generating MCRs is the coupling of in situ generated 1-azadienes with a range of 

differentiating reaction partners, including iso(thio)cyanates [2,3], -isocyanoesters [4] and amidines [5]. 

1-Azadienes thus are versatile intermediates that are able to react as heterodienes, as nucleophiles, or 

as either 1,2- or 1,4-electrophiles [6]. 

Based on the analogy of carbon disulfide with other heterocumulenes that react with 1-azadienes, 

e.g., isothiocyanates, we envisioned the formal hetero Diels-Alder reaction of 1-azadienes with carbon 

disulfide leading to 3,6-dihydro-2H-1,3-thiazine-2-thiones. Using this method, this interesting class of 

compounds can be synthesized in one step, using only readily available starting materials. 

3,6-Dihydro-2H-1,3-thiazine-2-thiones contain an endocyclic dithiocarbamate group, which is,  

e.g., found in protecting groups [7], chiral auxiliaries [8], or in chain transfer agents for RAFT 

polymerization [9]. Furthermore, (cyclic) organic dithiocarbamates are used as substrates for radical 

chemistry [10–12] and as synthetic intermediates towards thiourea, amidines and guanidines [13–15]. 

The latest report on unfused 3,6-dihydro-2H-1,3-thiazine-2-thiones dates back to 1991, when 

Shutalev et al. reported the treatment of -unsaturated ketones with dithiocarbamic acid [16]. Prior 

to that, only a few reports on the synthesis of 3,6-dihydro-2H-1,3-thiazine-2-thiones were published, 

all using similar procedures [17–20]. 

2.1. Mechanistic Considerations 

The generation of 1-azadienes involves initial nucleophilic attack of the deprotonated diethyl 

methylphosphonate on the nitrile carbon (Scheme 1) [21,22]. After a proton shift of intermediate 5, a 

Horner-Wadsworth-Emmons-type reaction with the aldehyde affords the 1-azadiene 10. 

Scheme 1. Proposed mechanism for the generation of 1-azadienes 10 [21,22]. 

 

The subsequent reaction with carbon disulfide may proceed by either of two possible routes 

(Scheme 2). The first possibility is a concerted hetero Diels-Alder-type mechanism, in which the two 

new bonds (the nitrogen-carbon and the carbon-sulfur bond) are formed simultaneously. The second 

possibility is a stepwise mechanism, first forming the nitrogen-carbon bond, and forming the carbon-

sulfur bond via stabilized intermediate 12. 
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Scheme 2. Proposed mechanisms towards 3,6-dihydro-2H-1,3-thiazine-2-thiones via  

in situ generated 1-azadienes. 

 

2. Results and Discussion 

The 1-azadienes 10 were prepared in situ as described by us earlier (Scheme 1) [2]. Carbon 

disulfide was then added at room temperature. Ten minutes after the addition of carbon disulfide, a 

quick HPLC analysis of the reaction mixture showed no apparent product formation. Using 

hexamethylbenzene (C6Me6) as a quantitative internal standard, crude 1H-NMR measurements showed 

complete product formation after sixteen hours (68%) and only little degradation of the product, even 

after three days (66%). The structure of 4,6-diphenyl-3,6-dihydro-2H-1,3-thiazine-2-thione (1a) was 

confirmed by X-ray crystallography (Figure 1). CCDC 865856 contains the supplementary 

crystallographic data for this paper. These data can be obtained free of charge via 

www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, 

UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk). 

Figure 1. X-ray structure of 1a. 
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2.1. Scope 

After the optimization of the reaction conditions, a small library of 3,6-dihydro-2H-1,3-thiazine-2-

thiones was synthesized to study the scope of the reaction. Aliphatic and aromatic, as well as sterically 

demanding inputs, were used (Table 1). 

Table 1. The synthesized library of 3,6-dihydro-2H-1,3-thiazine-2-thiones. 

 

Entry R1 R2 Product Yield 

1 Ph Ph 1a 63% [a]  
2 Ph Ph 1a 69% [b] 
3 iPr Ph 1b 37% [b] 
4 Ph iPr 1c 38% [b] 
5 2,6-Me2C6H3 2,4,6-Me3C6H2 1d 0% [b] 
6 Ph 2,4,6-Me3C6H2 1e 30% [b] 
7 p-F3CC6H4 o- F3CC6H4 1f n.d. [c] 

8 p-F3CC6H4 p- MeOC6H4 1g 65% [d] 
9 p-MeOC6H4 o- F3CC6H4 1h 59% [a] 
10 p-MeOC6H4 p- MeOC6H4 1i 64% [b] 
11 p- MeOC6H4 o- MeOC6H4 1j 65% [a] 
12 p-BrC6H4 p-BrC6H4 1k 60% [b] 
13 o-BrC6H4 m-BrC6H4 1l 72% [b] 

[a] Purified by recrystallization from methanol; [b] Purified by flash column 
chromatography; [c] Yield not determined; contains unknown impurities; [d] Product 
not fully separated from remaining aldehyde starting material; yield determined by 
1H-NMR analysis from product/contaminant ratios. 

In the formation of the 1-azadienes, 1.2 equiv. of n-BuLi were used. In order to prevent reductive 

dehalogenation in the synthesis of 1k and 1l (Table 1, entries 12 and 13, respectively) only 1.05 

equivalents of n-BuLi were used [23]. 

Because of the presence of excess of starting materials and side products, attempts were made to 

purify the crude reaction products by recrystallization. Methanol proved to be a suitable solvent for 

crystallization of products 1a, 1h and 1j. Only with the addition of water did some of the other entries 

precipitate, together with starting materials and/or side products. For compounds 1b–e, 1i, 1k, and 1l 

purification by crystallization was unsuccessful, and flash chromatographic purification was instead 

used in those cases. Unfortunately, products 1f (entry 7) and 1g (entry 8) could not be isolated in pure 

form by flash chromatography. In case of 1g (entry 8), the product could not be separated from the 

remaining aldehyde starting material, while in case of 1f (entry 7) the product was contaminated with 

unknown side products. 
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Aliphatic nitrile or aldehyde inputs give reduced yields in this reaction (entries 3 and 4), which is  

in agreement with earlier observations [2,3]. Compound 1d (entry 5) was not formed, most likely  

due to steric hindrance, and an equimolar mixture of 2,6-dimethylbenzonitrile and the mesitylene 

carboxaldehyde was recovered after column chromatography. This suggests that first stage of the 

reaction, i.e., the nucleophilic attack of the deprotonated phosphonate on the nitrile, did not take place 

and apparently is particularly sensitive to steric hindrance. The second stage of the reaction, i.e., the 

Horner-Wadsworth-Emmons-type reaction of the aldehyde, seems less influenced by steric bulk, as 

indicated by the fact that 1e (entry 6) is formed, albeit in lower yield (30%). Steric hindrance does not 

seem to play a significant role in case of mono-ortho-substitution (entries 9, 11 and 13), as products 

1h, 1j, and 1l are obtained in similar yields as 1a. Furthermore, electronic factors do not seem to play a 

significant role, as both electron-donating and electron-withdrawing groups are allowed on both the 

nitrile and the aldehyde input with comparable yields in all cases (entries 8–13). 

Although all products 1 are stable in the solid state, it should be noted that the products slowly 

decompose over time in solution. This is one of the reasons for the difficulties in purifying some of the 

products, e.g., 1f and 1g. The degradation is more pronounced in crude mixtures in the presence of air, 

than in purified products kept under inert atmosphere. However, more studies are necessary to pinpoint 

the nature of this degradation. 

3. Experimental 

3.1. General Information 

All reactions were carried out under inert atmosphere, unless stated otherwise. 1H- and 13C- nuclear 

magnetic resonance (NMR) spectra were recorded on a Bruker Avance 500 (500.23 MHz and 125.78 MHz 

respectively) or a Bruker Avance 400 (400.13 MHz and 100.61 MHz respectively) instrument with 

chemical shifts () reported in ppm downfield from tetramethylsilane. Electrospray Ionization (ESI) 

mass spectrometry was carried out using a Bruker micrOTOF-Q instrument in positive ion mode 

(capillary potential of 4,500 V). Column chromatography was performed with flash silica gel  

(40–63 m) and a mixture of ethyl acetate and cyclohexane. Compounds in Thin Layer 

Chromatography (TLC) were visualized by UV detection. THF was dried and distilled from sodium 

potassium alloy and benzophenone prior to use. Diethyl methylphosphonate was prepared as described 

earlier [3]. Other commercially available reagents were used without further purification.  

4.2. General Procedure I for the Formation of 3,6-Dihydro-2H-1,3-thiazine-2-thiones 

To a solution of diethyl methylphosphonate (292 L, 2.00 mmol) in dry THF (10 mL, 0.2 M) at −78 °C 

was added n-butyllithium (1.6 M in hexanes), and this mixture was stirred for 1.5 h at this temperature. 

The nitrile (1.1 equiv.) was added, and stirring was continued at −78 °C for 45 min. Then the reaction 

mixture was warmed to −40 °C, stirred for 1 h, and subsequently warmed to −5 °C and stirred for  

30 min. The aldehyde (1.1 equiv.) was then added, and the reaction mixture was stirred at −5 °C for  

30 min, warmed to room temperature, and stirred for an additional 1.5 h. After the addition of carbon 

disulfide (0.60 mL, 10 mmol) and overnight stirring, the solvent was removed in vacuo and either 

recrystallization from methanol or flash column chromatography afforded the product. 
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For the reaction time optimization, hexamethylbenzene (50 mg, 0.31 mmol, 0.65 equiv.) was added 

to the reaction mixture prior to the addition of the carbon disulfide. For each time point, a sample of 

the reaction mixture was taken, concentrated in vacuo and analyzed by 1H-NMR. 

4,6-Diphenyl-3,6-dihydro-2H-1,3-thiazine-2-thione (1a) 

According to General procedure I, the reaction between diethyl methylphosphonate,  

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv), benzonitrile (225 L, 2.20 mmol), 

benzaldehyde (224 L, 2.20 mmol) and carbon disulfide and subsequent flash column 

chromatography (EtOAc/c-hex = 1:15) afforded 1a as an orange foam (390 mg,  

1.38 mmol, 69%). Alternatively, recrystrallization from MeOH afforded 1a as a light 

orange solid (356 mg, 1.26 mmol, 63%). 1H-NMR (500 MHz, CDCl3)  (ppm) 9.07 (bs, 1H),  

7.51–7.43 (m, 5H), 7.41–7.31 (m, 1H), 5.62 (d, J = 5 Hz, 1H), 5.09 (d, J = 5 Hz, 1H); 13C-NMR  

(126 MHz, CDCl3)  (ppm) 193.5 (C), 139.7 (C), 138.7 (C), 134.6 (C), 130.0 (CH), 129.3 (2 × CH), 

129.2 (2 × CH), 128.5 (CH), 128.0 (2 × CH), 126.0 (2 × CH), 103.4 (CH), 46.8 (CH); HRMS [24] 

[MH+] 284.0538 (calc. C16H14NS2, 284.0562) [MH+−CS2] 208.1108 (calc. C15H14N, 208.1121); 

Melting point: 125–128 °C (decomp.). 

4-Isopropyl-6-phenyl-3,6-dihydro-2H-1,3-thiazine-2-thione (1b) 

According to General procedure I, the reaction between diethyl methylphosphonate,  

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv.), isobutyronitrile (197 L, 2.20 mmol), 

benzaldehyde (224 L, 2.20 mmol) and carbon disulfide followed by flash column 

chromatography (EtOAc/c-hex = 1:15) afforded 1b as a yellow solid (185 mg, 0.74 mmol, 

37%). 1H-NMR (500 MHz, CDCl3)  (ppm) 8.62 (bs, 1H), 7.39–7.24 (m, 5H), 5.15 (d, J = 9.5 Hz, 

1H), 4.88 (d, J = 9.5 Hz, 1H), 2.46 (sept, J = 7 Hz, 1H), 1.22 (d, J = 7 Hz, 3H), 1.21 (d, J = 7Hz, 3H); 
13C-NMR (126 MHz, CDCl3)  (ppm) 193.3 (C), 143.6 (C), 140.5 (C), 129.1 (2 × CH), 128.3 (CH), 

127.8 (2 × CH), 99.6 (CH), 46.3 (CH), 32.4 (CH), 20.8 (CH3), 20.7 (CH3); HRMS [MH+] 250.0712 

(calc. C13H16NS2, 250.0719) [MH+−CS2] 174.1275 (calc. C12H16N, 174.1277); Melting point: 94–95 °C. 

6-Isopropyl-4-phenyl-3,6-dihydro-2H-1,3-thiazine-2-thione (1c) 

According to General procedure I, the reaction between diethyl methylphosphonate,  

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv.), benzonitrile (225 L, 2.20 mmol), 

isobutyraldehyde (200 L, 2.20 mmol) and carbon disulfide followed by flash column 

chromatography (EtOAc/c-hex = 1:15) afforded 1c as a light yellow solid (192 mg,  

0.77 mmol, 38%). 1H-NMR (500 MHz, CDCl3)  (ppm) 8.91 (bs, 1H), 7.43 (s, 5H), 5.45 (d, J = 5 Hz), 

3.68 (t, J = 7.5 Hz, 1H), 2.03 (m, 1H), 1.07 (d, J = 6.5 Hz, 3H), 1.06 (d, J = 6.5 Hz, 3H); 13C-NMR  

(126 MHz, CDCl3)  (ppm) 194.9 (C), 138.4 (C), 134.9 (C), 129.8 (CH), 129.2 (2 × CH), 125.9  

(2 × CH), 102.6 (CH), 49.7 (CH), 34.7 (CH), 18.9 (CH3), 18.6 (CH3); HRMS [MH+] 250.0710 (calc. 

C13H16NS2, 250.0719) [MH+−CS2] 174.1273 (calc. C12H16N, 174.1277); Melting point: 93–95 °C. 
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6-Mesityl-4-phenyl-3,6-dihydro-2H-1,3-thiazine-2-thione (1e) 

According to General procedure I, the reaction between diethyl methylphosphonate,  

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv.), benzonitrile (225 L, 2.20 mmol), mesitylene 

carboxaldehyde (324 L, 2.20 mmol) and carbon disulfide followed by flash column 

chromatography (EtOAc/c-hex = 1:15) afforded 1e as a yellow foam (194 mg, 0.60 mmol, 

30%). 1H-NMR (500 MHz, CDCl3)  (ppm) 9.02 (bs, 1H), 7.48–7.42 (m, 5H), 6.89 (s, 2H), 

5.88 (d, J = 3.5, 1H), 5.54 (d, J = 3.5 Hz, 1H), 2.45 (bs, 6H), 2.28 (s, 3H); 13C-NMR (126 MHz, 

CDCl3)  (ppm) 196.6 (C), 138.3 (3 × C), 137.5 (C), 134.6 (C), 129.9 (C), 129.8 (2 × CH), 129.3  

(3 × CH), 125.8 (2 × CH), 105.6 (CH), 42.6 (CH), 20.9 (3 × CH3); HRMS [MH+] 326.1020  

(calc. C19H20NS2, 326.1032) [MH+−CS2] 250.1585 (calc. C18H20N, 250.1590). 

6-(2-(Trifluoromethyl)phenyl)-4-(4-(trifluoromethyl)phenyl)-3,6-dihydro-2H-1,3-thiazine-2-thione (1f) 

According to General procedure I, the reaction between diethyl methylphosphonate, 

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv.), p-trifluoromethylbenzonitrile (376 mg, 

2.20 mmol), o-trifluoromethylbenzaldehyde (290 L, 2.20 mmol) and carbon 

disulfide followed by flash column chromatography (EtOAc/c-hex = 1:15) afforded 

an inseparable mixture of 1f and impurities (367 mg) 1H-NMR (500 MHz, CDCl3)  

(ppm) 9.12 (bs, 1H), 8.10–7.20 (m, 8H), 5.60 (d, J = 5 Hz, 1H), 5.47 (d, J = 5 Hz, 1H); HRMS [MH+] 

420.0255 (calc. C18H12F6NS2, 420.0310) [MH+−CS2] 344.0847 (calc. C17H12F6N, 344.0868). 

6-(2-methoxyphenyl)-4-(4-(trifluoromethyl)phenyl)-3,6-dihydro-2H-1,3-thiazine-2-thione (1g) 

According to General procedure I, the reaction between diethyl methylphosphonate, 

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv.), n-butyllithium (1.5 mL, 2.4 mmol,  

1.2 equiv.), p-trifluoromethylbenzonitrile (376 mg, 2.20 mmol), p-methoxybenzaldehyde 

(335 L, 2.20 mmol) and carbon disulfide followed by flash column chromatography 

(EtOAc/c-hex = 1:15) afforded an inseparable mixture of 1g and impurities (599 mg). 
1H-NMR (500 MHz, CDCl3)  (ppm) 9.10 (bs, 1H), 7.71 (d, J = 8 Hz, 2H), 7.61 (d,  

J = 8 Hz, 2H), 7.28 (d, J = 9 Hz, 2H), 6.90 (d, J = 9 Hz, 2H), 5.67 (d, J = 4.5 Hz, 1H), 5.47 (d, J = 4.5 Hz, 

1H), 3.81 (s, 3H); HRMS [MH+] 382.0515 (calc. C18H15F3NOS2, 382.0542) [MH+−CS2] 306.1085 

(calc. C17H15F3NO, 306.1100). 

4-(4-Methoxyphenyl)-6-(2-(trifluoromethyl)phenyl)-3,6-dihydro-2H-1,3-thiazine-2-thione (1h) 

According to General procedure I, the reaction between diethyl methylphosphonate, 

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv.), p-methoxybenzonitrile (293 mg,  

2.20 mmol), o-trifluoromethylbenzaldehyde (290 L, 2.20 mmol) and carbon 

disulfide and subsequent recrystallization from MeOH afforded 1h as a light yellow 

solid (448 mg, 1.18 mmol, 59%). 1H-NMR (500 MHz, CDCl3)  (ppm) 9.09 (bs, 

1H), 7.71 (d, J = 8 Hz, 1H), 7.67 (d, J = 8 Hz, 1H), 7.60 (t, J = 7.5 Hz), 7.46-7.38 (m, 3H), 6.95 (d,  

J = 9 Hz, 2H), 5.44 (d, J = 5 Hz, 1H), 5.41 (d, J = 5 Hz, 1H), 3.84 (s, 3H); 13C-NMR (126 MHz, 

CDCl3)  (ppm) 192.4 (C), 161.0 (C), 139.5 (C), 138.2 (C), 133.0 (CH), 130.8 (CH), 127.4 (q, J = 18 Hz, 

N
H
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C), 127.4 (2 × CH), 126.0 (q, J = 6 Hz, CH), 125.1 (CH) 123.5 (q, J = 403 Hz, CF3) 114.6  

(2 × CH), 101.1 (CH), 55.5 (CH3), 42.2 (CH); HRMS [MH+] 382.0523 (calc. C18H15F3NOS2, 382.0542) 

[MH+−CS2] 306.1084 (calc. C17H15F3NO, 306.1100); Melting point: 147–148 °C (decomp.). 

6-(2-Methoxyphenyl)-4-(4-methoxyphenyl)-3,6-dihydro-2H-1,3-thiazine-2-thione (1i) 

According to General procedure I, the reaction between diethyl methylphosphonate, 

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv.), p-methoxybenzonitrile (393 mg,  

2.20 mmol), p-methoxybenzaldehyde (335 L, 2.20 mmol) and carbon disulfide 

followed by flash column chromatography (EtOAc/c-hex = 1:15) afforded 1i as an 

orange foam (441 mg, 1.28 mmol, 64%). 1H-NMR (500 MHz, CDCl3)  (ppm) 9.04 

(bs, 1H), 7.40 (d, J = 9 Hz, 2H), 7.28 (d, J = 9 Hz, 2H), 6.95 (d, J = 9 Hz, 2H), 6.89 

(d, J = 9 Hz, 2H), 5.50 (d, J = 5 Hz, 1H), 5.04 (d, J = 5 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H); 13C-NMR 

(126 MHz, CDCl3)  (ppm) 193.7 (C), 160.9 (C), 159.7 (C), 138.3 (C), 131.7 (C), 129.2 (2 × CH), 

127.4 (2 × CH), 127.0 (C), 114.6 (2 × CH), 114.5 (2 × CH), 102.5, (CH), 55.5 (CH3), 55.4 (CH3), 

46.4 (CH); HRMS [MH+] 344.0741 (calc. C18H18NO2S2, 344.0773) [MH+−CS2] 268.1310 (calc. 

C17H18NO2, 268.1332). 

6-(2-Methoxyphenyl)-4-(4-methoxyphenyl)-3,6-dihydro-2H-1,3-thiazine-2-thione (1j) 

According to General procedure I, the reaction between diethyl methylphosphonate, 

n-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv.), p-methoxybenzonitrile (393 mg,  

2.20 mmol), o-methoxybenzaldehyde (300 mg, 2.20 mmol) and carbon disulfide and 

subsequent recrystallization from MeOH afforded 1j as a light orange solid (448 mg, 

1.30 mmol, 65%). 1H-NMR (500 MHz, CDCl3)  (ppm) 9.00 (bs, 1H), 7.43 (d,  

J = 8 Hz, 2H, 7.33–7.25 (m, 2H), 6.98–6.93 (m, 3H), 6.90 (d, J = 8 Hz, 1H), 5.50 (d, J = 6 Hz, 1H), 

5.36 (d, J = 6 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H); 13C-NMR (126 MHz, CDCl3)  (ppm) 194.3 (C), 

160.8 (C), 156.4 (C), 138.8 (C), 129.4 (CH), 128.2 (CH), 127.4 (2 × CH), 127.2 (C), 120.9 (CH), 

114.6 (2 × CH), 110.8 (CH), 100.8 (CH), 55.6 (CH3), 55.5 (CH3), 40.0 (CH); HRMS [MH+] 344.0755  

(calc. C18H18NO2S2, 344.0773) [MH+−CS2] 268.1318 (calc. C17H18NO2, 268.1332); Melting point: 

139–143 °C (decomp.). 

4,6-Bis(4-bromophenyl)-3,6-dihydro-2H-1,3-thiazine-2-thione (1k) 

According to General procedure I, the reaction between diethyl methylphosphonate, 

n-butyllithium (1.3 mL, 2.1 mmol, 1.05 equiv.), p-bromobenzonitrile (400 mg,  

2.20 mmol), p-bromobenzaldehyde (407 mg, 2.20 mmol) and carbon disulfide 

followed by flash column chromatography (EtOAc/c-hex = 1:15) afforded 1k as a red 

foam (532 mg, 1.21 mmol, 60%). 1H-NMR (500 MHz, CDCl3)  (ppm) 9.02 (bs, 1H), 

7.58 (d, J = 6.5 Hz, 2H), 7.50 (d, J = 6.5 Hz, 2H), 7.34 (d, J = 6.5 Hz, 2H), 7.22 (d, J = 6.5 Hz, 2H), 

5.57 (d, J = 5 Hz, 1H), 5.01 (d, J = 5Hz, 1H); 13C-NMR (126 MHz, CDCl3)  (ppm) 193.0 (C), 138.6 

(C), 138.1 (C), 133.3 (C), 132.5 (2 × CH), 132.4 (2 × CH), 129.5 (2 × CH), 127.6 (2 × CH), 124.4 (C), 
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122.7 (C), 103.2 (CH), 46.1 (CH); HRMS [MNa+] 461.8557 (calc. C19H11Br2NNaS2, 461.8592) 

[MH+−CS2] 363.9304 (calc. C15H12Br2N, 363.9331). 

4,6-Bis(4-bromophenyl)-3,6-dihydro-2H-1,3-thiazine-2-thione (1l) 

According to General procedure I, the reaction between diethyl methylphosphonate,  

n-butyllithium (1.3 mL, 2.1 mmol, 1.05 eq), o-bromobenzonitrile (400 mg, 2.20 mmol), 

m-bromobenzaldehyde (257 L, 2.20 mmol) and carbon disulfide followed by flash 

column chromatography (EtOAc/c-hex = 1:15) afforded 1l as a light pink foam (638 mg, 

1.45 mmol, 72%). 1H-NMR (500 MHz, CDCl3)  (ppm) 8.93 (bs, 1H), 7.66 (d, J = 8 Hz, 

1H), 7.57 (s, 1H), 7.44 (d, J = 7.5, 1H), 7.38 (t, J = 3 Hz, 2H), 7.36-7.28 (m, 2H) 7.25 (t, J = 6 Hz, 

1H), 5.42 (d, J = 5 Hz, 1H), 4.97 (d, J = 5 Hz, 1H); 13C-NMR (126 MHz, CDCl3)  (ppm) 191.9 (C), 

142.2 (C), 138.3 (C), 135.3 (C), 133.6 (CH), 131.6 (CH), 131.5 (CH), 131.3 (CH), 131.0 (CH), 130.7 

(CH), 128.0 (CH), 126.6 (CH), 123.1 (C), 122.5 (C), 105.1 (CH), 46.1 (CH); HRMS [MNa+] 461.8569 

(calc. C19H11Br2NNaS2, 461.8592) [MH+−CS2] 363.9309 (calc. C15H12Br2N, 363.9331). 

4. Conclusions 

We report the novel MCR of in situ generated 1-azadienes with carbon disulfide to furnish unfused 

3,6-dihydro-2H-1,3-thiazine-2-thiones in reasonable to good yields. In this reaction, electron-donating 

as well as electron-withdrawing substituents are tolerated on both the nitrile and aldehyde input. 

Moreover, aliphatic nitriles and aldehydes can be used in this reaction, although these sometimes lead 

to lower yields. In conclusion, rapid and easy access to a rather underexplored class of compounds was 

established with a wide range of potential inputs. 
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