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Abstract: A series of novel dispirooxindoles have been synthesized through  

three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ by the 

decarboxylative condensation of isatin and an α-amino acid with the dipolarophile  

5-benzylidene-1,3-dimethylpyrimidine-2,4,6-trione. This method has the advantages of 

mild reaction conditions, high atom economy, excellent yields, and high regio- and  

stereo-selectivity. 

Keywords: dispirooxindole; three-component reaction; 1,3-dipolar cycloaddition; 

azomethine ylide  
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1. Introduction 

In recent decades, multicomponent reactions (MCRs) have emerged as a powerful synthetic strategy 

due to their efficiency, atom economy, high selectivity and convenience in the construction of multiple 

new bonds, which permit a rapid access to combinatorial libraries of complex organic molecules for 

efficient lead structure identification and optimization in drug discovery [1–4]. According to this 

method, the products are formed in a single step and diversity can be achieved simply by varying the 

reacting components.  

1,3-Dipolar cycloaddition of azomethine ylides with olefinic and acetylenic dipolarophiles has 

gained significance as it proceeds with high regiochemical and stereochemical selectivity yielding 

pyrroline and pyrrolidine derivatives [5–7], which are prevalent in a variety of biologically active 

compounds [8] and are also inhibitors of many diseases such as diabetes [9], cancer [10] and viral 

infections [11]. Because of their remarkable biological activities, significant efforts have been devoted 

to the synthesis of their novel derivatives. 

Among the various nitrogen-containing heterocycles, functionalized pyrrolidine, pyrrolizidine and 

oxindole alkaloids have become important synthetic targets as they constitute classes of compounds 

with significant biological activity [12]. The synthesis of spiro compounds has drawn considerable 

attention of chemists as have their highly pronounced biological properties [13,14]. The spirooxindole 

system as the core structure of many pharmacological agents and natural alkaloids [15–18], and has 

potent nonpeptide p53-MDM2 inhibitory activity [19]. Elacomine, spirotryprostatins A and B are some 

of the alkaloids containing spiropyrrolidinyloxindole ring systems. Some spiropyrrolidines are 

potential antileukaemic and anticonvulsant agents [20] and possess antiviral and local anaesthetic 

activities [21]. 

Barbituric acid has widely been used in the manufacture of plastics [22], textiles [23], polymers [24] 

and pharmaceuticals [25–28]. Barbiturates (derivatives of barbituric acid) like pentobarbital and 

phenobarbital were long used as anxiolytics and hypnotics. Spirobarbiturates are a class of compounds 

with interesting pharmacological and physiological activity [29–31]. We have recently reported  

the regio- and stereoselective synthesis of novel dispirooxindole derivatives via multicomponent  

reactions [32–36]. To expand our research program which aims to synthesize new spiro compounds 

and nitrogen heterocycles with biological activities, we report herein, the efficient synthesis of a  

series of novel dispirooxindole derivatives in excellent yields by the three-component 1,3-dipolar 

cycloaddition reaction of nonstabilized azomethine ylides generated in situ by the decarboxylative 

condensation of isatin and α-amino acids with 5-benzylidene-1,3-dimethylpyrimidine-2,4,6-trione 

using ethanol under reflux conditions. 

2. Results and Discussion 

In an effort to optimize this process, the three-component reaction of isatin (1), sarcosine (2), and 

the dipolarophile 5-(4-bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6-trione (3a) was carried out in 

various solvents under reflux conditions as a simple model reaction in order to determine the best 

reaction solvent (Scheme 1). The results are summarized in Table 1. As can be seen from the data, the 

reaction could be efficiently carried out in solvents such as ethanol, methanol, acetonitrile, THF and  
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1,4-dioxane. In particular, the reaction using ethanol as the solvent resulted in higher yields and shorter 

reaction times than those using methanol, acetonitrile, THF and 1,4-dioxane. Thus, ethanol, which is a 

low cost bio-renewable product with low toxicity to human health and is relatively non-hazardous to 

the environment was chosen as the solvent for all further reactions (Table 1, entry 1) [37]. 

Scheme 1. The model reaction. 
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Table 1. Optimization of solvent effect on the model reaction a. 

Entry Solvent Time (h) Yield b (%) 
1 Ethanol 2 84 
2 Methanol 2 56 
3 Acetonitrile 3 75 
4 Tetrahydrofuran (THF) 6 80 
5 1,4-Dioxane 8 60 

a Reaction conditions: isatin (0.5 mmol), sarcosine (0.5 mmol) and 5-(4-bromobenzylidene)-1,3-
dimethylpyrimidine-2,4,6-trione (0.5 mmol) in solvent (10 mL) at reflux temperature; b Yields of 
isolated products. 

Using the optimized reaction conditions, various structurally diverse 5-benzylidene-1,3-dimethyl-

pyrimidine-2,4,6-triones were investigated (Table 2). It was found that the aromatic rings bearing 

either electron-withdrawing or electron-donating functional groups were suitable for the reaction, 

while the cycloaddition reactions with dipolarophiles carrying electron-donating substituents required 

a longer times and the yield decreased (Table 2, entry 2). 

Table 2. Synthesis of dispirooxindole derivatives 4 via three-component reaction. 
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Entry Product Ar Time (h) Yield (%) 
1 4a 4-BrC6H4 2 84 
2 4b 4-CH3C6H4 2.5 75 
3 4c 4-NO2C6H4 1.5 90 
4 4d 4-ClC6H4 2 88 
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In order to establish the scope of this cycloaddition reaction, we extended the same protocol using 

istain (1), L-thioproline (5) and dipolarophiles 3 under the same reaction conditions to give a series of 

cycloadducts 6 in excellent yields (Table 3). 

Table 3. Synthesis of dispirooxindole derivatives 6 via three-component reactions. 
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Entry Product Ar Time (h) Yield (%) 
1 6a 4-BrC6H4 1 84 
2 6b 4-CH3C6H4 2 81 
3 6c 4-NO2C6H4 1 87 
4 6d 4-ClC6H4 1 83 
5 6e C6H5 1 82 
6 6f 2-NO2C6H4 1.5 82 
7 6g 3,4-Cl2C6H3 1.5 88 
8 6h Thiophen-2-yl 3 86 

With the use of Discrete Fourier Transformation (DFT) and the B3LYP/6-31G computer 

programme [38], a geometrical optimization of product 4a was obtained and is shown in Figure 1. 

From Figure 1, we found that the geometry A (trans) was more stable than geometry B (cis)  

(∆E = 10.98 kJ/mol). 

Figure 1. Optimized geometry of 4a. 

N
H

NH3C

O

Br

N

N O

CH3

CH3

O

O

 
geometry A (E = −3979.727957 hartree). 
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Figure 1. Cont. 
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geometry B (E = −3979.723775 hartree). 

To expand the scope of the current method, acenaphthenequinone (7) was examined as a 

replacement for isatin (1). The desired products 8 were obtained under the optimized conditions. The 

results are summarized in Table 4. 

Table 4. Synthesis of dispirooxindole derivatives 8 via three-component reaction. 

 

Entry Product Ar Time (h) Yield (%) 
1 8a C6H5 1 82 
2 8b 3,4-Cl3C6H3 1.5 80 
3 8c 3,4-OCH2OC6H3 3 78 

The structures of the products were identified by IR, 1H-NMR, 13C-NMR and HRMS spectra. The 

structure and regiochemistry of the products were assigned on the basis of their spectroscopic analysis. 

For example, in the 1H-NMR spectrum of compound 4c, a sharp singlet at δ 2.13 due to the N-methyl 

protons was seen. The benzylic proton exhibited a doublet of doublets at δ 3.71 (J = 10.4 Hz and  

8.0 Hz). The off resonance decoupled 13C-NMR spectrum added conclusive support. The 13C-NMR 

spectrum of 5c showed peaks at δ 81.17 and δ 67.26 for the two spirocarbons, respectively. The mass 

spectrum of 4c showed a molecular ion peak at m/z 486.1392 (M+Na). The X-ray crystallographic 

study of single of 8b (Figure 2) not only confirmed the structure deduced from NMR spectroscopic 

studies, but also determined the stereochemical outcome of the cycloaddition. 
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Figure 2. X-Ray crystal structure of compound 8b. 

 

Although the detailed mechanism of the above reaction has not been elucidated yet, the formation 

of 4 can be explained by the mechanism proposed in Scheme 2. The reaction proceeds through the 

generation of azomethine ylide (dipole 7) via the condensation of isatin (1) with sarcosine (2) and 

decarboxylation. The dipolarophile 3 regioselectively reacts with azomethine ylides (dipole 7) in 

ethanol to give the desired products dispiro compounds 4 (Scheme 2, path A). The cycloaddition 

proceeds via an endo transition state [39–41]. The regioselectivity in the product formation can be 

explained by considering the secondary orbital interaction (SOI) [42,43] of the orbital of the carbonyl 

group of dipolarophile 3 with those of the ylide 7 as shown in Scheme 2. In this transition state, these 

orbital interactions are typically orthogonal in nature and occur between the oxygen atom of the 

carbonyl of the isatin and the carbon atom of the carbonyl of the dipolarophile 3. Accordingly, the 

observed regioisomer 4 via path A is more favorable because of the SOI which is not possible in path B. 

Scheme 2. Proposed reaction mechanism for the formation of compound 4. 
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3. Experimental  

3.1. General 

All reagents were purchased from commercial sources and used without further purification. 

Melting points are uncorrected. IR spectra were recorded on a Nicolet 6700 spectrometer in KBr with 

absorptions in cm−1. 1H-NMR spectra were determined on a Varian Inova-300/400 MHz spectrometer 

in DMSO-d6 solution. J values are in Hz. Chemical shifts are expressed in ppm downfield  

from internal standard TMS. HRMS data were obtained using Bruker micrOTOF-Q instrument or 

TOF-MS instrument. The starting compounds 3 were prepared according to the previously reported  

procedures [44,45]. 

3.2. General Procedure for the Synthesis of Dispirooxindoles 4, 6 and 8 

A dry 50 mL flask was charged with isatin (1) or acenaphthenequinone (7) (0.5 mmol), sarcosine 

(2) or L-thioproline (5) (0.5 mmol), dipolarophile 3 (0.5 mmol) and ethanol (10 mL). The mixture was 

stirred at reflux temperature for 1–3 h. After completion of the reaction (monitored by TLC), the 

solvent was removed under vacuum. The solid was recrystallized from ethanol, and then dried at 80 °C 

for 4h under vacuum to give compounds 4, 6 or 8. 

2,7,9-Trimethyl-4-(4-bromophenyl)-1-(spiro-3'-indolino)-2,7,9-triazaspiro[4.5]decane-6,8,10-trione (4a). 

White solid; m.p. 180–182 °C; IR (KBr, cm−1): 3313, 2939, 1735, 1679, 1618, 1468, 1420, 1374, 

1070, 753; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.12 (s, 3H, CH3), 2.88–2.89 (m, 6H, 2 × CH3), 

3.60 (m, 1H, CH2), 3.89 (t, J = 8.0 Hz, 1H, CH2), 5.18 (t, J = 8.8 Hz, 1H, CH), 6.78 (d, J = 7.6 Hz, 1H, 

ArH), 6.82 (d, J = 7.2 Hz, 1H, ArH), 6.96 (t, J = 6.4 Hz, 1H, ArH), 7.13–7.15 (m, 2H, ArH), 7.26 (t,  

J = 6.8 Hz, 1H, ArH), 7.41 (d, J = 8.4 Hz, 2H, ArH), 10.51 (s, 1H, NH); 13C-NMR (75 MHz,  

DMSO-d6): δ (ppm) 28.52, 29.67, 35.92, 41.98, 56.60, 67.26, 81.17, 110.42, 112.85, 120.15, 122.12, 

123.59, 125.16, 131.02, 131.56, 137.96, 143.70, 150.33, 164.76, 166.92, 175.70; HRMS: calculated 

for C23H21
79BrN4O4Na [M+Na]+: 519.0638, found: 519.0621. 

2,7,9-Trimethyl-4-(4-methylphenyl)-1-(spiro-3'-indolino)-2,7,9-triazaspiro[4.5]decane-6,8,10-trione 

(4b). White solid; m.p. 190–191 °C; IR (KBr, cm−1): 3321, 2949, 1735, 1689, 1672, 1515, 1471, 1373, 

752; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.13 (s, 3H, CH3), 2.23 (s, 3H, CH3), 2.90 (s, 6H,  

2 × CH3), 3.56–3.60 (m, 1H, CH2), 3.91 (t, J = 9.2 Hz, 1H, CH2), 5.19 (t, J =9.2 Hz, 1H, CH), 6.76–6.78 

(m, 1H, ArH), 6.82–6.84 (m, 1H, ArH), 6.96 (t, J = 7.2 Hz, 1H, ArH), 7.04 (s, 4H, ArH), 7.26 (t,  

J = 7.6 Hz, 1H, ArH), 10.49 (s, 1H, NH); 13C-NMR (100 MHz, DMSO-d6): δ (ppm) 21.17, 28.47, 

29.61, 35.91, 42.26, 56.84, 67.33, 81.08, 110.36, 122.09, 123.73, 125.09, 128.43, 129.37, 131.63, 

135.38, 135.93, 143.66, 150.33, 164.77, 167.02, 175.77; HRMS: calculated for C24H24N4O4[M]+: 

432.1792, found: 432.1800. 

2,7,9-Trimethyl-4-(4-nitrophenyl)-1-(spiro-3'-indolino)-2,7,9-triazaspiro[4.5]decane-6,8,10-trione (4c). 

White solid; m.p. 188–190 °C; IR (KBr, cm−1): 3350, 2926, 1730, 1684, 1619, 1599, 1520, 1469, 

1379, 1348, 754; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.13 (s, 3H, CH3), 2.90 (s, 6H, 2 × CH3), 

3.71 (dd, J1 = 8.0 Hz, J2 = 10.4 Hz, 1H, CH2), 3.93 (t, J = 8.0 Hz, 1H, CH2), 5.30 (t, J = 9.2 Hz, 1H, CH), 



Molecules 2012, 17 12711 

 

 

6.78–6.84 (m, 2H, ArH), 6.97 (t, J = 7.6 Hz, 1H, ArH), 7.28 (t, J = 8.0 Hz, 1H, ArH), 7.44 (d, J = 8.8 Hz, 

2H, ArH), 8.08 (d, J = 8.8 Hz, 2H, ArH), 10.57 (s, 1H, NH); 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 

30.51, 31.670, 37.85, 44.31, 58.50, 69.16, 83.07, 112.41, 124.11, 125.34, 125.67, 127.20, 131.77, 

133.77, 145.70, 148.45, 148.98, 152.31, 166.77, 168.80, 177.57; HRMS: calculated for C23H21N5O6Na 

[M+Na]+: 486.1384, found: 486.1392. 

2,7,9-Trimethyl-4-(4-chlorophenyl)-1-(spiro-3'-indolino)-2,7,9-triazaspiro[4.5]decane-6,8,10-trione 

(4d). White solid; m.p. 240–242 °C; IR (KBr, cm−1): 3317, 2926, 1736, 1718, 1679, 1620, 1570, 1468, 

1379, 758; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.89 (s, 3H, CH3), 2.90 (s, 3H, CH3), 3.08 (s, 3H, 

CH3), 3.61 (dd, J1 = 8.4 Hz, J2 = 10.0 Hz, 1H, CH2), 3.89 (t, J = 8.0 Hz, 1H, CH2), 5.20 (t, J = 9.2 Hz, 

1H, CH), 6.78 (d, J = 8.0 Hz, 1H, ArH), 6.82–6.84 (m, 1H, ArH), 6.96 (t, J = 7.6 Hz, 1H, ArH),  

7.19–7.21 (m, 1H, ArH), 7.29 (d, J = 8.4 Hz, 3H, ArH), 7.33–7.35 (m, 1H, ArH), 10.52 (s, 1H, NH); 
13C-NMR (100 MHz, DMSO-d6): δ (ppm) 28.53, 29.67, 35.93, 41.97, 56.69, 67.34, 81.18, 110.42, 

122.13, 123.62, 125.17, 128.66, 130.63, 131.63, 131.72, 137.55, 143.72, 150.53, 164.78, 166.94, 

175.70; HRMS: calculated for C23H21
35ClN4O4 [M]+: 452.1251, found: 452.1260.  

1,3-Dimethyl-5'-(4-bromophenyl)-7'-(spiro-3''-indolino)tetrahydro-1H,1'H-spiro[pyrimidine-5,6'-pyrrolo 

[1,2-c]thiazole]-2,4,6-trione (6a). White solid; m.p. 194–196 °C; IR (KBr, cm−1): 3236, 2926, 1741, 

1719, 1679, 1615, 1469, 1376, 749; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.94 (s, 3H, CH3),  

3.05–3.08 (m, 1H, CH2), 3.28–3.33 (m, 2H, CH2), 3.40–3.42 (m, 4H, CH3 and CH), 3.79 (d, J = 10.4 Hz, 

CH), 4.29 (d, J = 10.0 Hz, 1H, CH2), 4.96–5.00 (m, 1H, CH2), 6.82 (d, J = 7.2 Hz, 1H, ArH), 6.98–7.02 

(m, 1H, ArH), 7.29 (t, J = 7.2 Hz, 1H, ArH), 7.39–7.41 (m, 2H, ArH), 7.46–7.48 (m, 2H, ArH), 7.61 (d,  

J = 7.2 Hz, 1H, ArH), 10.84 (s, 1H, NH); 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 33.93, 34.09, 42.24, 

55.22, 58.79, 76.38, 76.57, 85.45, 115.22, 125.77, 126.48, 127.08, 135.10, 136.20, 136.30, 137.28, 

140.40, 147.07, 155.71, 169.89, 171.56, 180.61; HRMS: calculated for C24H22
79BrN4O4S [M+H]+: 

541.0540, found: 541.0559. 

1,3-Dimethyl-5'-(4-methylphenyl)-7'-(spiro-3''-indolino)tetrahydro-1H,1'H-spiro[pyrimidine-5,6'-pyrrolo 

[1,2-c]thiazole]-2,4,6-trione (6b). White solid; m.p. 188–190 °C; IR (KBr, cm−1): 3213, 2921, 1740, 

1684, 1620, 1472, 1369, 752; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.24 (s, 3H, CH3), 2.52 (s, 3H, 

CH3), 2.95 (s, 3H, CH3), 3.02 (dd, J1 = 3.2 Hz, J2 = 11.2 Hz, 1H, CH2), 3.31–3.33 (m, 1H, CH2),  

3.38–3.40 (m, 1H, CH), 3.78–3.81 (m, 1H, CH), 4.28–4.31 (m, 1H, CH2), 4.98–5.03 (m, 1H, CH2), 6.82 

(d, J = 7.6 Hz, 1H, ArH), 7.00 (t, J = 7.6 Hz, 1H, ArH), 7.07–7.09 (m, 2H, ArH), 7.27–7.32 (m, 3H, 

ArH), 7.61 (d, J = 7.6 Hz, 1H, ArH), 10.76 (s, 1H, NH); 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 

25.95, 33.90, 34.10, 42.45, 55.63, 58.78, 76.57, 76.63, 85.40, 115.26, 126.45, 127.13, 134.11, 134.72, 

135.12, 136.13, 137.83, 141.50, 147.05, 155.68, 169.81, 171.56, 180.65; HRMS: calculated for 

C25H25N4 O4S [M]+: 477.1591, found: 477.1607.  

1,3-Dimethyl-5'-(4-nitrophenyl)-7'-(spiro-3''-indolino)tetrahydro-1H,1'H-spiro[pyrimidine-5,6'-pyrrolo 

[1,2-c]thiazole]-2,4,6-trione (6c). White solid; m.p. 186–188 °C; IR (KBr, cm−1): 3205, 3086, 2952, 

1741, 1683, 1522, 1419, 1348, 749; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.94 (s, 3H, CH3),  

3.14–3.17 (m, 2H, CH2), 3.41 (s, 4H, CH3 and CH), 3.79 (d, J = 10.0 Hz, 1H, CH), 4.46–4.48 (m, 1H, 

CH2), 5.02 (s, 1H, CH2), 6.82–6.84 (m, 1H, ArH), 7.00–7.02 (m, 1H, ArH), 7.28–7.30 (m, 1H, ArH), 
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7.61–7.62 (m, 1H, ArH), 7.68–7.70 (m, 2H, ArH), 8.11–8.13 (m, 2H, ArH), 10.86 (s, 1H, NH);  
13C-NMR (100 MHz, DMSO-d6): δ (ppm) 29.21, 29.39, 37.49, 50.57, 53.77, 71.59, 72.13, 80.60, 

121.79, 122.27, 123.58, 130.29, 131.38, 131.53, 142.33, 144.55, 146.96, 150.95, 165.20, 166.83, 

175.71; HRMS: calculated for C24H22N5O6S [M+H]+: 508.1285, found: 508.1290.  

1,3-Dimethyl-5'-(4-chlorophenyl)-7'-(spiro-3''-indolino)tetrahydro-1H,1'H-spiro[pyrimidine-5,6'-pyrrolo 

[1,2-c]thiazole]-2,4,6-trione (6d). White solid; m.p. 162–164 °C; IR (KBr, cm−1): 3289, 3062, 2908, 

1751, 1733, 1680, 1496, 1376, 755; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.87 (s, 3H, CH3), 2.89 

(s, 3H, CH3), 3.18 (t, J = 9.6 Hz, 1H, CH2), 3.25–3.29 (m, 1H, CH2), 3.42 (d, J = 7.6 Hz, 1H, CH), 3.72 

(d, J = 7.6 Hz, 1H, CH), 4.70–4.74 (m, 1H, CH2), 4.83–4.85 (m, 1H, CH2), 6.77–6.79 (m, 1H, ArH), 

6.94–7.01 (m, 2H, ArH), 7.25–7.29 (m, 1H, ArH), 7.32–7.34 (m, 4H, ArH), 10.71 (s, 1H, NH); 

HRMS: calculated for C24H21
35ClN4O4SNa [M+Na]+: 519.0864, found: 519.0871.  

1,3-Dimethyl-5'-phenyl-7'-(spiro-3''-indolino)tetrahydro-1H,1'H-spiro[pyrimidine-5,6'-pyrrolo[1,2-c] 

thiazole]-2,4,6-trione (6e). White solid; m.p. 183–184 °C; IR (KBr, cm−1): 3212, 3082, 2953, 1740, 

1680, 1615, 1472, 1367, 754; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.53 (s, 3H, CH3), 2.96 (s, 3H, 

CH3), 3.07 (dd, J1 = 3.6 Hz, J2 = 11.2 Hz, 1H, CH2), 3.33–3.35 (m, 1H, CH2), 3.39 (d, J = 10.0 Hz, 1H, 

CH), 3.80 (d, J = 10.4 Hz, 1H, CH), 4.36 (d, J = 10.0 Hz, 1H, CH2), 4.99–5.04 (m, 1H, CH2), 6.83 (d, 

J = 7.6 Hz, 1H, ArH), 7.01 (t, J = 7.6 Hz, 1H, ArH), 7.19–7.23 (m, 1H, ArH), 7.26–7.31 (m, 3H, ArH), 

7.40–7.42 (m, 2H, ArH), 7.61 (d, J = 7.6 Hz, 1H, ArH), 10.77 (s, 1H, NH); 13C-NMR (100 MHz, 

DMSO-d6): δ (ppm) 34.27, 34.46, 42.90, 56.16, 59.00, 76.97, 85.73, 115.54, 126.83, 127.51, 132.64, 

133.88, 135.04, 135.50, 136.49, 141.47, 147.38, 156.06, 170.16, 171.94, 180.97; HRMS: calculated 

for C24H23N4O4S [M+H]+: 463.1435, found: 463.1443.   

1,3-Dimethyl-5'-(2-nitrophenyl)-7'-(spiro-3''-indolino)tetrahydro-1H,1'H-spiro[pyrimidine-5,6'-pyrrolo 

[1,2-c]thiazole]-2,4,6-trione (6f). White solid; m.p. 184–186 °C; IR (KBr, cm−1): 3220, 2947, 1743, 

1685, 1616, 1536, 1471, 1370, 782, 763; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.34 (s, 3H, CH3), 

2.97 (s, 3H, CH3), 3.00 (s, 1H, CH2), 3.04 (s, 1H, CH2), 3.10–3.14 (m, 1H, CH), 3.82 (d, J =10.8 Hz, 

1H, CH), 4.88–4.90 (m, 1H, CH2), 5.07–5.11 (m, 1H, CH2), 6.81–6.83 (m, 1H, ArH), 7.01 (t, J = 7.6 Hz, 

1H, ArH), 7.29 (t, J =7.6 Hz, 1H, ArH), 7.50 (t, J =8.0 Hz, 1H, ArH), 7.59 (d, J = 7.6 Hz, 1H, ArH), 

7.68 (t, J = 8.0 Hz, 1H, ArH), 7.78 (d, J = 7.6 Hz, 1H, ArH), 8.36 (d, J = 8.0 Hz, 1H, ArH), 10.84  

(s, 1H, NH); HRMS: calculated for C24H22N5O6S [M+H]+: 508.1285, found: 508.1296.  

1,3-Dimethyl-5'-(3,4-dichlorophenyl)-7'-(spiro-3''-indolino)tetrahydro-1H,1'H-spiro[pyrimidine-5,6'- 

pyrrolo[1,2-c]thiazole]-2,4,6-trione (6g). White solid; m.p. 192–194 °C; IR (KBr, cm−1): 3074, 2957, 

1757, 1721, 1688, 1614, 1469, 1367, 748; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.46 (s, 3H, CH3), 

2.94 (s, 3H, CH3), 3.03 (dd, J1 = 2.4 Hz, J2 = 11.2 Hz, 1H, CH2), 3.23–3.28 (m, 1H, CH2), 3.40 (s, 1H, 

CH), 3.78 (d, J = 10.8 Hz, 1H, CH), 4.27 (d, J = 10.0 Hz, 1H, CH2), 4.99–5.04 (m, 1H, CH2), 6.83 (d, 

J = 7.6 Hz, 1H, ArH), 7.00 (t, J = 7.6 Hz, 1H, ArH), 7.30 (t, J = 7.6 Hz, 1H, ArH), 7.49–7.56 (m, 2H, 

ArH), 7.63 (d, J = 7.6 Hz, 1H, ArH), 7.71 (s, 1H, ArH), 10.84 (s, 1H, NH); 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 28.69, 35.78, 43.32, 57.18, 67.90, 84.56, 120.35, 122.04, 122.14, 127.39, 128.96, 

129.47, 130.19, 130.47, 130.92, 131.70, 132.97, 133.13, 137.67, 142.05, 149.92, 164.77, 167.07, 

203.16; HRMS: calculated for C24H21
35Cl2N4O4S [M+H]+: 531.0655, found: 531.0674.  
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1,3-Dimethyl-5'-(thiophen-2-yl)-7'-(spiro-3''-indolino)tetrahydro-1H,1'H-spiro[pyrimidine-5,6'-pyrrolo 

[1,2-c]thiazole]-2,4,6-trione (6h). White solid; m.p. 164–166 °C; IR (KBr, cm−1): 3243, 3078, 2956, 

1738, 1679, 1568, 1439, 1382; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.88 (s, 3H, CH3), 2.92 (s, 

3H, CH3), 3.12–3.17 (m, 2H, CH2), 3.44 (d, J = 7.6 Hz, 1H, CH), 3.70 (d, J = 7.2 Hz, 1H, CH),  

4.72–4.76 (m, 1H, CH2), 5.05 (d, J = 8.4 Hz, 1H, CH2), 6.79 (d, J = 7.6 Hz, 1H, ArH), 6.92–7.00 (m, 4H, 

ArH), 7.25–7.29 (m, 1H, ArH), 7.37–7.38 (m, 1H, ArH), 10.74 (s, 1H, NH); 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 28.68, 29.70, 36.56, 43.83, 51.33, 73.06, 74.23, 79.44, 110.74, 122.54, 124.32, 

125.06, 126.02, 127.49, 127.69, 132.03, 138.48, 142.86, 150.04, 164.75, 165.76, 176.46; HRMS: 

calculated for C22H21N4O4S2 [M+H]+: 469.0999, found: 469.0980.  

2,7,9-Trimethyl-4-phenyl-1-(spiro-2'-acenaphthylenone)-2,7,9-triazaspiro[4.5]decane-6,8,10-trione (8a). 

White solid; m.p. 168–170 °C; IR (KBr, cm−1): 3063, 2920, 1748, 1723, 1685, 1442, 1371, 833,  

783, 751; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.19 (s, 6H, 2 × CH3), 2.91 (s, 3H, CH3), 3.83 (t,  

J = 8.0 Hz, 1H, CH2), 4.08 (t, J = 8.0 Hz, 1H, CH2), 5.18 (t, J = 8.0 Hz, 1H, CH), 7.16 (s, 3H, ArH), 

7.25 (s, 2H, ArH), 7.30 (d, J = 8.0 Hz, 1H, ArH), 7.72 (s, 1H, ArH), 7.82–7.88 (m, 2H, ArH),  

8.04–8.06 (m, 1H, ArH), 8.29–8.31 (m, 1H, ArH); 13C-NMR (100 MHz, DMSO-d6): δ (ppm) 33.40, 

33.45, 40.51, 48.79, 62.13, 72.64, 89.12, 126.78, 126.80, 131.85, 132.07, 133.12, 133.68, 133.70, 

134.19, 135.06, 135.22, 137.60, 138.01, 143.03, 146.74, 154.67, 169.55, 171.95, 207.93; HRMS: 

calculated for C27H23N3O4Na [M+Na]+: 476.1581, found: 476.1582. 

2,7,9-Trimethyl-4-(3,4-dichlorophenyl)-1-(spiro-2'-acenaphthylenone)-2,7,9-triazaspiro[4.5]decane-

6,8,10-trione (8b). White solid; m.p. 192–194 °C; IR (KBr, cm−1): 2965, 1721, 1684, 1640, 1372, 783, 

750; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.12 (s, 3H, CH3), 2.17 (s, 3H, CH3), 2.89 (s, 3H, CH3), 

3.79 (t, J = 8.0 Hz, 1H, CH2), 4.05 (t, J = 8.0 Hz, 1H, CH2), 5.15 (t, J = 7.6 Hz, 1H, CH), 7.17–7.19 

(m, 1H, ArH), 7.28–7.30 (m, 1H, ArH), 7.46–7.51 (m, 2H, ArH), 7.71–7.75 (m, 1H, ArH), 7.83–7.90 

(m, 2H, ArH), 8.07 (d, J = 8.0 Hz, 1H, ArH), 8.32 (d, J = 7.2 Hz, 1H, ArH); 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 28.66, 35.73, 42.82, 56.93, 56.95, 68.00, 84.70, 120.77, 122.08, 122.15, 127.42, 

128.89, 129.44, 129.99, 130.07, 130.42, 130.70, 131.09, 131.22, 131.39, 133.01, 139.12, 142.07, 

149.89, 164.73, 166.92, 203.09; HRMS: calculated for C27H21Cl2N3O4Na [M+Na]+: 509.1113, found: 

509.1338. 

2,7,9-Trimethyl-4-(3,4-methylenedioxylphenyl)-1-(spiro-2'-acenaphthylenone)-2,7,9-triazaspiro[4.5] 

decane-6,8,10-trione (8c). White solid; m.p. 186–188 °C; IR (KBr, cm−1): 2939, 2897, 1730, 1692, 

1500, 1364, 1233, 832, 783; 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.16 (s, 6H, 2 × CH3), 2.91 (s, 

3H, CH3), 3.73 (s, 1H, CH2), 4.02 (s, 1H, CH2), 5.10 (s, 1H, CH), 5.96 (s, 2H, CH2), 6.64 (s, 1H, ArH), 

6.77–6.82 (m, 2H, ArH), 7.30 (s, 1H, ArH), 7.72–7.87 (m, 3H, ArH), 8.05 (s, 1H, ArH), 8.30 (s, 1H, 

ArH); 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 27.39, 34.47, 42.72, 56.19, 67.02, 83.22, 100.23, 

107.34, 108.13, 120.73, 120.89, 126.02, 127.68, 128.15, 129.06, 129.20, 130.11, 131.55, 132.06, 

140.67, 145.25, 146.47, 148.62, 163.47, 165.86, 201.87; HRMS: calculated for C28H23N3O6 [M]+: 

497.1587, found: 497.1585. 
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3.3. X-ray Crystallography [46] 

The single-crystals of compound 8b were obtained by slow evaporation from ethanol. Intensity data 

were collected on a Bruker P4 diffractometer with graphite monochromated Mo Kα radiation  

(λ = 0.71073 Å) using the ω scan mode with 1.34º < θ < 25.02º; 4188 unique reflections were 

measured and 3254 reflections with I > 2σ(I) were used in the Fourier techniques. The final refinement 

was converged to R = 0.0428 and wR = 0.1266. Crystal data for 8b: empirical formula C27H21Cl2N3O4, 

crystal dimension 0.42 × 0.40 × 0.37 mm, triclinic, space group P-1, a = 8.0847(7) Å, b = 10.0554(10) Å,  

c = 15.5500(13) Å, α = 76.8210(10)º, β = 86.626(2)º, γ = 76.2960(10)º, V = 1195.79(19)Å3,  

Mr = 522.37, Z = 2, Dc = 1.451 Mg/m3, μ(Mo Kα) = 0.312 mm−1, F(000) = 540, S = 1.079. 

4. Conclusions  

In summary, we have successfully developed a 1,3-dipolar cycloaddition of azomethine ylides, and 

a series of novel dispiro cycloadducts were obtained. This method has the advantages of convenient 

operation, mild reaction conditions, short reaction time, and high efficiency. 
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