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Abstract: Titanium complexes have been widely used as catalysts for C-C bond-forming 

processes via free-radical routes. Herein we provide an overview of some of the most 

significant contributions in the field, that covers the last decade, emphasizing the key role 

played by titanium salts in the promotion of selective reactions aimed at the synthesis of 

multifunctional organic compounds, including nucleophilic radical additions to imines, 

pinacol and coupling reactions, ring opening of epoxides and living polymerization. 

Keywords: radical chemistry; titanium; titanocene; TiCl3; TiCl4; nucleophilic addition; 
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1. Introduction 

Since the pioneering work of Barton et al. [1] of 1960, the potential of radical reactions has been 

extensively explored, thanks also to the growth of advanced techniques for the detection of radicals 

and the definition of their structure and reactivity. This ongoing research has allowed the development 

of innovative selective free-radical reactions, occurring under mild conditions and tolerated by 

common functional groups, making such processes suitable for the synthesis and functionalization of 

organic compounds [2,3]. In the last decade, important improvements in this filed have been achieved 
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by combining radical chemistry with transition-metal catalysis, due to the key role of transition metal 

complexes both in promoting and highly controlling sophisticated free-radical synthetic routes [4–7]. This 

approach has been adopted for different applications, ranging from oxidative [8–10] and reductive [11] 

radical processes to the selective C-C and C-N bond formation [12–19], passing through living 

polymerization [20–22]. 

Among the transition metals widely employed for these purposes, in the present review we focus on 

titanium and address the recent advances in selective free-radical processes mediated by Ti(III) and 

Ti(IV) complexes. Titanium, the seventh most abundant metal on Earth, is one of the cheapest 

transition metals and a lot of titanium compounds are nontoxic and environmentally friendly. The high 

added value of using titanium salts to promote radical synthetic routes not only relies on their selective 

intervention in the initiation and the termination steps of the radical chain, but also on their remarkable 

coordinating role shown, due to their Lewis acid character.  

Limiting our overview to the results reported in the literature in the past twelve years, Section 2 

describes the potential of Ti(III)/PhN2
+ and Ti(III)/hydroperoxide systems in promoting one-pot, 

multicomponent, nucleophilic radical additions to aldimines and ketimines generated in situ. Section 3 

deals with the most significant examples achieved in pinacol and coupling reactions while, in Section 4, 

ample discussion is devoted to the ring-opening of epoxides mediated and catalyzed by titanocenes. 

Finally, in Section 5, we briefly disclose the recent results reported in the field of living polymerization. 

It is noteworthy that titanium dioxide is also able to promote free-radical processes by  

photoactivation at suitable wavelengths, but this chemistry is not the object of the present review. The 

combined action of light and TiO2, under oxidative conditions, finds interesting applications in the 

field of pollutant photodegradation, selective organic photosynthesis and antibacterial activity. For a 

comprehensive overview on the TiO2 photocatalytic activity, we refer the reader to some very recent 

reviews [23–26]. 

2. Nucleophilic Radical Addition to Imines 

Nucleophilic radical addition to imines, iminium salts or hydrazones, mediated by transition metal 

salts such as manganese [27], copper [28–30], and zirconium [31–33], represents a valuable alternative 

to the classical ionic routes for the selective C-C bond formation and the synthesis of high added value 

polifunctional molecules [12–17]. This approach becomes even more intriguing if the transition metal 

is able to promote, in one-pot, the in situ formation of the imine followed by nucleophilic addition, in 

accordance with the multicomponent reaction (MCR) strategy. In the last decade TiCl3, because of this 

particular specificity, has attracted the increasing interest of our research group, enabling us to develop 

quite a number of free-radical MCRs. 

2.1. TiCl3/ArN2
+ System 

The selective arylative amination of aromatic aldehydes using the TiCl3/ArN2
+ system (Scheme 1) 

was first reported by Clerici and Porta in 1990 [34]. According to this procedure, Ti(III) promotes the 

aryldiazonium salt decomposition to an aryl radical. Simultaneously, the Ti(IV) formed, due to its 

oxophilicity, favors the in situ formation of aldimines from anilines and aldehydes. Furthermore, as a 
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strong Lewis acid, Ti(IV) enhances, via N-complexation, the electrophilicity of the C=N bond carbon 

atom towards nucleophilic attack by the aryl radical.  

Scheme 1. Arylative amination of aldehydes promoted by the TiCl3/ArN2
+ system.  

 

This reaction occurs in an aqueous environment, where it is well known that imines, easily 

hydrolysable, are quite unstable and less prone to a nucleophilic attack. Later, in 2005, this approach 

was successfully extended to a wider range of nucleophilic radical sources by introducing a fourth 

component in the cascade reaction. In fact, in the presence of alkyl iodides [35], the phenyl radical, 

deriving from the corresponding diazonium salt decomposition, promotes the fast iodide-atom 

abstraction, generating an alkyl radical which, in turn, undergoes a nucleophilic attack onto aldimines 

generated in situ (Scheme 2). 

Scheme 2. Nucleophilic radical addition to aldimines promoted by the TiCl3/PhN2
+ system.  

 

According to a similar procedure, the nucleophilic addition of ethers onto aldimines was performed 

via α-H atom abstraction via the same phenyl radical source (Scheme 2) [36], providing the first radical 

version of the Mannich reaction. The resulting iminium radical is then reduced by a second equivalent of 

TiCl3, rendering the overall mechanism irreversible towards the formation of the desired product. 

2.2. TiCl3/ROOH and TiCl4-Zn/ROOH Systems 

In 2006, we reported a series of new one-pot multicomponent reactions mediated by TiCl3 or  

TiCl4-Zn hydroperoxide systems, which overcome some limits of the previously disclosed approach. 

The choice of the right hydroperoxide allows the formation of more practical, efficient and selective 

precursors of the radical cascade. As a consequence, the new procedure can be extended to a wider 

range of nucleophilic sources and can be applied even onto ketimines generated in situ, allowing us to 

create different building blocks for bioactive molecules (Scheme 3). Moreover, this reaction occurs 
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under mild conditions in 30–60 min. Finally, the proposed approach requires neither the pre-formation 

of the imine nor the protection of the amino group and may easily be conducted under aqueous conditions. 

Scheme 3. Radical addition to imines triggered by TiCl3 or TiCl4-Zn/ROOH systems.  
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2.2.1. TiCl3/ROOH  

An alternative route to the radical aminoalkylation of ethers was proposed by Porta and co-workers 

in 2006 [37]. The TiCl3-tert-butylhydroperoxide (t-BuOOH) system was revealed to be a more practical, 

efficient and selective precursor of -alkoxyalkyl radicals from ethers. Accordingly, TiCl3/t-BuOOH 

readily assemble an aniline, an aldehyde, and an ether, leading to 1,2-aminoethers (Scheme 4).  

Scheme 4. Aminoalkylation of ethers promoted by the TiCl3/t-BuOOH system. 

 

In agreement with the general proposed mechanism (Scheme 5), the dropwise addition of TiCl3 into 

the reaction medium promotes the decomposition of the hydroperoxide, leading to the formation of 

tert-butoxyl radical (t-BuO·). The latter undergoes an α-H abstraction from the ether, with higher 

selectivity with respect to the phenyl radical generated by the TiCl3/PhN2
+ system (no β-hydrogen 

abstraction was observed). Once formed, the nucleophilic ketyl radical adds to the aldimine generated 

in situ, in analogy with the mechanism indicated in Scheme 2. 



Molecules 2012, 17 14704 

 

 

Scheme 5. Nucleophilic radical generation promoted by the TiCl3/t-BuOOH system. 
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The reaction goes like a titration and can be easily monitored by considering the different color of 

the species involved: Ti(III) (violet) and Ti(IV) (orange). Thus, the addition of the TiCl3 solution stops 

when a pale blue color is barely maintained to ensure the complete decomposition of the peroxide. 

This methodology was then extended to the selective carbamoylation of aldimines in formamide [38], 

providing a radical version of the Strecker synthesis of α-amino amides (Scheme 6a), and to the 

aminoalkylation of methanol [39], leading to the formation of α,β-amino alcohols (Scheme 6b). 

Scheme 6. (a) Carbamoylation of aldimines. (b) Hydroxymethylation of aldimines. 

 

When the same protocol is used in the presence of an alcoholic solvent different from methanol, a 

domino reaction competes with the one-pot process (Scheme 7) [40].  

Scheme 7. Domino reaction in alcoholic solvent promoted by the TiCl3/t-BuOOH system. 

  

In fact, in this case the ketyl radical formed behaves as a strong reducing agent [41] and competes 

with Ti(III) in the reduction of t-BuOOH, leading to the formation of the corresponding aldehyde. The 

latter, when in the presence of an aniline, promotes the formation of an aldimine, which is prone to 
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nucleophilic attack by a second ketyl radical. As a consequence, when the reaction is carried out in the 

absence of aldehydes, it proceeds to the formation of β-amino alcohols by in situ generation of an aldehyde. 

2.2.2. TiCl4-Zn/ROOH 

Since ketimines are less stable in aqueous medium and less reactive than aldimines, studies 

involving the reductive radical addition to ketimines are scant in comparison with those conducted on 

their aldimine counterparts. Moreover, in almost all cases the preformation of ketimines is required. It 

is because of this low stability under non-anhydrous conditions that the TiCl3/ROOH system resulted 

ineffective when an aniline, a ketone and formamide were assembled in one-pot with the intention of 

promoting the formation of quaternary α-amino amides. Nevertheless, we recently reported an 

optimization of the previously discussed protocol, consisting in the replacement of the aqueous TiCl3 

with an anhydrous solution of TiCl4 in CH2Cl2 in combination with Zn powder (Scheme 8a) [42]. The 

same protocol was successfully applied in methanol solvent for the selective hydroxymetylation of 

ketimines, affording the corresponding ,-disubstituted--amino alcohols (Scheme 8b) [43].  

Scheme 8. (a) Carbamoylation of ketimines. (b) Hydroxymethylation of ketimines. 

 

The mechanism is analogous to that previously discussed and Zn metal has the unique role of 

sacrificial reductant for the in situ generation of Ti(III) from Ti(IV) (Scheme 9). 

Scheme 9. Nucleophilic addition to ketimines promoted by the TiCl4-Zn/ROOH system. 
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Surprisingly, the TiCl4-Zn/t-BuOOH combination was also revealed to be even more effective and 

selective with respect to the TiCl3/t-BuOOH approach in promoting domino reactions. 1,2-Amino 

alcohols were obtained in high yields by simply combining two molecules of ethanol or propanol in 

the presence of aromatic and aliphatic amines, without requiring the addition of aldehydes or ketones 

(Scheme 10) [44]. Even more interesting is that an analogous reaction occurred by operating in cyclic 

ether solvents [44].  

Scheme 10. Domino reaction in alcohols promoted by the TiCl4-Zn/ROOH system. 
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According to the proposed mechanism (Scheme 11), it was possible to synthetize amino alcohols by 

electrophilic amination of ketyl radicals, promoting the formation of the imine via ring opening of the 

ether cyclic and the subsequent nucleophilic radical addition by a second ketyl radical. 

Scheme 11. Domino reaction in cyclic ethers promoted by the TiCl4-Zn/ROOH system. 

 

2.3. Cp2TiCl2/Zn Systems 

In 2011, Saha and Roy reported a selective radical-induced allylation of pre-formed aldimines for 

the synthesis of homoallyl amines [45]. The combination of titanocene(IV) dichloride and Zn dust in 

THF under argon leads to the formation of Cp2TiCl in situ. The latter acts as radical initiator, 

promoting the formation of the allyl radical from the corresponding allyl bromide (Scheme 12). This 

approach was successfully applied to the synthesis of deoxy aza-disaccharides and for the preparation 

of the bicyclic skeleton of alkaloids. 
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Scheme 12. Cp2TiCl-mediated allylation of aromatic aldimines. 

 

3. Coupling Reactions  

Radical coupling mediated by transition metal salts represents one of the pillars of free-radical 

synthesis. Once again, simple titanium salts and titanium complexes bearing specific organic ligands 

result particularly effective in promoting intramolecular as well as intermolecular coupling with high 

stereo-, diastero- and even enantioselectivity [46,47]. Among the several protocols developed, 

pinacolization, allylation and cross-coupling reactions have attracted particular attention in the last decade.  

3.1. Pinacol Reactions 

The pinacolization of aldehydes is one of the most studied reactions in the area of radical coupling 

for C-C bond formation. This interest arises from the usefulness of hydrobenzoins as chiral auxiliaries 

and ligands for stereoselective organic synthesis. Moreover, the pinacol reaction represents an ideal 

tool for studying the enatioselective catalyzed formation of radicals [48].  

This reaction can be accomplished with a variety of one- or two-electron metal reducing agents. Our 

group has widely investigated the role that TiCl3 and TiCl4 play in promoting pinacolization of 

aromatic aldehydes. In particular, a dl-stereodirecting pinacolization was accomplished by using TiCl3 

in a strictly anhydrous non-coordinating solvent (CH2Cl2), favored by Ti(III)-complexation of the 

oxygen atom of the carbonyl group, which lowers the reduction potential of the aromatic aldehyde 

(Scheme 13) [49].  

Scheme 13. dl-Stereodirecting pinacolization of aromatic aldehydes promoted by TiCl3.  

 

Later on, in the same CH2Cl2 solvent, an analogous reactivity was observed when TiCl4 is coupled 

with diisopropylethylamine (DIPEA). Porta and co-workers [50] revealed how, in this case, the 

TiCl4/DIPEA complexation is the driving force of the overall process, causing the instantaneous 

formation of Ti(III) by an inner-sphere electron transfer from Ti(IV) to DIPEA. Once generated, Ti(III) 

coordinates the carbonyl oxygen of an added aromatic aldehyde, promoting its reductive dimerization. 

More recently we have unexpectedly found that, despite the non-anhydrous conditions, the aqueous 

TiCl3/t-BuOOH redox system promotes the hydrodimerization of aromatic aldehydes, when used in 

combination with an alcoholic co-solvent like ethanol [41]. 

In accordance with the proposed mechanism (Scheme 14), the explanation of the paradox relies in 

the reducing power of the -hydroxyalkyl radicals generated in situ via H-atom abstraction from the 
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alcoholic solvent by tert-butoxy radical. These ketyl radicals, instead of Ti(III), are the actual 

reductants of the aromatic aldehydes. 

Scheme 14. Proposed mechanism for the TiCl3/t-BuOOH mediated pinacolization.  

 

Pinacolization of aromatic ketones like acetophenone can be performed in good yields and high 

stereoselectivity (dl/meso ratio = 9/1) in the presence of Cp2TiCl, generated in situ by combining 

Cp2TiCl2 with an excess of Mn dust [51]. 

Moreover, new families of Ti(IV) complexes bearing chiral ligands (1, 2 and 3, Figure 1) have been 

developed in the last decade. These derivatives, when employed in combination with co-reducing 

agents, revealed to be ideal precursors of chiral Ti(III) catalysts for the enantioselective pinacol 

coupling of aldehydes.  

Figure 1. Chiral Ti(IV) complexes.  

 

In 2001 Riant and co-workers [52] reported the combined use of stoichiometric amounts of the 

titanium-Schiff base complex 1 and Mn to promote the asymmetric dl-diastereoselective pinacolization 

with high yields and enantioselectivity up to 91% (Scheme 15). 

Scheme 15. Riant’s pinacolization mediated by stoichiometric amounts of complex 1.  
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An analogous result was achieved by Joshi et al., who succeeded in performing a catalytic cycle in 

CH3CN with 10 mol % concentration of complex 2 and stoichiometric amounts of Me3SiCl (TMSCl), 

followed by the addition of tetrabutylammonium fluoride in THF (Scheme 16) [53]. 

Scheme 16. Pinacolization mediated by catalytic amounts of complex 2.  

 

In 2005, Knoop and Studer reported a new method for the in situ generation of Ti(III) complexes 

without requiring a co-reducing reagent [54]. Cyclohexadienyl-Ti(IV) compounds, prepared from the 

corresponding lithiated cyclohexadienes, led to the corresponding Ti(III) complexes upon thermal C-Ti 

bond homolysis (Scheme 17). Following this procedure, complex 3 was readily prepared and employed 

to perform pinacol coupling of aromatic aldehydes with diastereomeric and enantiomeric excess. 

Scheme 17. Pinacolization of aromatic aldehydes promoted by 3.  

 

3.2. Allylation Reactions 

Among radical coupling reactions, the Barbier-type allylation of carbonyl derivatives, mediated by 

different transition metals, has attracted particular attention due to its considerable synthetic relevance 

(Scheme 18). The generic strategy for this process consists in the transformation of allyl halides into 

the corresponding allyl radicals which, in turn, would add onto the carbonyl compounds present in the 

reaction medium. 

Scheme 18. Barbier-type allylation of carbonyl derivatives.  

 

Very recently, Justicia et al. have shown that an excess of titanocene(III) chloride, generated  

in situ by the Cp2TiCl2/Mn-dust system, allows to extend this protocol to the crotylation of carbonyl 

compounds [55]. 

However, most of the reported protocols usually require stoichiometric amounts of these metals, 

which is detrimental for the sustainability of the process. Stoichiometric quantities are generally 

necessary even when operating in the presence of Ti complexes, limiting the applicability of this 

approach to enatioselective additions [46]. In this context, in 2009 a comprehensive contribution by 

Oltra and co-workers has shown how catalytic proportions of titanocene(III) complexes, when 

combined with the regenerating agent 4 (obtained by mixing TMSCl and 2,4,6-collidine), are able to 

promote the Barbier-type allylation, in accordance with the mechanism reported in (Scheme 19) [56]. 
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Scheme 19. Barbier-type allylation mechanism promoted by catalytic titanocene.  

 

This approach has been successfully applied for the allyl radical addition onto aldehydes and 

ketones (including functionalized carbonyl substrates), for cyclization reactions and for prenylation of 

aldehdyes (Scheme 20). 

Scheme 20. Examples of Barbier-type allylations promoted by catalytic titanocene.  

 

The titanocene(III)-mediated Barbier-type prenylation to α,β-unsaturated aldehydes, which allows 

the introduction of hydroxyl groups at desiderable positions, and the subsequent radical cyclization 

promoted by the same titanium complex, open the straightforward access to polyhydroxylated 

terpenoids [57]. 
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The main limitation of the Barbier-type approach is that it requires the use of allylic halides as 

reactive substrates, while allylic carbonates and carboxylates, which are easily prepared and handled, 

are inert against titanocene(III) complexes. To overcome this limit, Oltra and co-workers proposed the 

combination of Cp2TiCl with palladium and nickel complexes [58]. Indeed, it is well known that these 

metal derivatives are able to activate allylic carbonates and carboxylates by forming 3-allylmetal 

complexes. The authors have demonstrated how the choice of the metal is crucial in modulating the 

Cp2TiCl activity in the allylation reaction. In fact, while palladium salts promote the intermolecular 

coupling with electrophilic reagents (Scheme 21a), the intramolecular allylation of alkenes with allylic 

carbonates occurs in the presence of nichel complexes, leading to carbocylic derivatives (Scheme 21b). 

Scheme 21. Divergent Ti-mediated allylations with modulation by Palladium or Nickel. 

 

The titanium/palladium-mediated system has been successfully applied by the same research group 

for the selective allylation, crotylation and prenylation of aldehydes and ketones [59] (Scheme 22), for 

the synthesis of homopropargyl alcohols using propargyl carbonates as pronucleophiles [60] (Scheme 23), 

and to promote the intramolecular Michael-type addition of allylic carboxylates to activated alkenes [61] 

(Scheme 24). More recently, the efficient allylation of carbonyl compounds starting with allyl 

carbonates has been performed by replacing Pd with Ni [62]. 

Scheme 22. Titanium/Palladium mediated reactions. 
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Scheme 23. Titanium/palladium-mediated propargylation of ketones. 

 

Scheme 24. Titanium/palladium-mediated intramolecular Michael-type addition. 

 

3.3. Other Coupling Reactions 

Several other coupling reactions promoted by titanium complexes have been recently reported. Roy 

and co-workers have proposed the use of the Cp2TiCl2/Zn-dust system to promote the synthesis of 

furan derivatives such as (±)-evodone from α-bromo-β-keto enolethers [63]. The same approach has 

been successfully applied to the asymmetric synthesis of α-methylene bis-γ-butyrolactone [64]. 

The Cp2TiCl-catalyzed homolytic opening of ozonides, reported by Rosales et al. [65], provides 

carbon centered radicals suitable to form C-C bonds via both homocoupling and cross-coupling 

processes (Scheme 25). 

Scheme 25. Homocoupling versus cross-coupling in the Ti-catalyzed opening of ozonides. 

 

Very recently, Streuff and co-workers have reported an efficient enatioselective reductive 

cyclization of ketonitriles promoted and catalyzed by chiral Ti(III) catalysts (Scheme 26) [66]. 
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Scheme 26. Reductive cyclization of ketonitriles. 

 

An example of the potential of radical chemistry is the use of the Ingold-Fisher “Persistent Radical 

Effect” (PRE) which has found ample employment in cross-coupling reactions for the selective 

synthesis of organic compounds. According to PRE, the cross-coupling between two radicals occurs 

when the two species are generated at similar rates and one is more persistent than the other, that is 

with a lifetime significantly greater than that for a methyl radical under the same conditions [67]. 

In 2008 we reported how α,β-dihydroxy ketones can be used as a source of stabilized radicals via 

selective C-C bond cleavage promoted by TiCl4 [68] the coordinating effect of the metal ion induces 

an increased stabilization onto the new radicals, driven by the captodative effect (Scheme 27).  

Scheme 27. C-C bond cleavage of α,β-dihydroxy ketones promoted by TiCl4. 

 

This observation prompted us to develop a new one-pot multicomponent route leading to the 

synthesis of polyfunctional derivatives of high added value. The generation, in the same reaction 

medium, of transient radicals via thermal decomposition of 2,2′-azo-bis-isobutyronitrile (AIBN) 

yielded an innovative methodology for the synthesis of β-hydroxynitriles by cross-combination 

between Ti(IV)-stabilized radicals and the α-cyanoisopropyl radical (Scheme 28). 

Scheme 28. Synthesis of β-hydroxynitriles from α,β-dihydroxy ketones and AIBN. 

 

4. Epoxide Reactions Mediated by Titanocene  

Bis (cyclopentadienyl) titanocene III chloride (Cp2TiCl) and substituted titanocenes are well known 

titanium complexes able to generate regioselective radical epoxide opening through single electron 

transfer (ET), both in stoichiometric and catalytic amounts [69,70]. The method of radical generation 

combines both the Lewis acid catalysis and the radical chemistry with interesting advantages: the 

initial ET by the metal, tuning the acidity of the metal center, avoids SN-type reactions, while the 
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ensuing radical reaction can be controlled by the metal complex and his ligand. Cyclic voltammetry 

and kinetic measurements have disclosed the structure and mechanism of epoxide opening by Cp2TiCl 

reagents in solution: the activation of Cp2TiCl2 species by Mn or Zn reducing metals in THF solution 

leads to a mixture composed by the monomer Cp2TiCl and the chlorine bridged dimer (Cp2TiCl)2, but 

the more reactive species is the half-open dimer [71,72] (Scheme 29). 

Scheme 29. Structures of Cp2TiCl in solution: dimer (a), half-open dimer (b), reactive 

species binding the solvent (c).  

 

Typical radical reactions mediated by titanocene reagents regard selective reduction and 

deoxygenation of epoxides, C-C bond formation processes such as cyclizations, and intermolecular 

additions to activated olefins [73,74]. 

It is worth noting that, as the reaction mechanism generally proceeds via the most substituted  

(i.e., energetically most stable) radical, the regiochemistry is the opposite (and complementary) to that 

normally expected for conventional SN2-type epoxide openings with carbon nucleophiles or hydride 

reagents [73,74]. 

4.1. Epoxide Deoxygenation 

Though epoxides are usually prepared from olefins, their deoxygenation for the generation of C=C 

double bonds finds ample application in highly oxidized substrates like carbohydrates and other natural 

derivatives [75,76]. The process proceeds in good to excellent yields, with exceptional chemo-selectivity.  

It has been shown that the deoxygenation occurs when operating in the absence of radical  

acceptors and that it depends on the substitution pattern [77]. On the basis of these observations, 

Fernández-Mateos and co-workers have recently reported the selective synthesis of terpenoids starting 

from pinene-oxide derivatives [78]. 

Doris and co-workers reported in 2002 the Cp2TiCl-mediated deoxigenation of the alkaloid 

leurosine (from Catharantus roseus), leading to anhydrovinblastine (Scheme 30), the key intermediate 

in the symthesis of the anticancer drug navelbine [79].  

Scheme 30. Deoxygenation of leurosine. 
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Furthermore, short and straightforward access to analogues of the natural onoceranes mediated by 

Cp2TiCl2 has been proposed by Barrero and his group [80]. The dimerization of vinyl-epoxides to  

1,5-dienes occurs via generation of very stable β-titanoxy allylradicals. The latter undergo dimerization 

to homo-onoceranes, followed by oxidation (Scheme 31). 

Scheme 31. Dimerization of vinylepoxides for the preparation of homo-onecerans. 

 

In 2009, Aldegunge et al. proposed the synthesis of alk-2-ene-1,4-diols by a new cascade-opening 

of 1,3-diepoxides, suggesting an alternative route to dihydroxytaxoids [81].  

In the same year, Justicia et coworkers [82] showed that β-titanoxy radicals may rearrange to new 

trisubstituted radicals which undergo a mixed disproportionation process (via hydrogen atom transfer, 

Scheme 32) leading to allylic alcohols. 

Scheme 32. Disproportionation of epoxide through hydrogen atom transfer. 

 

4.2. Reductive Epoxide Opening 

The catalytic reductive epoxide opening via electron transfer from titanocenes has emerged as an 

attractive alternative to the classical nucleophilic substitution strategies. The titanium-mediated 

mechanism combines the well-established advantages of radical chemistry with a regioselectivity of 

ring opening opposite to that of nucleophilic substitutions, leading to a number of interesting and 

unusual applications in the synthesis of complex molecules [83–87].  
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4.2.1. Synthesis of Alcohols 

According to mechanistic studies, the depicted β-tytanoxyl radical epoxide complexes constitute the 

first intermediate of ring opening. These radicals are then reduced by hydrogen atom donor species, 

like for example 1,4-cyclohexadiene (Scheme 33). 

Scheme 33. Titanocene-mediated reductive epoxide opening by 1,4-cyclohexadiene. 

 

If the use of catalytic amounts of titanocenes is attractive for reagent controlled radical reactions [88], 

on the other hand this process presents the disadvantage deriving from the generation of stoichiometric 

amounts of highly toxic reducing waste, such as benzene (Scheme 26). However, it has been 

demonstrated that titanocene reagents are able to activate water and methanol toward hydrogen atom 

transfer, by substantially lowering the bond dissociation energy (BDE) of the OH bond [89–91]. This 

combination is chemically more efficient and environmentally benign. Cp2TiCl-mediated reductive 

epoxide ring opening using water as a hydrogen source, allows access to alcohols with anti-Markovnikov 

regiochemistry from different epoxides. The use of D2O as a deuterium source, leads to an efficient 

synthesis of β-deuterated alcohols, which find successful application as internal standards in food 

analysis [92]. Another suitable hydrogen donor is H2 [93,94]. 

Titanocene-catalyzed procedure has been immediately extended by Gansäuer et al. to the 

enantioselective opening of meso-epoxides. Titanocene complexes with chiral ligands, such as those 

reported in Figure 2, were employed in combination with manganese dust and collidine hydrochloride, 

the former as a stoichiometric reductant and the latter having the role of regenerating the alcohol and 

titanocenes [95–102] (Scheme 34). 

Figure 2. Different substitution patterns at the cyclopentadienyl ligand (Cp). 

 

By operating in the presence of collidinium hydrochloride, the catalytic reaction could be also 

performed in water. This approach was exploited for the selective reduction of aromatic  

ketones [103,104] and the selective synthesis of 2-methyl-1,3-diol frameworks, using THF as 

hydrogen donor [105]. Also α,β-epoxy ketones could be opened with Cp2TiCl, affording β-hydroxy 

ketones in a better fashion than with SmI2 (Scheme 35) [106]. 
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Scheme 34. Mechanism of the titanocene-catalyzed reductive epoxide opening. 

 

Scheme 35. Example of elective reduction of α,β-epoxyketones. 

 

The ring-opening reaction of tri-substituted epoxides promoted by Cp2TiCl on carvone derivatives 

has led to exo-methylene allylic alcohols as major compounds [107]. The generation of exocyclic 

olefins has been reported in the course of radical cyclizations of epoxy alkenes leading to monocyclic 

terpens as achilleol A [108], oxobicylic drimanes [109], eudesmanolides [110], and different ring 

synthons of paclitaxel [111]. In these cases, termination of the radical cycle is not reductive, but rather 

it involves β-hydrogen elimination providing an alkene function. 

Very recently Gansäuer et al. have reported a new protocol to perform the radical reduction of 

epoxides by hydrogen atom transfer catalyzed by the active specie [Cp2TiH] [112]. The active catalyst 

is generated in situ from [Cp2TiOC2H5)2] in the presence of (CH3)PhSiH2 (Scheme 36). 

Scheme 36. Reduction of epoxides mediated by [Cp2TiOC2H5)2]/(CH3)PhSiH2 system. 

 

4.2.2. Intermolecular C-C Bond Formation 

Epoxide-derived radicals generated in the presence of titanocenes are also intermediates for 

intermolecular C–C bond forming reactions [113]. The resultant products, like δ-hydroxyketones, 

esters, amides, nitriles and δ-lactones, constitute important classes of intermediates in organic 

synthesis (Scheme 37). It has been reported that the C–C bond formation employing α,β-unsaturated 

tungsten and chromium carbenes, as radical acceptors of epoxide-derived radicals, occurs with high 
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chemoselectivity. This approach has been applied to both sugar-derived and α,β-unsaturated  

carbenes [114] (Scheme 38). 

Scheme 37. Intermolecular C-C addition reaction. 

 

Scheme 38. Addition reactions onto carbenes. 

 

4.2.3. Intramolecular C-C Bond Formation 

The use of Cp2TiCl (in stoichiometric or catalytic amounts) allowed to promote the synthesis of 

natural products by the construction of three- to six- and eight-membered carbocycles in good to 

excellent yields [115–120]. Small ring 3-exo and 4-exo cyclizations were achieved by nucleophilic 

intramolecular radical addition to aldehydes and ketones [117] and natural products, like  

(E)-endo-bergamoten-12-oic acids [115] or carbacephams, are significant examples of synthetic 

applications (Scheme 39) [121–125]. 

Scheme 39. 3-exo and 4-exo cyclization with aldehydes as radical traps. 

 

While gem-dialkyl or gem-dialkoxyl substitution is usually required to maintain an efficient 

propagation of the radical chain, very recently Gansäuer et al. have reported the first example of 4-exo 

cyclization on unsaturated epoxides without gem disubstitution [124]. This result was achieved by 

using cationic functionalized titanocenes as template catalysts (Scheme 40). According to the proposed 
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mechanism [126], the two-point binding which occurs between the substituted radical and the template 

forces the radical center and the radical acceptor into close spatial proximity (Figure 3). 

Scheme 40. 4-exo-cyclization of unsaturated epoxides. 

 

Figure 3. Possible radical intermediate in 4-exo-cyclization of unsaturated epoxides. 

 

5-exo cyclizations are usually conducted by using alkenes and alkynes as radical traps and this 

approach has been widely applied for several synthetic routes [127–137]. Following an analogous 

procedure, a 6-endo cyclization employing Cp2TiCl was reported in 2001 by Takahaschi and  

co-workers for the synthesis of (±)-smenospondiol [138]. Titanocene(III) chloride mediated 5-exo and  

6-exo cyclization has been recently applied for the regio- and diastereoselective synthesis of highly 

functionalized terpenic cyclopentanes [139], and for the synthesis of (−)-methylenolactocin and  

(−)-protolichesterinic acid [140]. Titanocene-promoted cyclization of unsaturated epoxylactones was 

also reported as a key step for diastereoselective synthesis of limonoid CDE fragments [141]. 

Epoxypolyene cyclizations were performed in the presence of Cp2TiCl2 using the collidine-

chlorotrimethylsilane system, leading to exo-cyclic olefins by hydrogen atom abstraction  

(Scheme 41) [142–144]. These cyclization reactions proceed with high stereoselectivity giving only 

one of the many possible stereoisomers. Moreover, some of the cyclization products can be readily 

elaborated into natural products or key intermediates such as in the preparation of zonarol, a natural 

antifungal (Scheme 42).  

Scheme 41. Catalytic epoxypolyene cyclization. 
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Scheme 42. Tandem cyclization approach for meroterpenoid (+)-zonarol synthesis. 

 

Following the same procedure, 7-endo cyclizations can be performed in surprisingly high yields 

(Scheme 43) [145]. Finally, 8-endo cyclizations have been reported by Roy and his group for the 

preparation of aromatic ethers [146]. 

Scheme 43. 7-endo cyclization. 

 

5. Living Polymerizations  

Several metal complexes were designed and tested to effectively control the radical polymerization 

of a number of polar olefins, leading to the synthesis of complex macromolecular architectures [147,148].  

The use of titanium complexes for this purpose is relatively rare. Nevertheless, in recent years it has 

been emphasized the Ti(III)/Ti(IV) capacity of modulating the equilibrium in atom transfer reactions. 

As a consequence, this redox pair was reported as a very active catalytic system for atom transfer 

radical polymerization [149].  

Radical controlled polymerization reactions by epoxide radical ring opening (RRO) have been 

performed in the presence of Cp2TiCl2 in combination with Zn powder [150–152]. According to this 

approach, methyl methacrylate (MMA) polymerization has been performed with high-molecular 

weight in aqueous conditions (Mw = 51,000–73,000). An analogous route has been recently reported 

for the radical polymerization of styrene [151]. The Ti(III)Cp2Cl-catalyzed RRO of epoxides produces 

Ti-alkoxides, which initiate the ring opening polymerization of cyclic esters like ε-caprolactone 

(Scheme 44) [153], the radical polymerization of isoprene [154] and styrene/isoprene copolymers [155]. 

The ligand effect in Ti-mediated living radical styrene polymerizations initiated by epoxide RRO 

has been widely investigated by Asandei and Moran, focusing in particular onto alkoxide and 

bisketonate titanium complexes [156], scorpionate and half-sandwich LTiCl3 derivatives [157] and 

substituted sandwich metallocenes [158]. Moreover, the same research group disclosed in detail the 

role of solvents and additives for this polymerization reactions [159], the effect of the reducing agent 

and temperature, as well as of the ratio titanium/epoxide and titanium/zinc [160]. 
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Scheme 44. RRO of epoxides for the initiation of the living polymerization of e-caprolactone. 

 

Excellent results in the living radical polymerization were also achieved by initiating the process via 

single electron transfer reduction of aldehydes promoted by Cp2TiCl [161]. This approach has been 

successfully applied also for the polymerization of ε-caprolactone [162]. 

Very recently, Cp2TiCl2 has been applied in the field of photopolymerization for applications 

requiring safe conditions (Scheme 45) [163]. Cp2TiCl2/silane (tris(trimethylsilyl)silane TTMSS)/ 

iodonium salt (Ph2I
+) resulted to be a good photoinitiating system in the free radical promoted cationic 

photopolymerization process of an epoxide monomer (EPOX) upon long wavelength excitation  

(λ > 400 nm). Under visible LED bulbs, xenon lamp and laser diodes, the reactions exhibit an excellent 

performance and a remarkable final polymerization close to 100%. The basic idea is to produce a 

radical (from a photoinitiating system) which, in turn, should be oxidized by the iodonium salt: 

Cp2TiCl2 generates under argon cyclopentadienyl radicals (Cp•) and/or metal-centered radicals 

CpTi•Cl2. In the presence of TTMSS, Cp• can rapidly react by hydrogen abstraction with the silane  

Si-H generating a silyl radical. The latter can be easily oxidized by Ph2I
+ with a rate constant of  

2.6 × 106 M−1 s−1, leading to the formation of a silylium cation, which, in turn, can initiate the cationic 

polymerization by ring-opening of EPOX. 

Scheme 45. Polymerization of EPOX mediated by titanocene. 
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6. Conclusions  

This study covers the literature over the past twelve years emphasizing the key role that titanium 

salts and complexes play in promoting synthetic free-radical processes. While several excellent 

reviews, focusing on specific Ti-mediated reactions and defined product targets or on the general role 

of transition metals in promoting radical chains, have been recently published, to the best of our 

knowledge this work represents the first comprehensive contribution which outlines the potential of 

titanium catalysis in radical reactions, analytically overviewing the recent progresses in selective free-

radical organic synthesis. 

Though multicomponent procedures are of great interest for the development of new synthetic 

routes, examples in the field of radical reactions are in general scant. Among the few protocols 

recently reported, the nucleophilic radical addition to imines mediated by Ti(III)/Ti(IV) systems 

represents an innovative one-pot approach leading to a wide range of intriguing functionalized 

derivatives under very mild experimental conditions. 

Pinacolization of aldehydes is particularly attractive, not only for the importance of the final diols, 

but also because it represents a significant model for investigating enantioselectivity in radical chemistry. 

Other radical coupling reactions, when mediated by titanium complexes, lead to high added value 

products with chemo- and stereo-selectivity. 

Finally, deoxygenation or reductive ring opening of epoxides by means of titanocenes find ample 

use in the synthesis of natural and biologically active molecules. Ti-mediated radical ring opening of 

epoxides is also successfully applied to promote living radical polymerization of olefins (such as 

styrene and isoprene) and lactones (for example ε-caprolactone).  

The development and optimization of titanium ligands, including the introduction of chiral 

complexes, allows in many cases to perform stero- and/or enantio-selective syntheses of the desired 

products. The ongoing research for the design, synthesis, and application of these new ligands 

guarantees the development of new Ti-based catalytic systems for selective transformations under very 

mild conditions. 
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