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Abstract: The search for potent and selective sirtuin inhibitors continues as chemical tools 

of this type are of use in helping to assign the function of this interesting class of 

deacetylases. Here we describe SAR studies starting from the unselective sirtuin inhibitor 

tenovin-6. These studies identify a sub-micromolar inhibitor that has increased selectivity 

for SIRT2 over SIRT1 compared to tenovin-6. In addition, a 
1
H-NMR-based method is 

developed and used to validate further this class of sirtuin inhibitors. A thermal shift 

analysis of SIRT2 in the presence of tenovin-6, -43, a control tenovin and the known 

SIRT2 inhibitor AGK2 is also presented. 
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1. Introduction 

The identification and optimisation of sirtuin inhibitors has received considerable attention in  

recent years including our own contributions to the optimisation of cambinol and the discovery of the 

tenovins [1–9]. The sirtuins, of which there are seven human isoforms SIRT1-SIRT7, belong to the 

class III family of histone deacetylases (HDACs) [10].The major role of these enzymes is as  

NAD
+
-dependent deacetylases of histone and non-histone substrates although some members of this 

protein family possess ADP ribosylase activity, and more recently SIRT5 has been shown to possess 

NAD
+
 dependant demalonylase and desuccinylase activities [11]. SIRT1 has a broad set of substrates 

including the important tumour suppressor p53 and inhibition of SIRT1 has therefore been linked to 

anti-cancer therapy [12]. A very recent report describes the use of tenovin-6 in combination with 

imatinib (a BCR-ABL kinase inhibitor) in a mouse model of chronic myeloid leukemia (CML). 

Treatment with both compounds has been shown to result in significant loss of CML stem cells, a result 

that cannot be achieved by the use of imatinib alone since CML stem cells do not require BCR-ABL to 

replicate [13–15]. The authors propose that this enhanced killing of the stem cells results from the 

inhibition of SIRT1 by tenovin-6. Tenovin-6 was also shown to be effective in a cell culture model for 

CML acquired resistance where treatment of cells with tenovin-6 blocked the acquisition of BCR-ABL 

mutations. When used in combination with imatinib high levels of apoptosis were observed [13–15]. 

Inhibition of SIRT2, whose known substrates include tubulin and histones H3 and H4, has been 

studied in the context of neurodegenerative diseases [16,17]. For example AGK2, a SIRT2 selective 

inhibitor (IC50 = 3.5 µM), has already been used to provide novel insights into aspects of both 

Parkinson’s and Huntington’s disease [18,19]. Whilst the use of AGK2 provides an important 

approach to studying SIRT2 function, the development of additional chemical tools may also prove 

beneficial. Here we report on the discovery of a sub-micromolar inhibitor of SIRT2 that has been 

validated using a novel 
1
H-NMR-based method. 

2. Results and Discussion 

2.1. Chemistry  

Initial studies generated structure activity relationships for tenovin-6 (Scheme 1 and Table 1). 

Previously we have shown that modification of the substituents in the N-benzoyl ring of tenovin-6 led 

to more active analogues and it was therefore decided to prepare additional analogues substituted  

in this region to tune selectivity towards SIRT2 over SIRT1 [9]. In brief, the synthesis of the  

novel tenovin-6 analogues followed our published route (Scheme 1) [9]. Whilst several of the acid 

chlorides 1 were available (compounds 1a–e,i), the acid chlorides 1f–h (see Scheme 1 for substituents)  

required for the synthesis of tenovins 41–43 were synthesised in four steps from the corresponding  

4-hydroxycarboxylic acid 2 (R = Cl) as follows: esterification of the carboxylic acid 2 using standard 

conditions was followed by O-alkylation of the corresponding ester 3 (R = Cl) using the required alkyl 

halides to give 4f–h. Hydrolysis of the ester functionality in 4f–h followed by reaction of the resulting 

acids 5f–h with oxalyl chloride afforded the required acid chlorides 1f–h in high overall yields. The acid 

chlorides 1a–i were then coupled with amine 6, synthesised in four steps from p-phenylenediamine (7), 

to give the required tenovin-6 analogues [9]. 
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Scheme 1. Synthesis of tenovin analogues. 

 
Reagents and conditions: (a) R = Cl; MeOH, conc.H2SO4, reflux, 24 h, 98%; (b) alkyl halide, 

K2CO3, DMF, rt, 18 h, 96% (4f); 78% (4g); 91% (4h); (c) NaOH, H2O, MeOH, reflux, 2–5 h, 75% (5f); 

93% (5g); 99% (5h); (d) (COCl)2, cat. DMF, DCM, rt, 2 h, quant. (1f, 1g and 1h); (e) (i) NaSCN, 

acetone, rt, 30 min then 6, rt, 16 h; (ii) 2 M HCl in Et2O, acetone. 

Table 1. Activity of novel tenovin analogues against SIRT1 and SIRT2. 

Tenovin R R′′ 
SIRT1 

% at 60 µm 
a IC50 

SIRT2 

% at 60 μM 
a
 

IC50 
Selectivity 

Factor 

6 H tBu 73.9 ± 1 21b 94.9 ± 1 10 b 2.1 

36 Br OMe 66.2 ± 2 51.6 ± 2 82.7 ± 1 16.0 ± 3 3.2 

37 OMe OMe 12.5 ± 1 n.d. 18.1 ± 1 n.d. n.d. 

38 Me OMe 34.2 ± 3 65.4 ± 1 54.7 ± 1 44.9 ± 1 1.5 

39 F OMe 79.5 ± 4 47.2 ± 1 81.2 ± 5 18.0 ± 3 2.6 

40 F OEt 72.0 ± 4 35.3 ± 3 89.1 ± 1 17.5 ± 2 2.0 

41 Cl OEt 79.4 ± 1 28.5 ± 1 81.5 ± 2 12.9 ± 1 2.2 

42 Cl OnPr 81.0 ± 3 23.5 ± 2 96.1 ± 1 4.7 ± 3 5.0 

43 Cl OnBu 89.2 ± 2 21.5 ± 1 99.6 ± 3 0.8 ± 0.4 26.9 

44 H OnBu 87.7 ± 1 36.5 ± 5 88.2 ± 2 7.2 ± 1 5.1 
a % inhibition measured at 60 μM concentration of inhibitor ± SE (standard error, n = 2);  
b see reference 8; n.d. not determined. 

2.2. In Vitro Inhibition of SIRT1 and SIRT2 

The assessment of a compound’s ability to inhibit SIRT2 function in vitro is frequently carried out 

within the sirtuin community using a commercially available assay [20]. This assay, which relies on 

the deacetylation of a fluorescently labelled acetylated peptide substrate (Figure 1), was initially used 

here (Table 1).  
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Figure 1. Commercially available sirtuin assay uses a fluorescently labelled peptide 

substrate containing an N-acetylated lysine residue [20]. Removal of the N-acetyl group is 

coupled with conversion of NAD
+
 to nicotinamide (in red), 2′-O-acetyl ADP-ribose  

(in blue) and the deacetylated substrate. Subsequent reaction with trypsin releases the 

quenched fluorophore. 

 

The 3,5-dibromo-4-methoxy-substituted analogue, tenovin-36 showed reduced activity against 

SIRT2 compared with tenovin-6 but was even less active against SIRT1 (c.f. Table 1, entries 1 and 2). 

It was decided to explore this substitution pattern further. Replacement of the 3,5-halogen atoms in 

tenovin-36 by electron-donating substituents, OMe or Me (tenovins-37 and -38) led to a detrimental 

effect on both potency and selectivity. Returning to 3,5-dihalo-substituted analogues, tenovin-39 

showed a similar activity profile to tenovin-36 (c.f. entries 2 and 5). Increasing the size of the alkyl 

chain in the 4-alkoxy-substituent from OMe in tenovin-39 to OEt in tenovin-40 led to little 

improvement. On moving back to chloro-substituents in the OEt series, the activity and selectivity was 

retained and it was demonstrated that further increases in the alkoxy chain length led to a significant 

increase in activity towards SIRT2, while the SIRT1 activity was almost unchanged (tenovins 41-43, 

c.f. entries 7–9). Tenovin-43 is, to the best of our knowledge, one of the most potent SIRT2 inhibitors 

reported to date [21,22]. Removal of the chloro substituents present in tenovin-43 to give tenovin-44 

had a detrimental effect on activity. 

2.3. Development of a 
1
H-NMR Assay for Deacetylase Activity 

With the increase in the use of high-throughput screening as a starting point for chemical tool and 

drug discovery projects, attention has turned to methods by which false positives can arise from 

screening campaigns. For example, stabilisers of the luciferase enzyme and compounds that quench the 

fluorescence in neuraminidase assays have recently been shown to produce misleading results in HT 

assays [23,24]. In addition there has been some challenges reported with the commercial sirtuin assay 

used here [25]. With this in mind, we decided to generate an alternative method to validate our hits 



Molecules 2012, 17 12210 

 

 

using 
1
H-NMR methods. This approach is appealing because it would use a non-fluorescently labelled 

substrate to enable the direct monitoring of the deacetylation of the substrate to give the product 

peptide. It would also allow the production of additional reaction products such as nicotinamide or 

2'/3'-O-acetyl ADP-ribose to be monitored giving multiple readouts.  

2.3.1. Deacetylation of a Histone H4 Peptide by SIRT2  

As described above, histone H4 is a known substrate of SIRT2 and it was therefore decided to use 

the 11 amino acid-containing peptide GLGKGGAK(Ac)RHR based on H4 as the SIRT2 substrate [16]. 

A C-terminal His-tagged version of the human sirt2 gene corresponding to residues 50 to 356 was 

cloned into a pET32a vector and the protein overexpressed using BL21(DE3) cells. Standard purification 

methods were used to access untagged SIRT2 in large quantities. Encouragingly, SIRT2-mediated 

deacetylation of the H4 substrate was observed by 
1
H-NMR (Figure 2). When the H4 substrate was 

characterised by 
1
H-NMR a peak at 2.03 ppm assigned to the acetyl methyl group was observed 

(Figure 2a). Band-selective 
1
H, 

13
C-HMBC experiments confirmed the assignment was correct  

(See Figures S2 and S3). 

Figure 2. 1D 
1
H-NMR with double solvent suppression (for both H2O and Tris buffer) 

recorded at 37 °C. Sample contained 1 mM NAD
+
, 200 µM peptide, 10 µM SIRT2 in 

buffer (pH 8). (a) Before addition of enzyme. (b) After addition of enzyme and 15 mins. 

incubation. (c) Sample containing 200 μM tenovin-6 after incubation with enzyme for 15 min. 

Throughout this work, the H4 substrate was used at a final concentration of 200 μM as this 

enabled monitoring using a reasonable number of scans.  

 

Reaction of the H4 substrate with SIRT2 for 15 min at 37 °C followed by reanalysis led to the 

spectrum shown in Figure 2b in which the signal assigned to the lysine N-acetyl group in the substrate 

had disappeared (c.f. Figure 2a). The new signals at 2.17 ppm and 2.22 ppm (Figure 2b,c) were 

NAc 
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assigned as the acetyl groups in the O-acetylated ADP-ribose products formed from NAD
+
 (Figure 1) 

as determined by doping of authentic material into the reaction mixture (Figures S4 and S5). Doping 

experiments using an authentic sample of the deacetylated peptide (Figure S6) also confirmed that the 

H4 substrate was deacetylated by SIRT2. Finally, the observation of a new set of signals in the 

aromatic region of the spectrum were explained by the formation of nicotinamide from NAD
+
 (blue 

triangles in Figure 3b), consistent with the expected reaction. Doping of the final reaction mixture with 

authentic nicotinamide confirmed that it was formed in the SIRT2-catalysed reaction (Figure 3c).  

Figure 3. 1D 
1
H-NMR with double solvent suppression (H2O and Tris buffer) recorded at 

37 °C. (a) before addition of enzyme; (b) after incubation with SIRT2 for 20 mins at 37 °C. 

(c) after addition of authentic nicotinamide. Circles: signals from NAD+; Triangles signals 

from nicotinamide. 

 

2.3.2. Inhibition of the Deacetylase Reaction of SIRT2 by the Tenovins 

Having shown that deacetylation of the H4 substrate could be monitored by 
1
H-NMR, it was 

decided to assess whether tenovin-6 (Scheme 1) could inhibit the reaction. When the free base of 

tenovin-6 was used (final concentration 200 μM) a significant reduction in the amount of substrate that 

was deacetylated by SIRT2 in 15 min was observed (c.f. Figures 2b,c) consistent with SIRT2 inhibition 

by tenovin-6. More detailed studies across a 0–500 µM final concentration range of tenovin-6 showed  

that the degree of inhibition observed was dose-dependent (Figure 4). The degree of inhibition was 

quantified by integration of the N-acetyl methyl group of the starting peptide with respect to the 

satellite peak of the TRIS buffer, the concentration of which was constant for all samples (Table S1). 

From this data an IC50 of 139.2 ± 9.5 µM was calculated for tenovin-6. 
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Figure 4. 
1
H-NMR spectrum obtained: (a) before addition of SIRT2; (b) 8 min after 

addition of SIRT2; the N-acetyl signal had disappeared consistent with substrate turnover 

by SIRT2. (c–g) 8 min after addition of enzyme with tenovin-6 at a final concentration of: 

(c) 25 µM; (d) 50 µM. (e) 100 µM; (f) 200 µM; (g) 500 µM. 

 

The effect of the new SIRT2 selective inhibitor, tenovin-43 was then assessed. Inhibition of SIRT2 

by tenovin-43 was observed, after a 20 min incubation period (c.f. the 8 min incubation period used to 

generate the data in Figure 4). A large signal corresponding to the N-acetyl in the H4 substrate was 

observed when tenovin-43 was present at a final concentration of 200 μM [compare Figures 5a  

(no enzyme) 5b (+SIRT2) and 5c (+SIRT2 and tenovin-43)]. Inhibition was also observed for tenovin-43 

at a lower concentration of 25 µM with a signal corresponding to the presence of the N-acetylated 

peptide still present after the 20 min incubation (Figure 5e). However, the corresponding signal was 

not observable upon incubation with tenovin-6 at 25 µM under otherwise identical conditions (Figure 5d). 

On incubation with AGK2, the current state of the art SIRT2 inhibitor, no inhibition of SIRT2 at a 

final concentration of AGK2 of 25 μM was observed (Figure 5f) [19]. Due to the low solubility of 

AGK2 it was not possible to carry out this reaction at higher final concentrations of AGK2. Although 

direct comparison of the results obtained in the 
1
H-NMR assay with the commercially available assay 

is difficult, due to differences in the structure and concentration of the substrate, it is clear that 

analogous trends for inhibitor potency are seen in the two assays. 
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Figure 5. The 
1
H-NMR spectrum obtained: (a) before addition of enzyme; (b–f) 20 min 

after addition of: (b) SIRT2; (c) SIRT2 and tenovin-43 (200 µM); (d) SIRT2 with tenovin-6 

(25 µM); (e) SIRT2 with tenovin-43 (25 µM); (f) SIRT2 with AGK2 (25 µM). 

 

2.4. Thermal Shift Analysis of SIRT2 in the Presence of the Tenovins and AGK2 

The binding of tenovins (tenovin-6, tenovin-43, and a previously reported inactive analogue 

tenovin-30f) to SIRT2 was also determined by a fluorescent thermal shift assay (Figures 6 and S7) [9]. 

The dissociation constants at 37 °C, for the three ligands were: 0.67 µM for tenovin-43, 15 µM for 

tenovin-6, and 50 µM for the previously reported inactive tenovin-30f [9]. The calculated Kd values as 

determined by thermal shift correlate well with the previously obtained data using both the 

commercially available assay kit and the NMR method, where the most potent analogue tenovin-43 

was shown to have the lowest dissociation constant. AGK2 was also assessed by thermal shift and was 

determined to have a Kd of >200 µM (Figures S8 and S9).  

  



Molecules 2012, 17 12214 

 

 

Figure 6. Ligand dosing curves showing the Tm shift dependence of SIRT2 on ligand 

concentration. Datapoints are experimental data obtained from curves as in Figure S6 while 

the lines are simulated according to the model as previously explained [26–32]. The 

dissociation constants at 37 °C, for the three ligands were: 0.67 µM for tenovin-43, 15 µM 

for tenovin-6 and 50 µM for tenovin-30f [9]. 

 

3. Experimental  

3.1. SIRT2 Expression and Purification  

SIRT2 cDNA (residues 50-356) was expressed from Ncol and Xhol restriction sites of the pET32a 

vector (Novagen, Merck Millipore, Billerica, MA, USA) with an N-terminal His tag. Protein was 

overexpressed in BL21(DE3) pLysS bacterial cells (Sigma, Dorset, UK). Competent bacteria were 

transformed with the SIRT2 plasmid and starter cultures (10 mL) grown overnight at 37 °C in LB 

medium with ampicillin (100 mg/L) and chloramphenicol (100 mg/L). The overnight starter culture 

was added to 1 L of LB media containing ampicillin and chloramphenicol which was grown at 37 °C 

with 200 rpm shaking, until the OD600 reached 0.7–0.8. Cultures were cooled on ice before the addition  

of IPTG (0.1 mM) and Zn(OAc)2 (40 mM) and the culture grown at 18 °C overnight. The cells were 

harvested by centrifugation at 7500 rpm for 35 min before storing the resulting pellets at −20 °C. 

SIRT2 containing pellets were resuspended in lysis buffer (20 mM Tris pH 8, 200 mM NaCl, 10 mM 

imidazole, 2 mM β-mercaptoethanol, Roche EDTA-free mini protease inhibitor cocktail) and 

incubated on ice for 30 min. The suspension was sonicated for 10 × 1 min. The soluble fraction was 

collected after centrifugation at 15,000 rpm for 30 min. The resulting supernatant was filtered (0.45 µm), 

and loaded onto a pre-equilibrated 5mL HisTrap HP column (GE Healthcare, UK). The tagged protein 

eluted at 100 mM imidazole concentration. The fractions containing the enzyme were combined and 

dialysed in buffer (50 mM Tris pH 7.5, 100 mM NaCl, 5 mM imidazole, 2 mM β-mercaptoethanol) for 

2 h. The protein was placed in fresh dialysis buffer and biotinylated thrombin added before leaving to 

cleave overnight at 4 °C. The enzyme was transferred into a tube where streptavidin agarose was 

added and the mixture gently mixed on a rocking table for 2 h at 4 °C. The suspension was centrifuged 
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at 3,000 rpm for 10 min and the supernatant containing the purified enzyme decanted. The cleaved 

SIRT2 was further purified by Ni affinity chromatography as before, with cleaved protein eluting at  

5 mM imidazole, followed by gel filtration chromatography on S-200 sephacryl column. The protein 

was concentrated by centrifugation using a spin concentrator. SIRT2 was concentrated to >12 mg/mL 

to ensure minimal amount of water in the NMR experiments. 

3.2. SIRT1 and SIRT2 Inhibition Assay 

All compounds were tested for inhibition of SIRT1 and SIRT2 using human recombinant enzymes; 

SirT1 available in the Fluor de Lys
®
 fluorescence-based assay kit (Enzo Life Sciences, AK555, Exeter, 

UK) and SirT2 expressed and purified in house. All other required reagents were provided in the kit 

which was stored at −78 °C. Before use, small aliquots of each enzyme (2–3 L) were prepared, snap 

frozen in liquid nitrogen and stored at −78 °C. Fresh dilutions of compounds were prepared in DMSO 

and further diluted in assay buffer. NAD
+
 (12.5 L at 4 mM) and Fluor de Lys

®
 SIRT1 or SIRT2 (12.5 L 

at 100 M) in assay buffer were added to a white 96 well plate, followed by compound (10 L) and 

lastly enzyme (15 L, 0.07 U/L for kit SIRT1 and 0.3 U/L for in-house SIRT2). After incubation 

for 1 h at 37 °C a developer solution (50 L) was added to each reaction. The developer solution 

contained 38 L buffer, 10 L developer and 2 L nicotinamide per reaction. The plate was then 

incubated for 45 min at rt and then read using a Spectra Max Gemini fluorimeter with an excitation 

wavelength of 355 nm and an emission wavelength of 460 nm. SigmaPlot software was used to 

generate fit curves for raw plots and the equation for each fit curve was used to calculate IC50 data. 

3.3. 
1
H-NMR Experiments 

To a D2O buffer containing 50 mM Tris (pH 8), 150 mM NaCl, 2 mM KCl and 1 mM MgCl2 was 

added NAD
+
 (1 mM), peptide (200 μM) and inhibitor (varying concentration). The inhibitor was 

dissolved in d6-DMSO before addition to the buffer ensuring that the final NMR sample contained 

only 0.5% DMSO for each experiment. The initial data was collected before addition of in house 

SIRT2 (10 μM) directly to the NMR tube. After the incubation was complete, the NMR tube was 

shaken and replaced in the spectrometer for data collection. 1D 
1
H-NMR with double solvent 

suppression (for H2O and TRIS) were recorded on a 500 MHz Bruker spectrometer at 37 °C. 

3.4. Thermal Shift Experiments 

The thermal shift assay was performed using Corbett Rotor-Gene 6000 (QIAGEN Rotor-Gene Q, 

Qiagen, Sydney, Australia) spectrofluorimeter. The prepared protein concentration was usually 5 µM 

and the ligand concentrations 50 µM. Reaction volume was usually 10 µL. Unfolding of the protein was 

monitored by measuring the fluorescence of the 1,8-anilinonaphthalene sulfonate (ANS), at 50–100 µM. 

The samples were heated at a rate of 1 °C/min. The samples were excited with 365 nm UV light and 

ANS fluorescence emission was registered at 460 nm light. Data analysis was performed as previously 

described [29]. 
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3.5. General 

All chemicals and solvents were purchased from Aldrich (Dorset, UK) or Alfa-Aesar (Heysham, 

UK) and used without further purification. All reactions were carried out under a positive pressure of 

nitrogen or argon in flame or oven-dried glassware. Ethanol was dried over Mg/I2; pyridine was dried 

over KOH pellets; all the other solvents were dried on a MBRAWN SPS-800 apparatus. 

Thin layer chromatography (TLC) analysis was performed on silica pre-coated SIL G-25 UV254 

sheets (layer: 0.25 mm silica gel with fluorescent indicator UV254, Alugram, Aldrich, Dorset, UK). 

Compounds were visualized by UV light (UV lamp, model UVGL-58, Mineralight LAMP, Multiband 

UV-254/365 nm) and stained with potassium permanganate. Flash column chromatography was 

carried out on silica gel (40–63 μm, Fluorochem, Hadfield, UK) or, where indicated, on basic alumina 

(Brockmann I, Sigma-Aldrich). Melting points were measured with an Electrothermal 9100 capillary 

melting point apparatus and are uncorrected. 

Fourier Transform infra-red spectra (FT-IR) were acquired on a Perkin Elmer Paragon 1000 FT 

spectrometer. Absorption maxima are reported in wavenumbers (cm
−1

). 

Unless otherwise stated, 
1
H-NMR spectra were measured at room temperature (298 K) on a Bruker 

DPX 400 (
1
H = 400 MHz) and Bruker Avance 300 (

1
H = 300.1 MHz) instruments. Deuterated solvents 

were used and 
1
H-NMR chemical shifts were internally referenced to CHCl3 (7.26 ppm) in 

chloroform-d1 solution. Chemical shifts are expressed as δ in unit of ppm.  
13

C-NMR spectra were recorded in the same conditions and in the same solvents using the 

PENDANT sequence mode on a Bruker DPX 400 (
13

C = 100 MHz). Data processing was carried out 

using TOPSPIN 2 NMR version (Bruker UK, Ltd, Coventry, UK). In 
1
H-NMR assignment the 

multiplicity used is indicated by the following abbreviations: s = singlet, d = doublet, dd = doublet of 

doublets, t = triplet, q = quartet, m = multiplet, brs = broad singlet. Signals of protons and carbons 

were assigned, as far as possible, by using the following two-dimensional NMR spectroscopy 

techniques: [
1
H-

1
H] COSY, [

1
H-

13
C] COSY (HSQC: Heteronuclear Single Quantum Coherence) and 

long range [
1
H-

13
C] COSY (HMBC: Heteronuclear Multiple Bond Connectivity).  

Mass spectrometry (electrospray mode, ES; chemical ionization mode, CI) were recorded on a high 

performance orthogonal acceleration reflecting TOF mass spectrometer operating in positive and 

negative mode, coupled to a Waters 2975 HPLC. 

3.6. Synthesis 

3.6.1. General Procedure for the alkylation of 3  

To a stirred solution of 3 (1 equiv.) in dry DMF (1 vol.) under N2 was added K2CO3 (2 equiv.) and 

the alkyl halide (1.1 equiv.). The resulting solution was stirred for 16 h at room temperature before 

being partitioned between ethyl acetate (1 vol.) and water (0.5 vol.). The organic layer was washed 

with water (0.5 vol.), brine (0.5 vol.), dried (MgSO4), filtered and the solvent removed in vacuo to give 

the desired product which was used without further purification. 

Methyl 3,5-dichloro-4-ethoxybenzoate (4f). Prepared from compound 2 (1.3 g, 5.9 mmol), K2CO3 (1.6 g, 

11.7 mmol) and iodoethane (522 μL, 6.5 mmol) in DMF (10 mL). The product was obtained as a 



Molecules 2012, 17 12217 

 

 

brown oil (1.4 g, 5.6 mmol, 96%). νmax cm
−1

 (NaCl, thin layer) 2994, 1701, 1652, 1556, 1147, 854; δH 

(CDCl3, 400 MHz) 7.91 (2H, s, ArH), 4.09 (2H, q, J = 7.0 Hz, CH2), 3.85 (3H, s, CH3) and 1.41 (3H, t, 

J = 7.0 Hz, CH3); δC (CDCl3, 100 MHz) 164.7 (C), 155.5 (C), 130.2 (CH), 129.8 (C), 126.9 (C), 70.0 

(CH2), 52.6 (CH3) and 15.5 (CH3); m/z (ES)
+
: 249.35 [(M + H)

+
, 100%].  

Methyl 4-propoxy-3,5-dichlorobenzoate (4g). Prepared from 2 (500 mg, 2.3 mmol), K2CO3 (630 mg, 

4.6 mmol) and iodopropane (243 μL, 2.5 mmol) in DMF (10 mL). The product was obtained as a 

yellow-brown oil (472 mg, 1.8 mmol, 78%). νmax cm
−1

 (NaCl, thin layer) 2954 2880, 1733, 1690, 

1592, 1556, 1462, 1288, 1138, 986; δH (CDCl3, 400 MHz) 7.90 (2H, s, ArH), 3.97 (2H, t, J = 6.6 Hz, 

CH2), 3.84 (3H, s, CH3), 1.82 (2H, app. sextet, J = 7.0 Hz, CH2) and 1.02 (3H, t, J = 7.5 Hz, CH3);  

δC (CDCl3, 100 MHz) 164.2 (C), 155.0 (C), 130.6 (CH), 130.1 (C), 127.3 (C), 76.0 (CH2), 53.6 (CH3), 

23.8 (CH2) and 10.8 (CH3); m/z (ES)
+
: 263.24 [(M + H)

+
, 100%]. 

Methyl 4-butoxy-3,5-dichlorobenzoate (4h). Prepared from 2 (500 mg, 2.3 mmol), K2CO3 (630 mg,  

4.6 mmol) and iodobutane (283 μL, 2.5 mmol) in DMF (10 mL). The product was obtained as a brown 

oil (578 mg, 2.1 mmol, 91%). νmax cm
−1

 (NaCl, thin layer) 2959 (ArC-H), 1729, 1642, 1556, 1435, 

1284, 1137, 987; δH (CDCl3, 400 MHz) 7.90 (2H, s, ArH), 4.01 (2H, t, J = 6.8 Hz, CH2), 3.84 (3H, s, 

CH3), 1.81–1.76 (2H, m, CH2), 1.50 (2H, app. sextet, J = 7.5 Hz, CH2) and 0.93 (3H, t, J = 7.5 Hz, 

CH3); δC (CDCl3, 100 MHz) 164.7 (C), 155.6 (C), 130.3 (CH), 129.7 (C), 126.9 (C), 73.8 (CH2), 52.6 

(CH3), 32.11 (CH2), 19.04 (CH2) and 13.8 (CH3); m/z (ES)
+
: 277.06 [(M + H)

+
, 100%].  

3.6.2. General Procedure for Ester Hydrolysis 

The ester (1 equiv.) and sodium hydroxide (1.2 equiv.) were heated at reflux in a solution of 

methanol (1 vol.) and water (1 vol.) until the methyl ester was consumed by TLC (4–6 h). The 

methanol was removed in vacuo and the aqueous fraction acidified with 2 M HCl. The resulting 

precipitate was extracted with ethyl acetate (3 × 1 vol.) and the organic layers combined and washed 

with brine (0.5 vol.), dried (MgSO4), filtered and the solvent removed to yield the desired acid. 

3,5-Dichloro-4-ethoxybenzoic acid (5f). Prepared from methyl 4-ethoxy-3,5-dichlorobenzoate (500 mg, 

2.0 mmol) in MeOH/water (10 mL) and NaOH (96 mg, 2.4 mmol). The desired product was obtained 

as an off-white solid (1.8 g, 7.7 mmol, 75%). Mp 179–180 °C; νmax cm
−1

 (KBr) 3225, 2104, 1635, 

1206; δH (CDCl3, 400 MHz) 8.12 (2H, s, ArH), 4.28 (2H, q, J = 6.9 Hz, CH2), 1.57 (3H, t, J = 6.9 Hz, 

CH3); δC (CDCl3, 100 MHz) 169.6 (C), 156.3 (C), 130.8 (CH), 130.0 (C), 125.9 (C), 70.2 (CH2),  

15.5 (CH3); m/z (ES)
−
 232.97 [(M−H)

−
, 100%]; HRMS (ES

−
) [Found: (M-H)

−
, 232.9767, C9H7O3Cl2 

requires 232.9772]. 

4-Propoxy-3,5-dichlorobenzoic acid (5g). Prepared from methyl 4-propoxy-3,5-dichlorobenzoate (400 mg, 

1.5 mmol) in MeOH/water (10 mL) and NaOH (72 mg, 1.8 mmol). The product was obtained as a 

white solid (347 mg, 1.4 mmol, 93%). Mp 125–126 °C; νmax cm
−1

 (KBr) 2937, 1699, 1558, 1493, 

1385, 1077, 906, 768; δH (CDCl3, 400 MHz) 7.97 (2H, s, ArH), 4.00 (2H, t, J = 6.6 Hz, CH2), 1.83 

(2H, app. sextet, J = 7.1 Hz, CH2), 1.03 (3H, t, J = 7.6 Hz, CH3); δC (CDCl3, 100 MHz) 169.4, 156.4, 
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129.9, 125.9, 75.7, 23.4, 10.4; m/z (ES)
−
 247.23 [(M−H)

−
, 100%]; HRMS (ES

−
) [Found: (M−H)

−
, 

246.9924, C10H9O3Cl2 requires 246.9929]  

4-Butoxy-3,5-dichlorobenzoic acid (5h). Prepared from methyl 4-butoxy-3,5-dichlorobenzoate (500 mg, 

1.8 mmol) in MeOH/water (10 mL) and NaOH (86 mg, 2.2 mmol). The product was obtained as a 

yellow solid (472 mg, 1.8 mmol, 99%). Mp 98–99 °C; νmax cm
−1

 (KBr) 2955, 1682, 1214, 1557, 1388, 

1056, 810; δH (CDCl3, 400 MHz) 7.91 (2H, s, ArH), 4.04 (2H, t, J = 6.6 Hz, CH2), 1.8–1.7 (2H, m, 

CH2), 1.49 (2H, app. sextet, J = 7.0 Hz, CH2), 0.94 (3H, t, J = 7.4 Hz, CH3); δC (CDCl3, 100 MHz) 

169.3 (C), 156.4 (C), 130.8 (CH), 130.2 (C), 125.9 (C), 73.8 (CH2), 32.1 (CH2), 19.03 (CH2), 13.8 

(CH3); m/z (ES)
−
 261.02 [(M–H)

−
, 100%]; HRMS (ES

−
) [Found: (M–H)

−
, 261.0078, C11H11O3Cl2 

requires 261.0085]. 

3.6.3. General Procedure for Synthesis of Acid Chlorides 1a–l 

To a stirred solution of the benzoic acid (synthesised or commercially available) (1 equiv.) in DCM 

(1 vol.), under N2, was added a solution of oxalyl chloride (2 equiv.) in DCM (1 vol.). A drop of dry 

DMF was added and the resulting solution stirred at room temperature for 90 min. The solvent was 

removed in vacuo and the resulting acid chloride used immediately without purification or characterisation. 

3.6.4. General Procedure for Sodium Thiocyanate Coupling Reaction 

To a solution of the acid chloride (1 equiv.) in dry acetone (1 vol.) under N2, was added sodium 

thiocyanate (1 equiv.). The resulting suspension stirred at room temperature for 30 min before being 

cooled to 0 °C. A solution of the amine (1 equiv.) in dry acetone (1 vol.) was added and the resulting 

suspension allowed to warm to room temperature and stirred for 16 h. The reaction was filtered 

through Celite and the filtrate concentrated to give the crude product. The product was purified by 

column chromatography (1–20% methanol-DCM). The purified product was dissolved in acetone and 

2 M HCl in diethyl ether (1 equiv.) added slowly. The resulting precipitate was filtered and 

recrystallised from ethanol to afford the pure HCl salts. 

3,5-Dibromo-N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)-4-methoxybenzamide 

hydrochloride (Tenovin-36). Prepared from 3,5-dibromo-4-methoxybenzoyl chloride (85 mg,  

0.26 mmol) and sodium thiocyanate (21 mg, 0.26 mmol) in dry acetone (3 mL) followed by addition of  

N-(4-aminophenyl)-5-(dimethylamino)pentanamide (61 mg, 0.26 mmol) in acetone (3 mL). The  

crude material was purified by column chromatography (1–20% MeOH-DCM) and this material 

subsequently converted to the HCl salt to afford the product as a yellow solid (40 mg, 0.06 mmol, 

23%). Mp 159–160 °C; νmax cm
−1

 (KBr) 2924, 2857, 1669, 1606, 1541, 1495, 1405, 1262, 1094, 824; 

δH (DMSO-d6, 400 MHz) 12.41 (1H, s, NH), 11.85 (1H, s, NH), 10.21 (1H, s, NH), 9.75 (1H, br. s, 

NH
+
), 8.34 (2H, s, ArH), 7.69 (4H, AA’BB’, J = 8.8, 29.0 Hz, ArH), 3.96 (3H, s, CH3), 3.14 (2H, m, 

CH2), 2.83 (6H, d, J = 4.8 Hz, (CH3)2), 2.48 (2H, m, CH2), 1.74 (4H, m, (CH2)2); δC (DMSO-d6,  

400 MHz) 178.5 (C), 170.8 (C), 164.9 (C), 156.9 (C), 137.5 (C), 133.2 (CH), 132.7 (C), 130.7 (C), 

124.7 (CH), 119.0 (CH), 117.4 (C), 60.6 (CH3), 56.1 (CH2), 41.9 (CH3), 35.5 (CH2), 23.2 (CH2) and 

22.0 (CH2); m/z (ES)
+
 586.98 [((M−HCl)+H)

+
, 100%]. 
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N-((4-(5-(Dimethylamino)pentanamido)phenyl)carbamothioyl)-3,4,5-trimethoxybenzamide hydro-chloride 

(Tenovin-37). Prepared from 3,4,5-trimethoxybenzoyl chloride (53 mg, 0.23 mmol) and sodium 

thiocyanate (19 mg, 0.23 mmol) in dry acetone (3 mL) followed by addition of N-(4-aminophenyl)-5-

(dimethylamino)pentanamide (54 mg, 0.23 mmol) in acetone (3 mL). The crude material was purified 

by column chromatography (1–20% MeOH-DCM) and this material subsequently converted to  

the HCl salt to afford the product as a yellow solid (36.3 mg, 0.06 mmol, 30%). Mp 115–117 °C;  

νmax cm
−1

 (KBr) 2925, 2858, 1670, 1642, 1495, 1405, 1340, 1261, 1125, 1050, 824; δH (DMSO-d6,  

300 MHz) 12.65 (1H, s, NH), 11.56 (1H, s, NH), 10.15 (1H, s, NH), 9.82 (1H, br. s, NH
+
), 7.62  

(4H, AA’BB’, J = 9.0, 24.4 Hz, ArH), 7.38 (2H, s, ArH), 3.88 (6H, s, (CH3)2), 3.75 (3H, s, CH3), 3.06 

(2H, m, CH2), 2.75 (6H, d, J = 4.9 Hz, (CH3)2), 2.39 (2H, t, J = 6.5 Hz, CH2), 1.65 (4H, m, (CH2)2);  

δC (DMSO-d6, 100 MHz) 178.9 (C), 170.7 (C), 167.4 (C), 152.5 (C), 141.5 (C), 137.4 (C), 132.8 (C), 

126.7 (C), 124.7 (CH), 119.0 (CH), 106.5 (CH), 60.1 (CH3), 56.6 (CH2), 56.1 (CH3), 41.9 (CH3), 35.5 

(CH2), 23.2 (CH2), 23.2 (CH2), 21.9 (CH2); m/z (ES)
+
 489.18, [((M−HCl)+H)

+
, 100%]; HRMS (ES)

+
 

[Found: ((M−HCl)+H)
+
, 489.2172, C24H33ClN4O5S requires 489.2166]. 

N-(4-(5-(dimethylamino)pentanamido)phenylcarbamothioyl)-4-methoxy-3,5-dimethylbenzamide 

hydrochloride (Tenovin-38). Prepared from 4-methoxy-3,5-dimethylbenzoyl chloride (110 mg, 0.6 mmol) 

and sodium thiocyanate (45 mg, 0.6 mmol) in dry acetone (3 mL) followed by addition of  

N-(4-aminophenyl)-5-(dimethylamino)pentanamide (130 mg, 0.6 mmol) in acetone (3 mL). The crude 

material was purified by column chromatography (1–20% MeOH-DCM) and this material 

subsequently converted to the HCl salt. The product was obtained as a brown solid (74 mg, 0.15 mmol, 

25%). Mp 190–192 °C; νmax cm
−1

 (KBr) 2925, 2854, 1667, 1604, 1515, 1337, 1307, 1166, 1007, 740; 

δH (d6-DMSO, 400 MHz) 12.64 (1H, s, NH), 11.36 (1H, s, NH), 10.20 (1H, s, NH), 9.91 (1H, br. s, 

NH
+
), 7.79 (2H, s, ArH), 7.69 (2H, d, J = 8.4 Hz, ArH), 7.63 (2H, d, J = 8.4 Hz, ArH), 3.77 (3H, s, 

CH3), 3.15–3.08 (2H, m, CH2), 2.79 (6H, s, (CH3)2), 2.47–2.41 (2H, m, CH2), 2.33 (6H, s, (CH3)2), 

1.76–1.69 (4H, m, (CH2)2); δC (d6-DMSO, 100 MHz) 178.9 (C), 170.7 (C), 167.7 (C), 160.7 (C), 137.3 

(C), 132.8 (C), 130.6 (C), 129.5 (CH), 126.9 (C), 124.7 (CH), 118.9 (CH), 59.4 (CH3), 56.2 (CH2), 

42.0 (CH3), 35.5 (CH2), 23.3 (CH2), 21.9 (CH2), 15.8 (CH3); m/z (ES)
+
 457.03 [((M−HCl)+H)

+
, 

100%]; HRMS (ES)
+
 [Found: ((M−HCl)+H)

+
, 457.2265, C24H33N4O3S requires 457.2273]. 

N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)-3,5-difluoro-4-methoxybenzamide 

hydrochloride (Tenovin-39). Prepared from 3,5-difluoro-4-methoxybenzoyl chloride (132 mg, 0.64 mmol) 

and sodium thiocyanate (52 mg, 0.64 mmol) in dry acetone (3 mL) followed by addition of  

N-(4-aminophenyl)-5-(dimethylamino)pentanamide (151 mg, 0.64 mmol) in acetone (3 mL). The 

crude material was purified by column chromatography (1–20% MeOH-DCM) and this material 

subsequently converted to the HCl salt to afford the product as an off-white solid (134 mg, 0.27 mmol, 

42%). Mp 153–154 °C; νmax cm
−1

 (KBr) 2924, 2859, 1659, 1608, 1544, 1495, 1451, 1404, 1262, 1180, 

1049, 824; δH (d6-DMSO, 400 MHz) 12.33 (1H, s, NH), 11.54(1H, s, NH), 10.19 (2H, br. s., (NH)2), 

7.81 (2H, d, J = 8.6 Hz, ArH), 7.62 (2H, d, J = 6.8 Hz, ArH), 7.53 (2H, d, J = 6.8 Hz, ArH), 4.08 (3H, 

s, CH3), 3.00 (2H, app. br. s., CH2), 2.68 (6H, s, (CH3)2), 2.35 (2H, app. br. s., CH2) and 1.62 (4H, app. 

br. s., (CH2)2); δC (d4-CD3OD, 100 MHz) 180.5 (C), 173.7 (C), 167.0 (C), 157.2 (C), 155.2 (C), 138.3 

(C), 135.2 (C), 127.8 (C), 125.9 (CH), 121.1 (CH), 114.1 (CH), 58.7 (CH2), 53.6 (CH3), 43.5 (CH3), 
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36.7 (CH2), 25.2 (CH2), 23.1 (CH2); m/z (ES)
+
 465.03 [((M−HCl)+H)

+
, 100%]; HRMS (ES)

+
 [Found: 

((M−HCl)+H)
+
, 465.1760, C22H27N4O3F2S requires 465.1772]. 

N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)-3,5-difluoro-4-ethoxybenzamide 

hydrochloride (Tenovin-40). Prepared from 3,5-difluoro-4-ethoxybenzoyl chloride (150 mg, 0.68 mmol) 

and sodium thiocyanate (55 mg, 0.68 mmol) in dry acetone (3 mL) followed by addition of  

N-(4-aminophenyl)-5-(dimethylamino)pentanamide (160 mg, 0.68 mmol) in acetone (3 mL). The 

crude material was purified by column chromatography (1–20% MeOH-DCM) and this material 

subsequently converted to the HCl salt to afford the product as an off-white solid (124 mg, 0.24 mmol, 

35%). Mp 206–207 °C; νmax cm
−1

 (KBr) 2926, 2860, 1674, 1606, 1512, 1495, 1436, 1405, 1263, 1135, 

1049, 874; δH (d6-DMSO, 400 MHz) 12.34 (1H, s, NH), 11.56 (1H, br. s, NH), 10.11 (2H, s, NH), 9.70 

(2H, br. s., NH
+
), 7.83 (2H, d, J = 9.2 Hz, ArH), 7.64 (2H, d, J = 7.9 Hz, ArH), 7.56 (2H, d, J = 7.9 Hz, 

ArH), 4.31 (2H, app quartet, J = 4.3 Hz, CH2), 3.08-2.99 (2H, m, CH2), 2.72 (6H, app. s, (CH3)2), 2.38 

(2H, app. t., J = 6.3 Hz, CH2), 1.71–1.56 (4H, m, (CH2)2) and 1.32 (3H, t, J = 7.0 Hz, CH3); δC (d4-CD3OD, 

100 MHz) 180.4 (C), 173.5 (C), 167.0 (C), 157.6 (C), 155.7 (C), 138.3 (C), 135.2 (C), 128.0 (C), 125.9 

(CH), 121.1 (CH), 113.9 (CH), 58.7 (CH2), 43.5 (CH3), 36.7 (CH2), 30.8 (CH2), 25.2 (CH2), 23.1 

(CH2), 15.8 (CH3); m/z (ES)
+
 478.90 [((M−HCl)+H)

+
, 100%]; HRMS (ES)

+
 [Found: ((M−HCl)+H)

+
, 

479.1940, C23H29N4O3F2S requires 479.1928]. 

3,5-Dichloro-N-(4-(5-(dimethylamino)pentanamido)phenylcarbamothioyl)-4-ethoxybenzamide 

hydrochloride (Tenovin-41). Prepared by the reaction of 3,5-dichloro-4-ethoxybenzoyl chloride (216 mg, 

0.86 mmol) and sodium thiocyanate (69 mg, 0.86 mmol) in dry acetone (6 mL) followed by addition of 

a solution of N-(4-aminophenyl)-5-(dimethylamino)pentanamide (202 mg, 0.86 mmol) in dry acetone 

(6 mL) using general method F. The product was further purified by conversion to the HCl salt by the 

addition of 2M HCl in diethyl ether. The desired product was obtained as a brown sticky oil (42 mg, 

0.08 mmol, 9.5%). νmax cm
−1

 (NaCl, thin layer) 2965, 2359.3, 1651, 1048, 1025, 998, 765; δH (CDCl3, 

400 MHz) 12.29 (1H, s, NH), 11.68 (1H, s, NH), 10.21 (1H, s, NH), 8.08 (2H, s, ArH), 7.79–7.46 (4H, 

m, ArH), 4.19–4.06 (2H, m, CH2), 3.06–2.93 (2H, m, CH2), 2.69 (6H, s, (CH3)2), 2.36–2.24 (2H, m, 

CH2), 1.71–1.65 (2H, m, CH2), 1.41–1.28 (2H, m, CH2), 1.23–1.17 (3H, m, CH3); δC (d4-CD3OD, 100 

MHz) 180.4 (C), 173.5 (C), 167.0 (C), 156.7 (C), 138.2 (C), 135.2 (C), 131.1 (C), 130.9 (C), 130.4 

(CH), 125.9 (CH), 121.2 (CH), 71.2 (CH2), 58.8 (CH2), 43.5 (CH3), 36.6 (CH2), 25.3 (CH2), 23.1 

(CH2), 15.8 (CH3); m/z (ES)
+
 510.94 [((M−HCl)+H)

+
, 100%]; HRMS (ES)

+
 [Found: ((M−HCl)+H)

+
, 

511.1337, C23H29N4O3SCl2 requires 511.1337]. 

3,5-Dichloro-N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)-4-propoxybenzamide 

hydrochloride (Tenovin-42). Prepared from 3,5-dichloro-4-propoxybenzoyl chloride (160 mg,  

0.60 mmol) and sodium thiocyanate (49 mg, 0.60 mmol) in dry acetone (3 mL) followed by addition of  

N-(4-aminophenyl)-5-(dimethylamino)pentanamide (142 mg, 0.60 mmol) in acetone (3 mL). The 

crude material was purified by column chromatography (1–20% MeOH-DCM) and this material 

subsequently converted to the HCl salt to afford the product as an off-white solid (73 mg, 0.13 mmol, 

21%). Mp 167–168 °C; νmax cm
−1

 (KBr) 2927, 2861, 1674, 1636, 1606, 1539, 1473, 1452, 1265, 1148, 

1051, 873; δH (d6-DMSO, 400 MHz) 12.31 (1H, s, NH), 11.70 (1H, s, NH), 10.23 (1H, s, NH), 10.13 
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(1H, s, NH
+
), 8.09 (2H, s, ArH), 7.65 (2H, d, J = 8.9 Hz, ArH), 7.56 (2H, d, J = 8.9 Hz, ArH),  

4.04 (2H, t, J = 6.4 Hz, CH2), 3.02–2.96 (2H, m, CH2), 2.72 (6H, d, J = 5.2 Hz, (CH3)2), 2.38–2.32 

(2H, m, CH2), 1.86–1.75 (2H, m, CH2), 1.70–1.60 (4H, m, (CH2)2), 1.03 (3H, t, J = 7.6 Hz, CH3); δC  

(d6-DMSO, 100 MHz) 170.5 (C), 165.5 (C), 154.4 (C), 150.5 (C), 135.4 (C), 132.7 (C), 129.5 (C), 

129.2 (CH), 128.6 (C), 120.2 (CH), 119.6 (CH), 75.4 (CH2), 56.2 (CH2), 42.0 (CH3), 35.4 (CH2), 23.3 

(CH2), 22.9 (CH2), 21.9 (CH2), 10.6 (CH3); m/z (ES)
+
 525.09 [((M−HCl)+H)

+
, 100%]; HRMS (ES)

+
 

[Found: ((M−HCl)+H)
+
, 525.1509, C24H31N4O3SCl2 requires 525.1494].  

4-Butoxy-3,5-dichloro-N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)benzamide 

hydrochloride (Tenovin-43). Prepared from 3,5-dichloro-4-butoxybenzoyl chloride (28 mg,  

0.10 mmol) and sodium thiocyanate (8 mg, 0.10 mmol) in dry acetone (2 mL) followed by addition  

of N-(4-aminophenyl)-5-(dimethylamino)pentanamide (24 mg, 0.10 mmol) in acetone (2 mL). The 

crude material was purified by column chromatography (1–20% MeOH-DCM) and this material 

subsequently converted to the HCl salt to afford the product as a cream solid (31 mg, 0.05 mmol, 

51%). Mp 174–176 °C; νmax cm
−1

 (KBr) 2959, 2927, 2858, 1674, 1606, 1545, 1495, 1405, 1264, 1151, 

1050, 876; δH (d6-DMSO, 400 MHz) 12.25 (1H, s, NH), 11.64 (1H, s, NH), 10.08 (1H, s, NH), 9.66 (1H, s, 

NH
+
), 8.03 (2H, s, ArH), 7.59 (2H, d, J = 8.8 Hz, ArH), 7.50 (2H, d, J = 8.8 Hz, ArH), 4.01 (2H, t,  

J = 6.3 Hz, CH2), 3.04–2.93 (2H, m, CH2), 2.69 (6H, d, J = 4.5 Hz, (CH3)2), 2.32 (2H, app. t,  

J = 6.7 Hz, CH2), 1.71 (2H, app. sextet, J = 8.0 Hz, CH2), 1.66–1.50 (4H, m, (CH2)2), 1.45 (2H, app. 

sextet, J = 7.3 Hz, CH2), 0.89 (3H, t, J = 7.4 Hz, CH3); δC (d6-DMSO, 100 MHz) 179.5 (C) 170.5 (C), 

165.6 (C), 154.4 (C), 135.3 (C), 132.5 (C), 129.5 (C), 129.2 (CH), 128.6 (C), 120.3 (CH), 119.6 (CH), 

73.6 (CH2), 56.2 (CH2), 42.1 (CH3), 35.4 (CH2), 31.5 (CH2), 23.3 (CH2), 21.8 (CH2), 18.5 (CH2), 13.6 

(CH3); m/z (ES)
+
 539.09 [((M−HCl)+H)

+
, 100%]; HRMS (ES)

+
 [Found: ((M−HCl)+H)

+
, 539.1655, 

C25H33N4O3SCl2 requires 539.1655]. 

4-Butoxy-N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)benzamide hydrochloride 

(Tenovin-44). Prepared from 4-butoxybenzoyl chloride (45 mg, 0.21 mmol) and sodium thiocyanate 

(17 mg, 0.21 mmol) in dry acetone (3 mL) followed by addition of N-(4-aminophenyl)-5-

(dimethylamino)pentanamide (49 mg, 0.21 mmol) in acetone (3 mL). The crude material was purified 

by column chromatography (1–20% MeOH-DCM) and this material subsequently converted to the 

HCl salt to afford the product as a brown solid (72 mg, 0.14 mmol, 68%). Mp 160–161 °C; νmax cm
−1

 

(KBr) 2956, 2927, 2861, 1670, 1606, 1546, 1495, 1408, 1251, 1190, 1050, 875; δH (d6-DMSO, 400 MHz) 

12.63 (1H, s, NH), 11.33 (1H, s, NH), 10.43 (1H, s, NH
+
), 10.27 (1H, s, NH), 7.98 (2H, d, J = 8.8 Hz, 

ArH), 7.66 (2H, d, J = 8.8 Hz, ArH), 7.57 (2H, d, J = 8.8 Hz, ArH), 7.04 (2H, d, J = 8.8 Hz, ArH), 4.06 

(2H, t, J = 6.5 Hz, CH2), 3.09-3.00 (2H, m, CH2), 2.70 (6H, d, J = 5.0 Hz, (CH3)2), 2.38 (2H, app. t,  

J = 6.7 Hz, CH2), 1.75–1.57 (6H, m, (CH2)3), 1.43 (2H, app. sextet, J = 7.6 Hz, CH2), 0.93 (3H, t,  

J = 7.5 Hz, CH3); δC (d4-CD3OD, 100 MHz) 180.8 (C), 173.6 (C), 169.1 (C), 165.0 (C), 138.1 (C), 

135.3 (C), 131.5 (CH), 125.8 (CH), 125.2 (C), 121.4 (CH), 115.6 (CH), 69.2 (CH2), 58.7 (CH2), 43.5 (CH3), 

36.7 (CH2), 32.3 (CH2), 25.2 (CH2), 23.2 (CH2), 20.2 (CH2), 14.2 (CH3); m/z (ES)
+
 471.04 [((M−HCl)+H)

+
, 

100%]; HRMS (ES)
+
 [Found: ((M−HCl)+H)

+
, 471.2429, C25H35N4O3S requires 471.2430].  

1
H and 

13
C-NMR spectra of all tenovin analogues are included in the electronic  

Supplementary Information. 
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4. Conclusions  

There remains a need for novel approaches to assess the function of the sirtuin family of 

deacetylases. This is driven by the continuing interest in this important class of proteins. Here we show 

that 
1
H-NMR methods can be used to follow the deacetylation of a histone H4-based N-acetylated 

substrate. By monitoring the signal corresponding to the methyl group of the N-acetyl functional 

group, reaction of the substrate can be followed. Our previously reported sirtuin inhibitor, tenovin-6, 

was shown to inhibit this reaction. Detailed studies showed that inhibition by tenovin-6 was dose 

dependent and that using this system tenovin-6 had an IC50 value of 139.2 ± 9.5 µM. Further studies 

led to the identification of a tenovin-6 analogue that has a high nanomolar IC50 value against SIRT2 

(tenovin-43). Compounds with this level of potency are rare in the sirtuin inhibitor literature to date [21]. 

Importantly, the relative activity of tenovins -6 and -43, as judged by our newly developed 
1
H NMR 

method and the commercially available assay, were in agreement. Tenovin-43 was also shown to 

inhibit SIRT2 at concentrations where no inhibition of SIRT2 by the current state of the art inhibitor 

AGK2 was observed. Whilst use of the NMR method is not suitable for the assessment of numerous 

analogues, the relative activity of inhibitors can be tested. In addition, researchers can use this new 

method as another means of reassuring themselves that their sirtuin modulators target the relevant 

enzyme activity. A thermal shift assay was also used with SIRT2 to measure the binding constants of 

tenovins-6, -43 and AGK2. Whilst the calculated binding constants of the tenovin analogues were in 

agreement with the order of potencies calculated by the commercially available assay kit and the NMR 

method, the binding constant for AGK2 was determined to be much larger than expected. 
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