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Abstract: A series of eighteen novel esters of salicylanilides with benzenesulfonic  

acid were designed, synthesized and characterized by IR, 1H-NMR and 13C-NMR. They 

were evaluated in vitro as potential antimycobacterial agents towards Mycobacterium 

tuberculosis, Mycobacterium avium and two strains of Mycobacterium kansasii. In general, 

the minimum inhibitory concentrations range from 1 to 500 µmol/L. The most active 

compound against M. tuberculosis was 4-chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)-

phenyl benzenesulfonate, with MIC of 1 µmol/L and towards M. kansasii its isomer 5-chloro-

2-(4-(trifluoromethyl)phenylcarbamoyl)phenyl benzenesulfonate (MIC of 2–4 µmol/L).  

M. avium was the less susceptible strain. However, generally, salicylanilide benzenesulfonates 

did not surpass the activity of other salicylanilide esters with carboxylic acids. 
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1. Introduction 

Tuberculosis (TB) is still a global health problem. According to the WHO, in 2010 about 8.8 

million people were infected by TB, including 1.1 million cases among HIV-infected patients. In the 

same year, 1.4 million died due to TB [1]. 
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Recently, the increasing emergence of drug-resistant tuberculosis, especially multidrug-resistant 

tuberculosis (MDR-TB) and most recently extensively drug-resistant tuberculosis (XDR-TB) is 

alarming. A multidrug-resistant Mycobacterium tuberculosis strain was identified and defined as 

resistant to at least the two most effective anti-TB drugs—Isoniazid (INH) and rifampicin (RIF)—but 

it may include additional resistance to more antituberculotics. XDR-TB was defined as a resistance to 

any fluoroquinolone and to at least one of the three injectable drugs (capreomycin, kanamycin, or 

amikacin) [2,3]. In 2010, there was an estimated prevalence of 650,000 cases and about 150,000 

MDR-TB deaths annually [1]. These problems and serious co-infection of TB with HIV present a 

serious challenge for the research to find a new type of drug or prodrug with an innovative mechanism 

of the action [2]. 

Salicylanilides (2-hydroxy-N-phenylbenzamides) have been revealed to demonstrate a wide range 

of perspective biological activities and some of them are used in human or veterinarian medicine. 

Salicylanilides, e.g., modulate immune response and inflammatory processes [4,5], show analgesic 

efficacy [6], influence on ion channels [7] and they express more molecular effects which may be 

useful in the development of anti-cancer drugs, e.g., references [8,9]. Salicylanilides have been studied 

for their significant activity against various parasites like protozoa, mycobacteria, fungi, bacteria 

(especially Gram-positive) or viruses [10]. Antimicrobial salicylanilides probably act by multiple 

mechanisms of the action [11], e.g., they disrupt membrane functions, inhibit some enzymes, block the 

incorporation of some nutrients [12], they act as the uncoupling agents of mitochondrial oxidative 

phosphorylation due to their protonophoric activity dissipating the protonmotive force [13]; from 

newer findings it is important that salicylanilides are able to inhibit the two-component regulatory 

systems which are involved in the maintenance of bacterial cell homeostasis and the expression of 

virulence factors [14]. 

Salicylanilides contain a free hydroxyl (phenolic) group generally presumed to be necessary for the 

activity, although its temporary masking by the esterification may be advantageous. The blockade of 

polar hydrophilic group can result in improved physico-chemical properties and thus better 

bioavailability, membrane permeability, a high activity and/or a lower toxicity and an irritant potency. 

In general, salicylanilide esters exhibited a similar or a sharply better antimicrobial activity than parent 

salicylanilides [11,15]. 

Salicylanilide esters as potential prodrugs have exhibited generally the very good antimycobacterial 

activity from 0.125 μmol/L and including MDR-TB strains [11]. Salts of benzenesulfonic acid, called 

also besylates, have been used in medicine as pharmaceuticals, as well as tosylates and mesylates [16].  

In this study, we have chosen sulfonic acid instead of previously used carboxylic acids for the 

esterification (e.g., references [15,17,18]). 

2. Results and Discussion 

2.1. Chemistry 

Salicylanilide benzenesulfonates were synthesised by two step synthesis. Firstly, salicylanilides 1 

were prepared by the procedure using microwave irradiation described previously by our group, e.g., 

references [19] (see Scheme 1). Then they were converted to esters 2 by benzenesulfonyl chloride in 
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the presence of triethylamine (Et3N; see Scheme 2); the base and solvent were chosen according to 

e.g., references [20]. Esterification of salicylanilides with benzenesulfonic acid via N,N´-

dicyclohexylcarbodiimide in N,N-dimethylformamide failed. 

Scheme 1. Synthesis of salicylanilides. 

 
R1 = 4-Cl, 5-Cl; R2 = 3-Cl, 4-Cl, 3,4-diCl, 3-Br, 4-Br, 3-CF3, 4-CF3. 

Scheme 2. Synthesis of salicylanilide benzenesulfonates. 

 
R1 = 4-Cl, 5-Cl; R2 = 3-Cl, 4-Cl, 3,4-diCl, 3-Br, 4-Br, 3-CF3, 4-CF3; DCM – dichloromethane. 

2.2. In Vitro Antimycobacterial Evaluation 

All synthesized benzenesulfonates 2 were evaluated in vitro towards four mycobacterial strains—

Mycobacterium tuberculosis, Mycobacterium avium and two strains of M. kansasii after 14 and 21 

days of incubation, for M. kansasii additionally after 7 days. The results are summarized in the  

Table 1. 

Except for compound 2q, for which it was not possible to determine minimal inhibition 

concentrations (MIC), all salicylanilide benzenesulfonates exhibited a significant in vitro activity 

against M. tuberculosis as the most sensitive strain at the concentration values up to 16 μmol/L.  

The most active derivatives were 4-chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl benzenesulfonate  

(2e; 1/2 μmol/L) and 4-chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)phenyl benzenesulfonate (2q;  

1/1 μmol/L). 4-Chloro derivatives mostly showed lower MICs than their 5-chloro counterparts, in the 

case of 2i and 2j, 2k and 2l are both derivatives equally active. With respect to the aniline substitution 

pattern, the most suitable moieties are trifluoromethyl group and 3,4-dichloro substitution, whereas 

fluorine produced the weakest effect. With respect to the lipophilicity (calculated logP), there is no 

clear dependence, however this physico-chemical property seems to be one of the factors influencing 

the antimycobacterial activity. On the other side, the highest activity towards M. tuberculosis displayed 

the most lipophilic salicylanilide derivatives containing either CF3 group (2o, 2q, 2r; ClogP 5.40) or 

3,4-dichloroaniline fragment (2e; ClogP 5.60) and the highest MIC exhibited the least lipophilic 

fluorinated esters (ClogP 4.64), but strongly lipophilic 2p showed an undetectable activity. 
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Table 1. Antimycobacterial activity of salicylanilide benzenesulfonates 2. 

 MIC [μmol/L 

 R1 R2 

M. 
tuberculosis 

331/88 

M. avium 
330/88 

M. kansasii 
235/80 

M. kansasii 
6509/96 

14 d 21 d 14 d 21 d 7 d 14 d 21 d 7 d 14 d 21 d 
2a 4-Cl 3-Cl 4 4 32 32 8 16 16 8 16 16 
2b 5-Cl 3-Cl 16 16 500 * 500 * 16 16 16 125 500 500 
2c 4-Cl 4-Cl 4 4 32 32 8 8 8 8 8 8 
2d 5-Cl 4-Cl 8 8 8 8 8 16 16 8 16 16 
2e 4-Cl 3,4-diCl 1 2 16 16 4 8 8 8 8 8 
2f 5-Cl 3,4-diCl 4 8 62.5 62.5 4 8 8 8 8 8 
2g 4-Cl 3-Br 8 8 16 16 16 16 16 8 8 8 
2h 5-Cl 3-Br 16 16 250 500 * 16 62.5 62.5 32 125 125 
2i 4-Cl 4-Br 8 8 32 32 8 8 8 8 8 16 
2j 5-Cl 4-Br 8 8 8 8 8 16 16 4 8 8 
2k 4-Cl 3-F 16 16 500 * 500 * 32 32 32 16 32 125 
2l 5-Cl 3-F 16 16 500 500 16 32 32 16 32 32 

2m 4-Cl 4-F 8 8 16 32 8 8 8 16 16 16 
2n 5-Cl 4-F 16 16 32 32 16 32 32 16 16 16 
2o 4-Cl 3-CF3 2 4 62.5 62.5 8 8 8 8 16 16 
2p 5-Cl 3-CF3 125 * 125 * 125 * 125 * 125 * 125 * 125 * 125 * 125 * 125 * 
2q 4-Cl 4-CF3 1 1 125 125 125 * 125 * 125 * 125 * 125 * 125 * 
2r 5-Cl 4-CF3 2 4 250 * 250 * 2 4 4 4 4 4 

INH 0.5 0.5 250 250 250 250 250 2 or 4 4 8 
PAS 62.5 62.5 32 125 125 1000 >1000 250 1000 1000 
EMB 1 2 16 16 1 2 2 1 2 2 

M. avium strain 330/88 resistant to INH, RIF, ofloxacin and ethambutol; INH: isoniazid; PAS: 
para-aminosalicylic acid; EMB: ethambutol. One or two lowest MIC values for each strain are 
bolded; *: at presented concentration the grow of strain was observed, at duplex concentration there 
was present precipitate and/or turbidity, therefore it was not possible to determine exact MIC value. 

Salicylanilide esters of 3- or 4-bromoaniline (compounds 2g, 2h, 2i, 2j) with only a slightly lower 

calculated lipophilicity (ClogP 5.31) than trifluoromethylanilines displayed a lower average  

anti-mycobacterial activity than chloro derivatives (2a, 2b, 2c, 2d; ClogP 5.04). Additionally, the 

calculated lipophilicity could not explain the differences of MIC between corresponding isomers. MIC 

values of the two most active derivatives 2e and 2q are comparable with the standards—Fist-line oral 

antituberculosis drugs isoniazid and ethambutol (EMB). Seventeen derivatives exhibited a significantly 

higher in vitro activity than the second-line drug para-aminosalicylic acid (PAS), which also shares a 

salicylic fragment. 

Atypical mycobacteria displayed a higher rate of resistance, particularly M. avium with MIC value 

range from 8 μmol/L (2d and 2j). MIC exceeded 500 μmol/L for two esters—2b and 2k. 

The favourable substituents of the aniline ring are 4-chlorine and bromine, especially when the 

position 5 of the salicylic ring is occupied. In contrast to M. tuberculosis, a trifluoromethyl moiety 
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brings a minimal benefit in the comparison to each other except 3-fluorine, whose derivatives showed 

a higher MIC of ≥500 μmol/L. Eleven benzenesulfonates certainly surpassed the activity of INH, nine 

of PAS and two of EMB. 

Both strains of M. kansasii expressed an intermediate sensitivity with no distinct differences 

between collection and clinically isolated types. MIC for 235/80 strain lies from 2 to ≥125 μmol/L and 

in the range of 4–500 μmol/L for the strain 6509/96. 5-Chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)-

phenyl benzenesulfonate (2r) is the most active molecule in the tested panel with MIC of 2–4 µmol/L, 

i.e., comparable to INH for both strains. Salicylanilide benzenesulfonates exhibited significantly higher 

in vitro activity towards M. kansasii 235/80 than INH, but not for 6509/96; PAS was not equally or 

more active than esters 2 against both strains, whereas no benzenesulfonate surpassed the MIC of 

EMB. Similarly to M. avium, the type of the salicylic ring substitution influences the activity 

ambiguously and the best MIC bring anilines having 4-Br or 4-Cl then 3,4-diCl substituents. The 

molecules with CF3 group showed the lowest (2r), moderate (2o) or undetected (2p, 2q) MIC values. 

When concentrated on the position of each substituent on the aniline ring, 4-derivatives showed 

enhanced activity. 

Salicylanilide benzenesulfonates displayed an obvious antimycobacterial activity in the range of  

1–500 µmol/L with 2p being a partial exception. In comparison with the starting salicylanilides [21], 

their benzenesulfonylation led to the derivatives with equal or increased MIC against atypical 

mycobacteria. Interestingly for M. tuberculosis, the modification of 5-chlorosalicylanilides (i.e.,  

4-chloro esters) resulted in a retained or an improved activity (e.g., four times for 2e), whereas 

benzenesulfonates derived from 4-chlorosalicylanilides exhibited mostly similar or lower 

antimycobacterial activity in vitro than parent salicylanilides. However, when compared to other esters 

of carboxylic acids, they can be considered as being only moderately potent in vitro. Salicylanilide 

esters with N-acetyl-L-phenylalanine [15] and carbamates [22] showed markedly lower MIC than 

benzenesulfonates, acetates [18] demonstrated a rather superior antimycobacterial effect. Esters with 

various N-benzyloxycarbonyl -amino acids [17] were more active against M. tuberculosis; the 

comparison of the MIC values towards M. kansasii appears being at similar level, however esters of 

some parent salicylanilides (modified in this study) as potential antimycobacterial agents were not 

published previously. 

3. Experimental  

3.1. General Methods 

All used reagents and solvents were purchased from commercial sources (Sigma-Aldrich, Penta) 

and used without a further purification. Reactions were monitored by thin layer chromatography, plates 

were coated with 0.2 mm of silica gel 60 F254 (Merck) and were visualized by UV irradiation (254 nm). 

Melting points were determined on the Melting Point machine B-540 (Büchi) apparatus using open 

capillaries and they are uncorrected. 

Infrared spectra (ATR) were recorded on FT-IR spectrometer Nicolet 6700 FT-IR in the range of 

400–4,000 cm−1. The NMR spectra were measured in CDCl3 at ambient temperature on a Varian 

VNMR S500 instrument (500 MHz for 1H and 125 MHz for 13C; Varian Comp. Palo Alto, CA, USA). 
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The chemical shifts  are given in ppm, related to tetramethylsilane used as an internal standard. The 

coupling constants (J) are reported in Hz. Elemental analysis (C, H, N) were performed on an 

automatic microanalyser CHNS-O CE instrument (FISONS EA 1110, Italy). The calculated logP 

values (ClogP), that are the logarithm of the partition coefficient for octan-1-ol/water, were determined 

using the program CS ChemOffice Ultra version 11.0 (CambridgeSoft, Cambridge, MA, USA). 

3.2. Synthesis of Salicylanilide Benzenesulfonates 

An equivalent of appropriate salicylanilide (0.001 mol) was suspended with stirring in 

dichloromethane (DCM, 10 mL) and then triethylamine (1.5 of equivalents; 0.0015 mol) was added in 

one portion. The mixture was led to stir for 5 minutes to allow complete dissolution of the 

salicylanilide. Then benzenesulfonyl chloride (1.2 of equivalent; 0.0012 mol) was added and the 

mixture was stirred at the room temperature for two hours. The reaction was monitored using TLC and 

a toluene/methanol 9:1 mixture as eluent. After this time, the solution was evaporated till dryness, 

ethyl-acetate was added and the suspension was let stay at +4 °C for approximately 30 min. Then the 

insoluble part was removed by filtration, the filtrate was collected, partly evaporated and then added  

n-hexane to start crystallization. It was performed for 24 hours at +4 °C and the filtrates were filtered off 

to give esters. If necessary, they were recrystallized from boiling ethyl-acetate to afford white crystals.  

4-Chloro-2-(3-chlorophenylcarbamoyl)phenyl benzenesulfonate (2a). Yield 95%; mp 151–153 °C. IR: 

3240, 1658, 1605, 1593, 1550, 1477, 1451, 1409, 1383 (SO2), 1323, 1202, 1177 (SO2), 1090, 1078, 

851, 839, 781, 754, 728, 683. 1H-NMR: δ 8.37 (1H, s, NH), 7.85 (1H, d, J = 2.6 Hz, H3), 7.73 (2H, d, 

J = 7.4 Hz, H2′′, H6′′), 7.67 (1H, t, J = 7.5 Hz, H4′′), 7.62 (1H, t, J = 1.9 Hz, H2′), 7.46–7.42 (3H, m, 

H5, H3′′, H5′′), 7.36 (1H, dd, J = 8.0 Hz, J = 1.8 Hz, H6′), 7.27 (1H, t, J = 8.0 Hz, H5′), 7.24 (1H, d,  

J = 8.7 Hz, H6), 7.14 (1H, m, H4′). 13C-NMR: δ 160.7, 144.2, 138.4, 135.2, 134.7, 133.9, 133.8, 

132.6, 131.6, 130.1, 130.0, 129.6, 128.4, 124.9, 124.8, 120.0, 117.9. Anal. Calcd. for C19H13Cl2NO4S 

(422.28): C, 54.04; H, 3.10; N, 3.32. Found: C, 53.82; H, 3.00; N, 3.21. ClogP 5.04. 

5-Chloro-2-(3-chlorophenylcarbamoyl)phenyl benzenesulfonate (2b). Yield 41%; mp 164–166.5 °C. 

IR: 3330, 1660, 1610, 1593, 1552, 1482, 1449, 1411, 1356 (SO2), 1325, 1199, 1171 (SO2), 1095, 1070, 

918, 873, 777, 751, 679, 658. 1H-NMR: δ 8.41 (1H, s, NH), 7.83 (1H, d, J = 8.4 Hz, H3), 7.75 (2H, dd, 

J = 7.5 Hz, J = 1.3 Hz, H2′′, H6′′), 7.67 (1H, t, J = 7.5 Hz, H4′′), 7.63 (1H, t, J = 1.8 Hz, H2′), 7.45 

(2H, t, J = 7.8 Hz, H3′′, H5′′), 7.39–7.34 (2H, m, H4, H6′), 7.31 (1H, J = 2.0 Hz, H6), 7.26 (1H, t,  

J = 8.1 Hz, H5′), 7.14 (1H, m, H4′). 13C-NMR: δ 161.1, 146.1, 138.6, 138.2, 135.3, 134.7, 133.9, 

132.7, 130.00, 129.6, 128.4, 128.2, 127.0, 124.8, 123.7, 120.0, 117.8. Anal. Calcd. for C19H13Cl2NO4S 

(422.28): C, 54.04; H, 3.10; N, 3.32. Found: C, 53.87; H, 3.33; N, 3.13. ClogP 5.04. 

4-Chloro-2-(4-chlorophenylcarbamoyl)phenyl benzenesulfonate (2c). Yield 70%; mp 156–157 °C. IR: 

3334, 1657, 1609, 1549, 1491, 1449, 1406, 1355 (SO2), 1317, 1202, 1174 (SO2), 1091, 828, 769, 749, 

666. 1H-NMR: δ 8.39 (1H, s, NH), 7.85 (1H, d, J = 2.7 Hz, H3), 7.72 (2H, d, J = 7.5 Hz, H2′′, H6′′), 

7.66 (1H, t, J = 7.5 Hz, H4′′), 7.49 (2H, d, J = 8.8 Hz, H2′, H6′), 7.45–7.42 (3H, m, H5, H3′′, H5′′), 

7.32 (2H, d, J = 8.8 Hz, H3′, H5′), 7.21 (1H, d, J = 8.7 Hz, H6). 13C-NMR: δ 160.6, 144.2, 135.9, 
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135.2, 133.8, 132.5, 131.6, 130.1, 129.9, 129.5, 129.1, 128.4, 124.8, 121.1. Anal. Calcd. for 

C19H13Cl2NO4S (422.28): C, 54.04; H, 3.10; N, 3.32. Found: C, 54.25; H, 3.36; N, 3.14. ClogP 5.04. 

5-Chloro-2-(4-chlorophenylcarbamoyl)phenyl benzenesulfonate (2d). Yield 97%; mp 152.5–155 °C. 

IR: 3339, 1658, 1608, 1596, 1548, 1490, 1450, 1403, 1355 (SO2), 1319, 1198, 1170 (SO2), 1086, 1069, 

917, 830, 768, 750, 683, 656. 1H-NMR: δ 8.41 (1H, s, NH), 7.84 (1H, d, J = 8.5 Hz, H3), 7.73 (2H, d, 

J = 7.6 Hz, H2′′, H6′′), 7.66 (1H, t, J = 7.5 Hz, H4′′), 7.50 (2H, d, J = 8.8 Hz, H2′, H6′), 7.44 (2H, t,  

J = 7.0 Hz, H3′′, H5′′), 7.38 (1H, dd, J = 8.4 Hz, J = 2.0, H4), 7.31 (2H, d, J = 8.9 Hz, H3′, H5′), 7.29 

(1H, J = 1.9 Hz, H6). 13C-NMR: 161.0, 146.1, 138.1, 136.1, 135.3, 133.8, 132.7, 129.7, 129.5, 129.1, 

128.4, 128.3, 127.1, 123.7, 121.1. Anal. Calcd. for C19H13Cl2NO4S (422.28): C, 54.04; H, 3.10; N, 

3.32. Found: C, 53.93; H, 2.88; N, 3.54. ClogP 5.04. 

4-Chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl benzenesulfonate (2e). Yield 72%; mp 158–160 °C. 

IR: 3333, 1661, 1608, 1596, 1542, 1475, 1450, 1401, 1353 (SO2), 1319, 1198, 1175 (SO2), 1138, 1089, 

850, 827, 779, 752, 670. 1H-NMR: δ 8.47 (1H, s, NH), 7.84 (1H, d, J = 2.6 Hz, H3), 7.75 (1H, d,  

J = 2.4 Hz, H2′), 7.74 (2H, d, J = 8.1 Hz, H2′′, H6′′), 7.69 (1H, t, J = 7.5 Hz, H4′′), 7.49–7.43 (3H, m, 

H5, H3′′, H5′′), 7.41–7.33 (2H, m, H5′, H6′), 7.18 (1H, d, J = 8.7 Hz, H6). 13C-NMR: δ 160.8, 144.2, 

136.8, 135.3, 133.9, 133.8, 132.8, 132.7, 131.6, 130.6, 129.9, 129.6, 128.4, 128.1, 124.8, 121.6, 119.1. 

Anal. Calcd. for C19H12Cl3NO4S (456.73): C, 49.96; H, 2.65; N, 3.07. Found: C, 50.24; H, 2.91; N, 

2.99. ClogP 5.60. 

5-Chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl benzenesulfonate (2f). Yield 63%; mp 164–

164.5 °C. IR: 3316, 3107, 1664, 1587, 1533, 1477, 1449, 1399, 1353 (SO2), 1312, 1200, 1171 (SO2), 

1127, 1094, 1067, 908, 815, 769, 757, 684, 662. 1H-NMR: δ 8.42 (1H, s, NH), 7.84 (1H, d,  

J = 8.4 Hz, H3), 7.76–7.73 (3H, m, H2′, H2′′, H6′′), 7.70 (1H, t, J = 8.1 Hz, H4′′), 7.48 (2H, t,  

J = 7.7 Hz, H3′′, H5′′), 7.41–7.36 (2H, m, H5′, H6′), 7.34 (1H, dd, J = 8.5 Hz, J = 2.0, H4), 7.26 (1H,  

J = 2.3 Hz, H6). 13C-NMR: δ 161.2, 146.1, 138.5, 136.9, 135.4, 133.9, 132.9, 132.8, 130.6, 129.7, 

128.4, 128.3, 128.0, 126.8, 123.7, 121.6, 119.1. Anal. Calcd. for C19H12Cl3NO4S (456.73): C, 49.96; 

H, 2.65; N, 3.07. Found: C, 49.83; H, 2.87; N, 3.24. ClogP 5.60. 

2-(3-Bromophenylcarbamoyl)-4-chlorophenyl benzenesulfonate (2g). Yield 88%; mp 141.5–143.5 °C. 

IR: 3239, 3078, 1659, 1605, 1587, 1548, 1477, 1450, 1406, 1382 (SO2), 1322, 1201, 1177 (SO2), 1089, 

1071, 871, 848, 839, 779, 754, 728, 682. 1H-NMR: δ 8.34 (1H, s, NH), 7.85 (1H, d, J = 2.8 Hz, H3), 

7.76–7.72 (3H, m, H2′, H2′′, H6′′), 7.67 (1H, t, J = 7.5 Hz, H4′′), 7.47-7.40 (4H, m, H5, H6′, H3′′, 

H5′′), 7.31–7.25 (2H, m, H4′, H5′), 7.24 (1H, d, J = 8.9 Hz, H6). 13C-NMR: δ 160.7, 144.2, 138.6, 

135.2, 133.9, 133.8, 132.6, 131.6, 130.3, 130.0, 129.6, 128.4, 127.9, 124.9, 122.8, 122.7, 118.3. Anal. 

Calcd. for C19H13BrClNO4S (466.73): C, 48.89; H, 2.81; N, 3.00. Found: C, 48.99; H, 2.58; N, 2.76. 

ClogP 5.31. 

2-(3-Bromophenylcarbamoyl)-5-chlorophenyl benzenesulfonate (2h). Yield 79%; mp 169.5–172 °C. 

IR: 3330, 1660, 1609, 1588, 1550, 1478, 1449, 1407, 1355 (SO2), 1324, 1198, 1170 (SO2), 1093, 1071, 

916, 862, 776, 767, 750, 679, 662. 1H-NMR: δ 8.38 (1H, bs, NH), 7.84 (1H, d, J = 9.0 Hz, H3),  

7.77–7.73 (3H, m, H2′, H2′′, H6′′), 7.67 (1H, t, J = 8.4 Hz, H4′′), 7.48-7.23 (7H, m, H4, H6, H4′, H5′, 
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H6′, H3′′, H5′′). 13C-NMR: δ 161.1, 146.1, 138.7, 138.2, 135.3, 133.9, 132.7, 130.3, 129.6, 128.4, 

128.3, 127.7, 127.0, 123.8, 122.8, 122.6, 118.3. Anal. Calcd. for C19H13BrClNO4S (466.73):  

C, 48.89; H, 2.81; N, 3.00. Found: C, 49.12; H, 2.71; N, 3.15. ClogP 5.31. 

2-(4-Bromophenylcarbamoyl)-4-chlorophenyl benzenesulfonate (2i). Yield 50%; mp 160-160.5 °C. IR: 

3341, 1660, 1607, 1591, 1547, 1487, 1449, 1400, 1354 (SO2), 1317, 1197, 1169 (SO2), 1093, 1073, 

916, 828, 767, 750, 683, 654. 1H-NMR: δ 8.40 (1H, s, NH), 7.85 (1H, d, J = 2.7 Hz, H3), 7.72 (2H, d, 

J = 7.5 Hz, H2′′, H6′′), 7.66 (1H, t, J = 7.5 Hz, H4′′), 7.48–7.41 (6H, m, H2′, H3′, H5′, H6′, H3′′, H5′′) 

7.37 (1h, dd, J = 6.6 Hz, J = 1.9 Hz, H4), 7.22 (1H, d, J = 8.8 Hz, H6). 13C-NMR: δ 160.7, 144.2, 

136.6, 135.1, 133.9, 133.8, 132.6, 131.6, 130.2, 129.6, 128.4, 124.8, 123.6, 121.4, 117.4. Anal. Calcd. for 

C19H13BrClNO4S (466.73): C, 48.89; H, 2.81; N, 3.00. Found: C, 48.63; H, 2.92; N, 3.27. ClogP 5.31. 

2-(4-Bromophenylcarbamoyl)-5-chlorophenyl benzenesulfonate (2j). Yield 96%; mp 155.5-157.5 °C. 

IR: 3341, 1660, 1607, 1591, 1547, 1487, 1449, 1400, 1354 (SO2), 1317, 1198, 1169 (SO2), 1093, 1070, 

916, 828, 767, 750, 683, 654. 1H-NMR: δ 8.38 (1H, s, NH), 7.84 (1H, d, J = 8.4 Hz, H3), 7.73 (2H, dd, 

J = 8.5 Hz, J = 1.2 Hz, H2′′, H6′′), 7.67 (1H, tt, J = 7.2 Hz, J = 1.2 Hz, H4′′), 7.47-7.41 (6H, m, H2′, 

H3′, H5′, H6′, H3′′, H5′′), 7.38 (1H, dd, J = 8.4 Hz, J = 2.0, H4), 7.30 (1H, J = 2.0 Hz, H6). 13C-NMR: 

δ 161.0, 146.1, 138.1, 136.6, 135.3, 133.8, 132.7, 132.0, 129.6, 128.4, 128.2, 127.1, 123.7, 121.4, 

117.4. Anal. Calcd. for C19H13BrClNO4S (466.73): C, 48.89; H, 2.81; N, 3.00. Found: C, 48.76; H, 

2.60; N, 2.78. ClogP 5.31. 

4-Chloro-2-(3-fluorophenylcarbamoyl)phenyl benzenesulfonate (2k). Yield 65%; mp 136–138.5 °C. 

IR: 3330, 1660, 1613, 1555, 1480, 1447, 1356 (SO2), 1293, 1266, 1201, 1177 (SO2), 1090, 1075, 844, 

782, 746, 681. 1H-NMR: δ 8.42 (1H, s, NH), 7.85 (1H, d, J = 2.7 Hz, H3), 7.72 (2H, dd, J = 8.5 Hz,  

J = 1.1 Hz, H2′′, H6′′), 7.66 (1H, dt, J = 7.5 Hz, J = 1.1 Hz, H4′′), 7.51 (1H, dt, J = 8.1 Hz, J = 2.2 Hz, 

H5), 7.47-7.41 (3H, m, H2′, H3′′, H5′′), 7.30 (1H, dd, J = 8.1 Hz, J = 1.7 Hz, H6′), 7.25 (1H, t,  

J = 7.8 Hz, H5′), 7.16 (1H, d, J = 8.1 Hz, H6), 6.97 (1H, td, J = 8.3 Hz, J = 2.7 Hz, H4′). 13C-NMR: δ 

163.9 and 161.9 (J = 245.3 Hz), 160.7, 144.2, 138.9 and 138.8 (J = 11.1 Hz), 135.2, 133.8, 132.6, 

131.6, 130.2 and 130.1 (J = 9.4 Hz), 130.1, 129.5, 128.4, 128.2, 124.8, 115.2 and 115.1 (J = 3.0 Hz), 

111.7 and 111.5 (J = 21.5 Hz), 107.5 and 107.3 (J = 26.8 Hz). Anal. Calcd. for C19H13ClFNO4S 

(405.83): C, 56.23; H, 3.23; N, 3.45. Found: C, 56.51; H, 3.01; N, 3.68. ClogP 4.64. 

5-Chloro-2-(3-fluorophenylcarbamoyl)phenyl benzenesulfonate (2l). Yield 95%; mp 134.5–137 °C. 

IR: 3332, 1661, 1613, 1599, 1553, 1491, 1448, 1426, 1356 (SO2), 1328, 1199, 1174 (SO2), 1149, 1093, 

1066, 914, 862, 776, 748, 681, 665. 1H-NMR: δ 8.45 (1H, s, NH), 7.82 (1H, d, J = 8.4 Hz, H3), 7.74 

(2H, dd, J = 8.5 Hz, J = 1.7 Hz, H2′′, H6′′), 7.67 (1H, dt, J = 8.6 Hz, J = 1.7 Hz, H4′′), 7.49–7.41 (3H, 

m, H2′, H3′′, H5′′), 7.37 (1H, dd, J = 8.5 Hz, J = 2.0 Hz, H4), 7.31–7.26 (2H, m, H6, H6′), 7.25 (1H, t, 

J = 8.0 Hz, H5′), 6.86 (1H, td, J = 8.2 Hz, J = 2.6 Hz, H4′). 13C-NMR: δ 163.9 and 161.9  

(J = 245.0 Hz), 161.1, 146.1, 139.0 and 138.9 (J = 10.8 Hz), 138.2, 135.2, 133.8, 132.6, 130.2 and 

130.1 (J = 9.2 Hz), 129.5, 128.4, 128.2, 127.1, 123.7, 115.1 and 115.1 (J = 2.9 Hz), 111.5 and 111.4  

(J = 21.4 Hz), 107.5 and 107.3 (J = 26.6 Hz). Anal. Calcd. for C19H13ClFNO4S (405.83): C, 56.23; H, 

3.23; N, 3.45. Found: C, 55.97; H, 3.45; N, 3.64. ClogP 4.64. 
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4-Chloro-2-(4-fluorophenylcarbamoyl)phenyl benzenesulfonate (2m). Yield 82%; mp 111–113.5 °C. 

IR: 3255, 3079, 1653, 1619, 1562, 1508, 1475, 1451, 1411, 1382 (SO2), 1321, 1213, 1202, 1177 (SO2), 

1091, 849, 834, 793, 770, 729, 710, 683. 1H-NMR: δ 8.37 (1H, s, NH), 7.85 (1H, d, J = 2.6 Hz, H3), 

7.72 (2H, dd, J = 8.5 Hz, J = 1.1 Hz, H2′′, H6′′), 7.65 (1H, t, J = 7.5 Hz, H4′′), 7.52–7.49 (2H, m, H2′, 

H6′), 7.45–7.41 (3H, m, H5, H3′′, H5′′), 7.19 (1H, d, J = 8.8 Hz, H6), 7.06–7.02 (2H, m, H3′, H5′). 
13C-NMR: δ 160.6, 160.5 and 158.6 (J = 242.8 Hz), 144.2, 135.1, 134.0, 133.8, 133.4 and 133.4 (J = 

2.8 Hz), 132.4, 131.5, 130.3, 129.5, 128.4, 124.7, 121.7 and 121.7 (J = 7.9 Hz), 115.8 and 115.6 (J = 

22.5 Hz). Anal. Calcd. for C19H13ClFNO4S (405.83): C, 56.23; H, 3.23; N, 3.45. Found: C, 56.01; H, 

3.04; N, 3.69. ClogP 4.64. 

5-Chloro-2-(4-fluorophenylcarbamoyl)phenyl benzenesulfonate (2n). Yield 91%; mp 122.5–124 °C. 

IR: 3331, 1658, 1616, 1597, 1556, 1506, 1479, 1449, 1410, 1354 (SO2), 1328, 1201, 1177 (SO2), 1095, 

1068, 916, 887, 836, 783, 771, 755, 683. 1H-NMR: δ 8.38 (1H, s, NH), 7.84 (1H, d, J = 9.0 Hz, H3), 

7.74 (2H, d, J = 7.4 Hz, H2′′, H6′′), 7.66 (1H, t, J = 7.5 Hz, H4′′), 7.52–7.49 (2H, m, H2′, H6′), 7.44 

(2H, t, J = 7.9 Hz, H3′′, H5′′), 7.37 (1H, dd, J = 8.4 Hz, J = 1.9, H4), 7.27 (1H, J = 1.9 Hz, H6), 

7.06-7.02 (2H, m, H3′, H5′). 13C-NMR: δ 161.0, 159.4 and 157.5 (J = 240.5 Hz), 146.1, 138.0, 135.2, 

134.8, 133.5 and 133.5 (J = 2.8 Hz), 132.6, 129.5, 128.4, 128.2, 127.3, 123.6, 121.7 and 121.6  

(J = 7.8 Hz), 115.8 and 115.6 (J = 22.6 Hz). Anal. Calcd. for C19H13ClFNO4S (405.83): C, 56.23; H, 

3.23; N, 3.45. Found: C, 56.47; H, 3.40; N, 3.32. ClogP 4.64. 

4-Chloro-2-(3-(trifluoromethyl)phenylcarbamoyl)phenyl benzenesulfonate (2o). Yield 51%; mp 118.5–

119.5 °C. IR: 3335, 1659, 1615, 1561, 1493, 1471, 1450, 1397, 1353 (SO2), 1336, 1314, 1200, 1168 

(SO2), 1111, 1092, 1072, 890, 849, 800, 782, 747, 690, 657. 1H-NMR: δ 8.46 (1H, s, NH), 7.89 (1H, d, 

J = 2.7 Hz, H3), 7.84 (1H, s, H2′), 7.75 (2H, d, J = 8.7 Hz, J = 1.3 Hz, H2′′, H6′′), 7.71–7.63 (2H, m, 

H6′, H4′′), 7.52–7.41 (5H, m, H5, H4′, H5′, H3′′, H5′′), 7.26 (1H, d, J = 8.7 Hz, H6). 13C-NMR: δ 

160.9, 144.3, 137.9, 135.3, 134.0, 133.9, 132.7, 131.6, 131.3, 129.9, 129.7, 129.6, 128.4, 124.4, 122.9, 

121.9, 121.4 (q, J = 3.8 Hz), 116.7 (q, J = 3.9 Hz). Anal. Calcd. for C20H13ClF3NO4S (455.83): C, 

52.70; H, 2.87; N, 3.07. Found: C, 53.02; H, 3.05; N, 2.87. ClogP 5.40. 

5-Chloro-2-(3-(trifluoromethyl)phenylcarbamoyl)phenyl benzenesulfonate (2p). Yield 42%; mp 175–

176 °C. IR: 3330, 1661, 1615, 1597, 1573, 1562, 1493, 1450, 1397, 1354 (SO2), 1337, 1316, 1198, 

1170 (SO2), 1116, 1096, 1072, 920, 873, 796, 769, 751, 698, 658. 1H-NMR: δ 8.45 (1H, s, NH), 7.89 

(1H, d, J = 8.5 Hz, H3), 7.85 (1H, s, H2′), 7.76 (2H, d, J = 8.5 Hz, J = 1.1 Hz, H2′′, H6′′), 7.67 (1H, 

dt, J = 7.5 Hz, J = 1.2 Hz, H4′′), 7.51–7.39 (6H, m, H5, H4′, H5′, H6′, H3′′, H5′′), 7.33 (1H, d,  

J = 2.0 Hz, H6). 13C-NMR: δ 161.3, 146.1, 138.4, 138.0, 135.3, 134.0, 132.8, 131.7, 131.3, 129.8, 

129.6, 128.4, 126.8, 125.6, 123.8, 122.9, 121.4 (q, J = 4.0 Hz), 116.7 (q, J = 3.7 Hz). Anal. Calcd. for 

C20H13ClF3NO4S (455.83): C, 52.70; H, 2.87; N, 3.07. Found: C, 53.02; H, 3.05; N, 2.87. ClogP 5.40. 

4-Chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)phenyl benzenesulfonate (2q). Yield 81%; mp 

175.5–177 °C. IR: 3335, 1663, 1609, 1552, 1472, 1450, 1414, 1355 (SO2), 1321, 1200, 1171 (SO2), 

1100, 1090, 1066, 839, 773, 747, 669. 1H-NMR: δ 8.55 (1H, s, NH), 7.88 (1H, d, J = 2.7 Hz, H3), 7.73 

(2H, dd, J = 8.5 Hz, J = 1.3 Hz, H2′′, H6′′), 7.69-7.61 (5H, m, H2′, H3′, H5′, H6′, H4′′), 7.48–7.42 

(3H, m, H5, H3′′, H5′′), 7.21 (1H, d, J = 8.7 Hz, H6). 13C-NMR: δ 160.9, 144.3, 140.4, 135.3, 134.0, 
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133.9, 132.7, 131.7, 129.9, 129.6, 128.4, 126.5 (q, J = 32.8 Hz), 126.4 (q, J = 3.8 Hz), 124.8, 124.0  

(q, J = 271.6 Hz), 119.6. Anal. Calcd. for C20H13ClF3NO4S (455.83): C, 52.70; H, 2.87; N, 3.07. 

Found: C, 52.54; H, 2.99; N, 3.23. ClogP 5.40. 

5-Chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)phenyl benzenesulfonate (2r). Yield 96%; mp  

164–166.5 °C. IR: 3336, 1665, 1607, 1552, 1478, 1449, 1412, 1354 (SO2), 1322, 1198, 1168 (SO2), 

1106, 1065, 917, 846, 769, 751, 683, 659. 1H-NMR: δ 8.60 (1H, s, NH), 7.84 (1H, d, J = 8.7 Hz, H3), 

7.74 (2H, dd, J = 8.5 Hz, J = 1.1 Hz, H2′′, H6′′), 7.69–7.59 (5H, m, H2′, H3′, H5′, H6′, H4′′), 7.44 

(2H, t, J = 8.0 Hz, H3′′, H5′′), 7.39 (1H, dd, J = 8.4 Hz, J = 1.9, H4), 7.27 (1H, J = 1.9 Hz, H6).  
13C- NMR: δ 161.4, 146.1, 140.5, 138.4, 135.4, 133.8, 132.7, 129.6, 128.4, 128.3, 127.0, 126.5 (q,  

J = 32.8 Hz), 126.3 (q, J = 3.9 Hz), 124.0 (q, J = 271.6 Hz), 123.7, 119.6. Anal. Calcd. for 

C20H13ClF3NO4S (455.83): C, 52.70; H, 2.87; N, 3.07. Found: C, 52.88; H, 3.11; N, 3.25. ClogP 5.40. 

3.3. Antimycobacterial Susceptibility Testing 

All the prepared compounds were tested for their in vitro antimycobacterial activity in the 

Laboratory for Mycobacterial Diagnostics and Tuberculosis, Ostrava, against M. tuberculosis 331/88 

(H37Rv) (dilution of the strain was 10−3) and moreover for some non-tuberculous INH-resistant strains 

M. avium (330/88, resistant to INH, rifampicin, ofloxacin, and ethambutol; dilution 10−5) and M. 

kansasii (235/80, dilution 10−4). One strain was clinically isolated M. kansasii 6509/96 (dilution 10−5); 

other strains were obtained from the Czech National Collection of Type Cultures (CNCTC). The 

micromethod for the determination of the minimum inhibitory concentration (MIC) was used. 

Antimycobacterial activities were determined in the Šula semisynthetic medium [23] (SEVAC, the 

Czech Republic). The tested compounds were added to the medium as solutions in dimethyl sulfoxide 

(DMSO). The following concentrations were used: 1000, 500, 250, 125, 62, 32, 16, 8, 4, 2, 1, 0.5, 

0.25, and 0.125 µmol/L. The MICs were determined after incubation at 37 °C for 14 and 21 days, for 

M. kansasii additionally for 7 days. MIC (µmol/L) was the lowest concentration at which the complete 

inhibition of mycobacterial growth occurred. As the reference compound were chosen the first-line 

antituberculosis drugs isoniazid (INH), ethambutol (EMB) and the second-line drug para-aminosalicylic 

acid (PAS) sharing a partial structure similarity with presented derivatives. 

4. Conclusions 

In sum, we have designed and synthesized eighteen new salicylanilide benzenesulfonates via 

treatment of the triethylammonium salts of salicylanilides with benzenesulfonyl chloride. They were 

characterised and evaluated as potential antimycobacterial agents. With one exception, all derivatives 

affected the growth of M. tuberculosis at 1–16 µmol/L as well as atypical strains, albeit at higher 

concentrations. Salicylanilide benzenesulfonates fulfilled the expectation about their antimycobacterial 

activity, although, in general, at higher concentrations than salicylanilide esters with carboxylic acids. 
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