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Abstract: The n-butyramido, isobutyramido, benzamido, and furancarboxamido functions 
profoundly modulate the electronics of the stilbene olefinic and NH groups and the 
corresponding radical cations in ways that influence the efficiency of the cyclization due 
presumably to conformational and stereoelectronic factors. For example, isobutyramido- 
stilbene undergoes FeCl3 promoted cyclization to produce only indoline, while  
n-butyramidostilbene, under the same conditions, produces both indoline and bisindoline. 

Keywords: stilbene; indoline; bisindoline; FeCl3 
 

1. Introduction 

A large number of biologically active compounds incorporate indole and indoline moieties, 
particularly those that possess C-2 phenyl or heteroaryl moieties [1]. A vast array of creative 
approaches to the indoline ring system have been reported recently, for example the 1,6-H transfer 
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followed by the 5-exo-trigonal ring closure tactic that exploits o-nitrobenzaldehyde [2]; the 5-endo-
trigonal ring closure of N-(o-bromophenyl)ene carbamates [3]; intramolecular carbolithiation [4]; 
reduction of indoles [5] and the thermal reaction of N-allylaniline and various alkoxyamines [6]. 
Creative bisindoline construction is also increasing in importance as recent developments clearly 
indicate. For example, the highly efficient successive amide transfer approach leading to C2 symmetric 
bisindolines [7]; diaza-Cope rearrangement resulting in C3-C3’ bisisoindolines [8] and the 
[CoCl(PPh3)3] mediated indolyl bromide homolyisis/dimerisation [9]. 

In 2004, we described the then unprecedented FeCl3-promoted acetamidostilbene radical cation 1* 
cascade culminating in the indoline 3 and bisindoline 4a [10]. A subsequent X-ray analysis of the 
bisindoline has shown that the correct structure should be the C2 symmetric dimer 4b (Scheme 1) [11]. 
Four years later, we published the unexpected discovery that benzophenone (2) was capable of 
producing ca. a doubling of the yield of the indoline with concomittant suppression of bisindoline 4 
formation (Scheme 1) [12]. The benzophenone was almost recovered always quantitatively. We 
proposed a Fe3+ benzophenone ketyl radical/stilbene radical cation catalytic cycle in that paper. 
Enhancement of indoline formation by an “internal agent” or via structural modification of the stilbene 
starting material was not envisaged. 

Scheme 1. Oxidative coupling of 3,4-dimethoxy-acetamido stilbene (1). 

 
 
The transformation shown in Scheme 1 proceeds via the radical cation (1*) followed by cyclization 

through the amidic NH to yield the indolyl radical and hence the products 3 and 4. One question  
that we have not addressed is the relationship between the amide structure and the efficiency of  
the cyclization. 
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An n-butyramide (in place of the acetamide in Scheme 1) would be expected, on steric grounds, to 
engage the C(7) benzylic cation with greater difficulty than stilbene 1. Cyclization (via FeCl3) in the 
case of the isobutyramidostilbene would constitute an even greater steric impediment to indoline 
formation. Would the furan carboxamido and benzamido moieties undergo cyclization with 
comparable efficiency or are there delicate conformational factors at work here? 

We reported last year full spectroscopic details of several novel stilbenes that were prepared by the 
Heck procedure [13]. The amido NH in stilbene 6 is more shielded than 5 (Table 1), which suggests 
that the amide in 6 should be somewhat more nucleophilic (under neutral or slightly acidic conditions).  

On the other hand, the NMR spectra also reveal that the furancarboxamido stilbene 11 and the 
benzamidostilbene 7 possess even more deshielded NHs compared to stilbenes 6 and 5. It could be 
argued, all other things being equal, that this significant withdrawal of electron density away from the 
amide NH could reduce the nucleophilicity of the amide group and thus adversely affect cyclization of 
the radical cation, in contrast to the cyclization of 5 or 6. It is significant that Crich’s heterocyclization 
of a non-oxidatively derived non-stilbene radical cation fails in the case of A but is successful in the 
case of B (see Scheme 2). The different cyclization outcomes for A and B appear to be due to the 
severely reduced nucleophilicity of the benzylaniline in A compared to B. 

Scheme 2. Examples of Crich’s alkene radical cation cyclizations [14]. 
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Another interesting observation relates to the olefinic multiplets. For the furancarboxamido 
stilbenes 9-12, the C(8)-H proton is more deshielded than the C(7)-H proton, the one noticeable 
exception being stilbene 9, where the C(7)-H is significantly more deshielded. This might mean that 
exposure of stilbene 9 to FeCl3 could produce a radical cation in which the positive charge was now at 
C(8) rather than C(7) (in contrast to the usual pattern). The chemical shifts discussed above may be 
depicted as shown in Table 1. 
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Table 1. 1H-NMR [400MHz, δH (J, Hz)] of stilbenes 5-12 in CDCl3. 

Entry Stilbene C(7)-H (J, Hz) C(8)-H (J, Hz) N-H (J, Hz) 

1 

OCH3
OCH3

N
H

O

7

8

 
5 

6.85 6.95 7.56 

2 

 
6 

6.90 6.97 7.31 

3 

 
7 

6.93 7.04 8.03 

4 

 
8 

6.91 6.97 7.21 

5 
N
H

O

7

8
O

H3CO

 
9 

7.40 7.29 8.25 

6 

 
10 

7.02 7.22 8.17 

7 

 
11 

6.96 7.07 8.19 
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Table 1. Cont. 

8 

 
12 

7.00 7.09 8.17 

In order to unveil structural (electronic) and possible conformational influences on our radical 
cation cascade cyclization/dimerization, experiments were performed as described in the next section. 
We included stilbene 9 in our study to investigate the possibility of mesomeric stabilization by the 
ortho-methoxy substituent of the C(7) carbenium ion with the unpaired electron at C(8). Stilbene 10 
was included to confirm an observation first reported in 2009 [15] where a meta-methoxy substituent 
directs radical cation formation in a way that is opposite to that observed with a para-methoxy 
substituent. We included stilbene 12 to examine the implications of having 4-methoxy substituent 
(rather than 3,4-dimethoxy substitution) on the formation of the radical cation. 

2. Results and Discussion  

2.1. FeCl3 Promoted Syntheses of Indolines 

Eight carboxamidostilbenes were constructed by the Heck protocol [13]. These stilbenes were then 
subjected to our FeCl3 reaction conditions as shown below (Table 2). The resulting observations 
demand a more complex explanation than we had anticipated based on previous experience [10].  

Table 2. FeCl3 promoted syntheses of indolines and bisindolines. 

 

Entry Stilbene Indoline (Yield) Bisindoline (Yield) 

1 

OCH3
OCH3

N
H

O

7

8

 
5 

 
14a (63%) 14b (6%) 

2 

 
6 

N
O

OCH3

OCH3

 
15 (29%) 

- 
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Table 2. Cont. 

3 

 
7 

 

16 (40%) 

- 

4 

 
8 

 

17 (21%) 

- 

5 

 
9 

 
18 (11%) 

- 

6 

 
10 

 
19 (38%) 

- 

7 

 
11 

 

20a (46%) 
 

20b (10%) 

8 

 
12 

 

21a (21%) 
 

21b (12%) 

 

Oxidation of the stilbene 5 with FeCl3 gave rise to indoline 14a (63%) and bisindoline 14b (6%) (in 
the absence of benzophenone) via radical cation 13a (in contrast to the transformation in Scheme 1) an 
unexpected result. We had previously reported that the 10-acetamido-4-methoxystilbene on exposure 
to FeCl3 produced the bisindoline in 24% yield and the indoline in 16% yield [15]. This “4-methoxy 
effect” is also seen in stilbene 12 (Entry 8, Table 2) where the proportion of bisindoline is significantly 
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increased. In the present study, replacement of butyramide (5) with isobutyrylamide (6) resulted in a 
lowering of the yield of indoline 15 to 29%. Bisindoline formation was not observed, a result that is all 
the more remarkable when compared to stilbene 12 (Entry 8, Table 2). 

2.2. Effect of Amide Structure on the Radical Cyclization Leading to Indoline Formation 

The very different behaviour of 5 and 6 on exposure to FeCl3 is readily explained by the early 
transition state pictures I and II (Scheme 3) where the increase steric bulk of the isobutyrylamide 
renders cyclization more difficult, hence the lower yield of 15 (29%). A similar explanation would 
account for the low yield of indoline 17 from stilbene 8. 

Scheme 3. Early transition state pictures for radical cyclization leading to indoline formation. 

 

With respect to stilbenes 7 and 11, cyclization proceeding via radical cation 13a leading to 16 and 
20a respectively, is slightly more favoured for stilbene 11 (furancarboxamide) than for stilbene 7 
(benzamide) on stereoelectronic grounds [16], as the transition state pictures III and IV demonstrate 
(Scheme 3). We believe that the coplanar orientation of furan and carbonyl groups means that 
cyclization experiences less resistance in the case of 11. This coplanarity seems less likely for stilbene 
7 (see III and IV, Scheme 3). The stereoelectronic factor also helps to explain the fact that bisindoline 
formation (20b and 21b) is observed with stilbenes 11 and 12 but not with stilbene 7 (see discussion in 
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Section 2.3 and Scheme 10). In the case of stilbene 9, cyclization is made more difficult (and hence the 
significantly reduced yield) because it must proceed via radical cation 13b. It is noteworthy that the 
C(8) carbon of 9, in this special case, is more shielded than the C(7) (compared to the other 
furancarboxamidostilbenes) because of the directional nature and electron withdrawing tendency of the 
2-methoxy lone electron pairs [13]. In the case of stilbene 10, radical cation 13b is again the crucial 
intermediate (see Ref. [10] for the similar case of 10-acetamido-3-methoxystilbene) [15]. It may be 
worth emphasising that the FeCl3 oxidation of stilbenes 9 and 10 proceed via a different radical cations 
(analogous to 13b) whereas stilbene 12 proceeds via radical cation 13a (see Table 2). This is because 
stilbene 12 on oxidation produces a radical cation in which the positive charge is at C(7) as a result of 
mesomeric stabilization from a para-methoxy substituent. By contrast in stilbene 10 where the 
methoxy group is meta, the position of the positive charge changes to C(8) because of superior 
mesomeric stabilization which comes from the amide nitrogen lone pair in the ortho position (i.e., a  
C-10 amido group). In the case of stilbene 9 where mesomeric stabilization of a C(7) carbocation (in 
the radical cation) might have been expected, we observed a unique ortho-methoxy lone pair effect 
which dramatically reverses the position of radical and positive charge. The positive charge is now at 
C(8) rather than at C(7). This electronic factor is seen even in the NMR of the stilbenes (see Table 1). 
Notice that remarkably in stilbene 9 the C(7) proton is substantially more deshielded than C(8). The 
phenomena described above underpin the mechanistic interpretation discussed in Schemes 11 to 13. It 
is significant that in contrast to our first report (Scheme 1) where the bisindoline 4A was presented in 
the meso arrangement, in this report all bisindolines are designated as racemic. The reason for this is 
explained in Section 2.3. 

2.3. Dimerization Pathways and PM6 Calculations for the Minor Products 

The basis for the observed stereoselectivity for each of the bisindoline minor products (14b, 20b 
and 21b) is explained below. There are four diastereomeric possibilities. The PM6 calculations 
(MOPAC2009) are provided in Tables 3-5. 

Table 3. PM6 calculation for 14b. 

Stereoisomer Symmetry
element 

Heat of Formation
(kcal/mol) H2-H3 H2*-H3* H3-H3* 

14b-A 

C2 axis −154.22 19.15 346.41 156.58 

 
14b-B 

C2 axis −162.78 250.79 250.79 171.63 



Molecules 2011, 16                            
 

 

7275

Table 3. Cont. 

 
14b-C 

Plane 
(Meso) −163.46 240.71 111.62 298.43 

 
14b-D 

Plane 
(Meso) −133.96 310.52 324.60 24.01 

Table 4. PM6 calculation for 20b. 

Stereoisomer Symmetry
element 

Heat of Formation
(kcal/mol) H2-H3 H2*-H3* H3-H3* 

 
20b-A 

C2 axis −116.85 348.44 348.44 155.06 

 
20b-B 

C2 axis −123.76 241.19 241.17 120.43 

 
20b-C 

Plane 
(Meso) −126.41 −111.73 119.11 61.86 

 
20b-D 

Plane 
(Meso) −115.76 352.90 26.21 65.36 
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Table 5. PM6 calculation for 21b. 

Stereoisomer Symmetry 
element 

Heat of Formation
(kcal/mol) H2-H3 H2*-H3* H3-H3* 

 
21b-A 

C2 axis −48.59 340.27 340.27 115.07 

 
21b-B 

C2 axis −55.04 247.75 247.23 172.63 

 
21b-C 

Plane 
(Meso) −56.28 240.70 111.61 298.43 

 
21b-D 

Plane 
(Meso) −43.83 12.48 26.33 69.76 

Scheme 4. Dimerization pathways leading the stereoisomers (±)14b-A, (±)20b-A and (±)21b-A. 
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Scheme 5. Dimerization pathways leading the stereoisomers (±)14b-B, (±)20b-B and (±)21b-B. 

 

Scheme 6. Dimerization pathways leading the stereoisomers 14b-C, 20b-C and 21b-C. 
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Scheme 7. Dimerization pathways leading the stereoisomers 14b-D, 20b-D and 21b-D. 
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These calculations (the thermodynamic argument) lead to the same conclusions as the mechanistic 
analysis of dimerization pathways for the various indolyl radicals (the kinetic argument) see Scheme 4 
to Scheme 7. 

Scheme 8. Another perspective on dimerization pathways leading to the stereoisomer  
14b-C, 20b-C and 21b-C. 

 

The arguments that distinguish (±)14b-B and meso 14b-C (Table 3) are more finely balanced as 
these two diastereoisomers are closer in energy (-162.78 and -163.46 kcal/mol). This closeness is also 
reflected in the fact that in examining dimerization pathways for the indolyl radicals (Schemes 5 and 
6), dimerization appears to be equally feasible in both cases. In comparing the early transition state 
pictures in Schemes 8 and 9, the approach of indolyl radicals in Scheme 9 would have the effect of 
keeping the “phenyl” region of the indoline rings as far apart as posible, as well as possibly 
minimizing interactions between the amide moieties (see Scheme 8). This would appear to lead to the 
conclusion that the correct stereostructures are (±)14b-B, (±)20b-B and (±)21b-B respectively (see 
Scheme 9 and Table 2). 

Scheme 9. Another perspective on dimerization pathways leading to the stereoisomer 
(±)14b-B, (±)20b-B and (±)21b-B. 
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One additional point of some importance relates to the PM6 calculations. Although (±)14b-B is 
slightly higher in energy, the dihedral angles in this case are consistent with the symmetrical nature of 
the molecule (Table 3) and is therefore to be preferred over the meso form 14b-C (Scheme 8). These 
arguments fully justify the exploitation of PM6 calculations for the elucidation of stereochemical 
problems inherent in reactions of this type. 

Exactly analogous arguments can be used to justify the presentation of bisindolines 20b and 21b 
which carry furancarboxamide moieties, as their racemic modifications (Tables 2, 4 and 5). For 20b-A, 
20b-D, 21b-A and 21b-D are readily ruled out on energetic grounds and this thermodynamic argument 
is again amply vindicated by the dimerization pathways for the indolyl radicals. Consideration of 
indolyl radical dimerization pathways and thermodynamic arguments favour formation of (±)20b-B 
and 20b-C (Schemes 5 and 6) and (±)21b-B and 21b-C (Schemes 5 and 6).  

Scheme 10. Effect of amide structure on the dimerization of indolyl radical 22-26 leading 
to bisindoline formation. 
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However careful scrutiny of the dimerization pathways as previously described (Schemes 9 and 10) 
inevitably leads to the conclusion that the correct stereostructures are (±)20b-B and (±)21b-B. These 
conclusion are supported by the X-ray data for the bisindoline depicted in Scheme 1 and confirm that 
the bisindoline has the structure (±)4b (and not 4a as originally reported by us). 

With respect to bisindoline formation, it would seem that in the presumably early transition states 
involving the corresponding indolyl radicals 22 and 23 (Scheme 10), the methyl group of the isobutryl 
moiety in 22 is able to block dimerization so that no bisindoline is obtained. By contrast indolyl radical 
23 by virtue of possessing an n-butyrylamido group has only the much smaller H in that position and 
dimerization is not impeded.  

Scheme 11. The ortho-methoxy effect. 

 

In the case of the 9 (Scheme 11), the attempted dimerization fails in spite of the fact that one would 
have expected a radical cation intermediate analogous to 13a (Table 2). The reduced nucleophilicity of 
this NH and the reduced electron density in the olefinic bond may well account for the low yield of the 
indoline 18 (Scheme 10) (see our previous discussion on NMR spectroscopic characteristics for the 
eight stilbenes) [13]. 

Scheme 12. Mechanistic interpretation I. 
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It is interesting to note that in 9 the C7-H (δ 7.40) is more deshielded than the C8-H (δ 7.29) in 
contrast to the other furan carboxamidostilbenes 10, 11 and 12. This would have the effect of reversing 
the position of the radical and cation (formed after oxidation) where the removal of an electron from 
C8 would be preferred.  

The failure of dimerization in the case of 10 is due to the formation of the radical cation analogous 
to 13b (Table 2) and Scheme 12. The formation of this radical cation is related to the absence of a 
paramethoxy group (in 10) that could stabilize a C7 cation and as a result the cation is formed 
preferentially at C8. Ring closure proceeds possibly via homolysis of an N-Cl bond leading to the 
nitrogen centred radical as shown in Scheme 12 or alternatively, via the Fe3+ azaenolate (27). 
Reduction of the indolyl cation (whose formation renders dimerization impossible) to the indolyl 
radical cation and H• uptake leads to the indoline. This pathway is shown in Scheme 13. 

Scheme 13. Mechanistic interpretation II. 
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3. Experimental 

3.1. General 

Unless otherwise noted, materials were purchased from commercial suppliers and used without 
purification. THF was freshly distilled from calcium hydride. DMF was dried over 4Å molecular 
sieves (Sigma-Aldrich) prior to use. Column chromatography was performed using Merck silica gel 
(0.040–0.063 mm). For thin layer chromatography, Merck TLC aluminum sheets (silica gel 60 F254) 
were used; centrifugal chromatography, Merck silica gel 60 PF254 containing gypsum were used. 
Infrared spectra were recorded on a Perkin Elmer FTIR Spectrum RX-1 spectrometer at wavenumbers 
from 4000–400 cm−1. Nuclear magnetic resonance (NMR) spectra were obtained on a JEOL JNM-LA 
400 and JEOL ECA-400 instrument. Spectra are reported in units of ppm on the scale, relative to 
chloroform and the coupling constants are given in Hz. Ultraviolet (UV) spectra were recorded from 
190–400 nm, in methanol, on a Shimadzu UV-Visible Spectrophotometer 1650. Mass spectra were 
measured using an Agilent 6530 Accurate-Mass Q-TOF LC/MS system. Detailed experimental 
procedures for the synthesis of stilbenes 7-14 and starting materials have been reported elsewhere [13]. 

3.2. General Procedure for the FeCl3 Oxidative Coupling 

Stilbene (1 equiv) was dissolved in CH2Cl2 (25 mL). ‘Anhydrous’ FeCl3 (2-3 equiv) was added to 
the mixture under nitrogen. The mixture was stirred at room temperature and monitored by TLC. After 
the consumption of the stilbene, the mixture was diluted with aqueous ammonium chloride solution 
and extracted with ethyl acetate (3 × 25 mL). The combined organic fractions were dried over 
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anhydrous sodium sulphate. Purification of the crude product by column chromatography afforded the 
desired products. Semi-empirical molecular orbital calculations were performed to optimise the 
geometry of the molecules using the PM6 method [17] included in MOPAC2009 [18].  

3.2.1. 1-(2-(3,4-Dimethoxyphenyl)indolin-1-yl)butan-1-one (14a) 

Yield 0.30 g (63%); νmax/cm−1 (NaCl): 2961, 1659, 1516, 1480, 1463, 1401, 1262, 1139, 1027, 754; 
λmax (MeOH)/nm: 237, 253, 281; 1H-NMR (400 MHz; CDCl3) δH 8.33 (d, J = 7.6 Hz, H-8, 1H), 7.24 
(t, J = 7.8 Hz, H-7, 1H), 7.12 (d, J = 6.4 Hz, H-5, 1H), 7.03 (t, J = 7.6 Hz, H-6, 1H) , 6.76 (d, J = 8.2 
Hz, H-5', 1H), 6.68 (d, J = 8.2 Hz, H-6', 1H), 6.64 (s, H-2', 1H), 5.36 (d, J = 7.3 Hz, H-2, 1H), 3.83 (s, 
OCH3, 3H), 3.77 (s, OCH3, 3α, 4H), 2.94 (d, J = 16.5 Hz, H-3β, 1H), 2.09-2.36 (m, H-2", CH2, 2H), 
1.67 (s, H-3", CH2, 2H), 0.84 (s, H-4", CH3, 3H); 13C-NMR (100 MHz; CDCl3) δC 172.0 (C-1"), 
149.5 (C-3'), 148.5 (C-4'), 143.5 (C-9), 136.0 (C-1'), 129.3 (C-4), 127.8 (C-7), 125.1 (C-5), 124.0 (C-
6), 117.2 (C-6'), 117.0 (C-8), 111.4 (C-5'), 108.0 (C-2'), 62.6 (C-2), 56.0 (OCH3), 55.9 (OCH3), 39.2 
(CH2, C-3), 37.5 (CH2, C-2"), 18.2 (CH2, C-3"), 13.9 (CH3, C-4"); HRMS (+ESI) [M+H]+: 326.1754, 
C20H24NO3 requires 326.1756. 

3.2.2. 1,1'-2,2'- bis(3,4-Dimethoxyphenyl)- 3,3'- biindoline-1,1'-diyl dibutan-1-one ((±)14b) 

Yield 0.06 g (6%); νmax/cm−1 (NaCl): 2961, 1666, 1516, 1462, 1398, 1255, 1140, 1027, 755 ; λmax 
(MeOH)/nm: 237, 249, 281; 1H-NMR (400 MHz; CDCl3) δH 8.53 (d, J = 8.2 Hz, H-8, H-8*, 2H), 7.46 
(t, J = 8.0 Hz, H-7, H-7*, 2H), 7.30 (d, J = 7.3 Hz, H-5, H-5*, 2H), 7.21 (t, J = 7.3 Hz, H-6, H-6*, 2H), 
6.61 (d, J = 8.7 Hz, H-5', H-5'*, 2H), 6.21 (d, J = 7.8 Hz, H-6', H-6'*, 2H), 5.81 (s, H-2', H-2'*, 2H), 
4.70 (s, H-2, H-2*, CH, 2H), 3.77 (s, 2 X OCH3, 6H), 3.61 (s, 2 X OCH3, 6H), 3.52 (s, H-3, H-3*, CH, 
2H), 1.83-2.12 (m, H-2", H-2"*, CH2, 4H), 1.45-1.56 (m, H-3", H-3"*, CH2, 4H), 0.76 (t, J = 7.6 Hz, 
H-4", H-4"*, CH3, 6H); 13C-NMR (100 MHz; CDCl3) δC 172.4 (C-1", C-1"*), 149.4 (C-3', C-3'*), 
148.3 (C-4', C-4'*), 144.3 (C-9, C-9*), 134.7 (C-1', C-1'*), 130.0 (C-4, C-4*), 129.4 (C-7, C-7*), 125.3 
(C-5, C-5*), 124.5 (C-6, C-6*), 117.7 (C-8, C-8*), 115.9 (C-6', C-6'*), 111.3 (C-5', C-5'*), 107.5 (C-2', 
C-2'*), 63.4 (C-2, C-2*), 56.9 (C-3, C-3*), 55.9 (2 X OCH3), 55.8 (2 X OCH3), 37.1 (CH2, C-2",  
C-2"*), 17.7 (CH2, C-3", C-3"*), 13.8 (CH3, C-4", C-4"*); HRMS (+ESI) [M+H]+: 649.3276, 
C40H44N2O6 requires 649.3278. 

3.2.3. 1-(2-(3,4-dimethoxyphenyl)indolin-1-yl)-2-methylpropan-1-one (15) 

Yield 0.13 g (29%); νmax/cm−1 (NaCl): 2964, 1653, 1516, 1479, 1263, 1138, 1026, 755; λmax 
(MeOH)/nm: 210, 238, 253, 281; 1H-NMR (400 MHz; CDCl3) δH 8.36 (d, J = 5.5 Hz, H-8, 1H), 7.24 
(t, J = 7.8 Hz, H-7, 1H), 7.11 (d, J = 7.3 Hz, H-5, 1H), 7.02 (t, J = 7.8 Hz, H-6, 1H) , 6.75 (d, J = 8.2 
Hz, H-5', 1H), 6.68 (dd, J = 8.2 Hz, 1.8 Hz, H-6', 1H), 6.64 (s, H-2', 1H), 5.43 (d, J = 8.7 Hz, H-2, 1H), 
3.82 (s, OCH3, 3H), 3.77 (s, OCH3, H-3α, 4H), 2.96 (d, J = 16.0, H-3β, 1H), 2.61 (s, H-2", 1H), 1.20 
(d, J = 6.9 Hz, H-4", 3H), 0.87 (s, H-3", 1H); 13C-NMR (100 MHz; CDCl3) δC 177.0 (C-1"),  
149.5 (C-3'), 148.5 (C-4'), 143.5 (C-9), 136.3 (C-1'), 129.4 (C-4), 127.8 (C-7), 125.0 (C-5), 124.1 (C-6), 
117.3 (C-8), 117.1 (C-6'), 111.4 (C-5'), 108.0 (C-2'), 62.4 (C-2), 56.0 (2 x OCH3), 39.1 (CH2, C-3), 
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33.4 (CH, C-2"), 20.3 (CH3, C-4"), 19.1 (CH3, C-3"); HRMS (+ESI) [M+H]+: 326.1760, C20H24NO3 
requires 326.1751. 

3.2.4. (2-(3,4-Dimethoxyphenyl)indolin-1-yl)(phenyl)methanone (16) 

Yield 0.21 g (40%); νmax/cm−1 (NaCl): 2956, 1646, 1516, 1480, 1386, 1259, 1139, 1026, 755; λmax 
(MeOH)/nm: 216, 267; 1H-NMR (400 MHz; CDCl3) δH 7.38 (t, J = 6.8 Hz, H-5", 1H), 7.17-7.31 (m, 
H-5, H-7, H-8, H-3", H-4", H-6", H-7", 7H), 7.06 (t, J = 7.3 Hz, H-6, 1H), 6.68 (d, J = 8.2 Hz, H-5', 
1H) , 6.55 (d, J = 5.0 Hz, H-6', 1H), 6.42 (s, H-2', 1H), 5.37 (s, H-2, 1H), 3.81 (s, OCH3, 3H),  
3.67-3.74 (m, OCH3, H-3α, 4H), 2.98 (dd, J = 16.2 Hz, 1.8 Hz, H-3β, 1H); 13C-NMR (100 MHz; 
CDCl3) δC 169.9 (C-1"), 149.0 (C-3'), 148.3 (C-4'), 143.2 (C-9), 137.1 (C-2"), 136.2 (C-1'),  
130.7 (C-4), 130.0 (C-5"), 128.3 (C-4", C-6"), 127.6 (C-7), 127.0 (C-3", C-7"), 125.3 (C-5, C-8), 124.4 
(C-6), 117.5 (C-6'), 111.3 (C-5'), 108.9 (C-2'), 64.3 (C-2), 55.9 (OCH3), 55.8 (OCH3), 38.5 (C-3); 
HRMS (+ESI) [M+Na]+: 382.1416, C23H21NNaO3 requires 382.1414. 

3.2.5. Cyclohexyl(2-(3,4-dimethoxyphenyl)indolin-1-yl)methanone (17) 

Yield 0.13 g (12%); νmax/cm−1 (NaCl): 2930, 1655, 1516, 1479, 1403, 1265, 1138, 1027, 754; λmax 
(MeOH)/nm: 216, 237, 254, 282; 1H-NMR (400 MHz; CDCl3) δH 8.35 (d, J = 6.4 Hz, H-8, 1H), 7.24 
(t, J = 8.1 Hz, H-7, 1H), 7.11 (d, J = 6.6 Hz, H-5, 1H), 7.03 (t, J = 7.4 Hz, H-6, 1H) , 6.76 (d, J = 8.3 
Hz, H-5', 1H), 6.70 (dd, J = 8.2 Hz, 1.7 Hz, H-6', 1H), 6.65 (s, H-2', 1H), 5.42 (d, J = 7.6 Hz, H-2, 1H), 
3.83 (s, OCH3, 3H), 3.77 (s, OCH3, H-3α, 4H), 2.97 (d, J = 15.8, H-3β, 1H), 2.34 (s, H-2", 1H),  
1.20-1.89 (m, 5 x CH2, 10H); 13C-NMR (100 MHz; CDCl3) δC 175.9 (C-1"), 149.3 (C-3'), 148.4 (C-4'), 
143.5 (C-9), 136.5 (C-1'), 129.4 (C-4), 127.7 (C-7), 124.8 (C-5), 123.7 (C-6), 117.1 (C-8, C-5'), 111.4 
(C-6'), 108.0 (C-2'), 62.3 (C-2), 55.8 (2 x OCH3), 43.8 (CH, C-2"), 38.9 (CH2, C-3), 30.0, 28.7, 26.0, 
25.6, 25.4 (5 x CH2); HRMS (+ESI) [M+H]+: 366.2065, C23H27NO3 requires 366.2064. 

3.2.6. Furan-2-yl(2-(2-methoxyphenyl)indolin-1-yl)methanone (18) 

Yield 0.07 g (11%); νmax/cm−1 (NaCl): 3007, 1634, 1479, 1397, 1243, 1025, 832, 753; λmax 
(MeOH)/nm: 280, 297; 1H-NMR (400 MHz; CDCl3) δH 8.33 (s, H-8, 1H), 7.36 (d, J = 1.8 Hz, H-5", 
1H), 7.28 (t, J = 7.8 Hz, H-7, 1H), 7.17 (td, J = 7.8 Hz, 1.8Hz, H-4', 1H), 7.12 (d, J = 7.3 Hz, H-5, 1H), 
7.06 (td, J = 7.6 Hz, 0.9 Hz, H-6, 1H), 6.98 (dd, J = 7.6 Hz, 1.8 Hz, H-6', 1H), 6.89 (d, J = 8.2 Hz,  
H-3', 1H), 6.80 (d, J = 3.2 Hz, H-3", 1H), 6.75 (t, J = 7.5 Hz, H-5', 1H), 6.33 (dd, J = 3.7Hz, 1.8 Hz,  
H-4", 1H), 6.31 (dd, J = 9.8 Hz, 1.4 Hz, H-2, 1H), 3.92 (s, OCH3, 3H), 3.76 (dd, J = 16.2 Hz, 10.1 Hz, 
H-3α, 1H), 2.90 (dd, J = 16.5 Hz, 1.4 Hz, H-3β, 1H); 13C-NMR (100 MHz; CDCl3) δC 158.2 (C-1"), 
155.5 (C-2'), 147.8 (C-2"), 144.5 (C-5"), 143.7 (C-9), 131.6 (C-1'), 130.7 (C-4), 128.4 (C-4'), 127.6  
(C-7), 125.2 (C-5), 125.0 (C-6'), 124.7 (C-6), 120.8 (C-5'), 118.1 (C-8), 116.5 (C-3"), 111.5 (C-4"),  
110.5 (C-3'), 58.9 (C-2), 55.6 (OCH3), 38.2 (C-3); HRMS (+ESI) [M+Na]+: 342.1106, C20H17NNaO3 
requires 342.1101. 
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3.2.7. Furan-2-yl(2-(3-methoxyphenyl)indolin-1-yl)methanone (19) 

Yield 0.04 g (38%); νmax/cm−1 (NaCl): 3006, 1634, 1479, 1397, 1286, 1048, 755; λmax (MeOH)/nm: 
281, 296; 1H-NMR (400 MHz; CDCl3) δH 8.24 (s, H-8, 1H), 7.39 (s, H-5", 1H), 7.27 (t, J = 8.2 Hz,  
H-7, 1H), 7.12-7.16 (m, H-5, H-5', 2H), 7.07 (t, J = 7.6 Hz, H-6, 1H), 6.91 (d, J = 3.7 Hz, H-3", 1H), 
6.69-6.75 (m, H-2', H-4', H-6', 3H), 6.36 (dd, J = 3.4Hz, 1.8 Hz, H-4", 1H), 6.05 (dd, J = 9.6 Hz,  
1.4 Hz, H-2, 1H), 3.78 (dd, J = 15.8 Hz, 9.6 Hz, H-3α, CH2, 1H), 3.69 (s,OCH3, 3H), 3.01 (d, J = 15.6 Hz, 
H-3β, CH2, 1H); 13C-NMR (100 MHz; CDCl3) δC 159.9 (C-3'), 158.3 (C-1"), 148.0 (C-2"),  
145.5 (C-1'), 144.3 (C-5"), 143.6 (C-9), 130.0 (C-4, C-5'), 127.8 (C-7), 125.1 (C-5), 124.8 (C-6), 117.9 
(C-8), 117.3 (C-4'), 117.1 (C-3"), 112.4 (C-6'), 111.7 (C-4"), 111.0 (C-2'), 63.3 (C-2), 55.2 (OCH3), 
39.3 (C-3) ; HRMS (+ESI) [M+H]+: 320.1286, C20H18NO3 requires 320.1281. 

3.2.8. (2-(3,4-Dimethoxyphenyl)indolin-1-yl)(furan-2-yl)methanone (20a) 

Yield 0.15 g (46%); νmax/cm−1 (NaCl): 3008, 1634, 1479, 1397, 1257, 1140, 1026, 754; λmax 
(MeOH)/nm: 207, 283, 296; 1H-NMR (400 MHz; CDCl3) δH 8.21 (d, J = 5.5 Hz, H-8, 1H), 7.41 (dd,  
J = 1.8 Hz, 0.92 Hz, H-5", 1H), 7.26 (t, J = 7.8 Hz, H-7, 1H), 7.16 (d, J = 7.8 Hz, H-5, 1H), 7.07 (td,  
J = 7.6 Hz, 0.92Hz, H-6, 1H), 6.89 (d, J = 3.6 Hz, H-3", 1H), 6.63-6.68 (m, H-2', H-5', H-6', 3H), 6.36 
(dd, J = 3.4Hz, 1.4 Hz, H-4", 1H), 6.02 (dd, J = 9.6 Hz, 1.8 Hz, H-2, CH, 1H), 3.76-3.82 (m, H-3α, 
OCH3, 4H), 3.73 (s,OCH3, 3H), 3.01 (dd, J = 16.0 Hz, 1.84Hz, H-3β, CH2, 1H); 13C-NMR (100 MHz; 
CDCl3) δC 158.5 (C-1"), 149.1 (C-3'), 148.3 (C-4'), 148.1 (C-2"), 144.1 (C-5"), 143.5 (C-9),  
136.4 (C-1'), 130.1 (C-4), 127.7 (C-7), 125.1 (C-5), 124.7 (C-6), 117.7 (C-8), 117.1 (C-5'),  
117.0 (C-3"), 111.7 (C-4"), 111.3 (C-6'), 108.2 (C-2'), 63.1 (C-2), 55.9 (2 x OCH3), 39.4 (C-3); HRMS 
(+ESI) [M+H]+: 350.1404, C21H20NO4 requires 350.1387; [M+Na]+: 372.1215, C21H19NNaO4 requires 
372.1206. 

3.2.9. (2,2'- bis(3,4-Dimethoxyphenyl)-3,3'-biindoline-1,1'-diyl)-bis(furan-2-ylmethanone) ((±)20b) 

Yield 0.07 g (10%); νmax/cm−1 (NaCl): 2934, 1636, 1516, 1476, 1394, 1254, 1141, 1025, 754; λmax 
(MeOH)/nm: 207, 283; 1H-NMR (400 MHz; CDCl3) δH 8.59 (d, J = 7.8 Hz, H-8, H-8*, 2H), 7.48 (td,  
J = 7.8 Hz, 1.4 Hz, H-7, H-7*, 2H), 7.36 (d, J = 7.3 Hz, H-5, H-5*, 2H), 7.23-7.27 (m, H-6, H-6*,  
H-5", H-5"*, 4H), 6.67 (d, J = 3.6 Hz, H-3", H-3"*, 2H), 6.54 (d, J = 8.2 Hz, H-5', H-5'*, 2H), 6.28 (d, 
J = 1.8 Hz, H-6', H-6'*, 2H), 6.21 (dd, J = 3.4 Hz, 1.8 Hz, H-4", H-4"*, 2H), 5.83 (d, J = 1.8 Hz, H-2', 
H-2'*, 2H), 5.78 (s, H-2, H-2*, CH, 2H), 3.70 (s, 2 x OCH3, 6H), 3.60 (s, H-3, H-3*, 2H), 3.57 (s,  
2 x OCH3, 6H); 13C-NMR (100 MHz; CDCl3) δC 158.4 (C-1", C-1"*), 149.1 (C-3', C-3'*), 148.1 (C-4', 
C-4'*), 147.4 (C-2", C-2"*), 144.9 (C-9, C-9*), 144.6 (C-5", C-5"*), 135.6 (C-1', C-1'*), 130.8 (C-4, 
C-4*), 129.2 (C-7, C-7*), 125.4 (C-5, C-5*), 125.0 (C-6, C-6*), 118.2 (C-8, C-8*), 117.3 (C-3",  
C-3"*), 115.9 (C-6', C-6'*), 111.5 (C-4", C-4"*), 111.1 (C-5', C-5'*), 107.6 (C-2', C-2'*), 63.6 (C-2,  
C-2*), 57.3 (C-3, C-3*), 55.81 (2 x OCH3), 55.76 (2 x OCH3); HRMS (+ESI) [M+H]+: 697.2542, 
C42H37N2O8 requires 697.2544. 
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3.2.10. Furan-2-yl(2-(4-methoxyphenyl)indolin-1-yl)methanone (21a) 

Yield 0.10 g (21%); νmax/cm−1 (NaCl): 3005, 1635, 1513, 1478, 1397, 1249, 1179, 1034, 834, 755; 
λmax (MeOH)/nm: 203, 226, 283, 297; 1H-NMR (400 MHz; CDCl3) δH 8.25 (d, J = 4.6 Hz, H-8, 1H), 
7.40 (dd, J = 1.8 Hz, 0.92 Hz, H-5", 1H), 7.27 (t, J = 7.8 Hz, H-7, 1H), 7.16 (d, J = 7.8 Hz, H-5, 1H), 
7.04-7.09 (m, H-6, H-2', H-6', 3H), 6.90 (d, J = 4.1 Hz, H-3", 1H), 6.72-6.75 (m, H-3', H-5', 2H), 6.35 
(dd, J = 3.7Hz, 1.8 Hz, H-4", 1H), 6.05 (dd, J = 9.6 Hz, 1.8 Hz, H-2, CH, 1H), 3.76 (dd, J = 16.0 Hz, 
10.1Hz, H-3α, CH2, 1H), 3.70 (s, OCH3, 3H), 2.98 (dd, J = 16.0 Hz, 1.4Hz, H-3β, CH2, 1H);  
13C-NMR (100 MHz; CDCl3) δC 158.8 (C-4'), 158.4 (C-1"), 148.1 (C-2"), 144.2 (C-5"), 143.6 (C-9), 
136.0 (C-1'), 130.1 (C-4), 127.7 (C-7), 126.1 (C-2', C-6'), 125.1 (C-5), 124.7 (C-6), 117.8 (C-8), 117.0 
(C-3"), 114.2 (C-3', C-5'), 111.7 (C-4"), 62.8 (C-2), 55.3 (OCH3), 39.4 (C-3); HRMS (+ESI) [M+H]+: 
320.1294, C20H18NO3 requires 320.1281; [M+Na]+: 342.1105, C20H17NNaO3 requires 342.1101. 

3.2.11. (2,2'- bis(4-methoxyphenyl)- 3,3'- biindoline-1,1'-diyl) bis(furan-2-ylmethanone) ((±)21b) 

Yield 0.11 g (12%); νmax/cm−1 (NaCl): 3008, 1636, 1512, 1477, 1395, 1249, 1177, 1034, 755; λmax 
(MeOH)/nm: 205, 226, 284; 1H-NMR (400 MHz; CDCl3) δH 8.59 (d, J = 8.2 Hz, H-8, H-8*, 2H), 7.49 
(td, J = 7.8 Hz, 1.4 Hz, H-7, H-7*, 2H), 7.31 (d, J = 6.4 Hz, H-5, H-5*, 2H), 7.24-7.27 (m, H-6, H-6*, 
H-5", H-5"*, 4H), 6.69 (d, J = 3.6 Hz, H-3", H-3"*, 2H), 6.55-6.60 (m, H-3', H-3'*, H-5', H-5'*, 4H), 
6.44-6.47 (m, H-2', H-2'*, H-6', H-6'*, 4H), 6.20 (dd, J = 3.4 Hz, 1.8 Hz, H-4", H-4"*, 2H), 5.81 (s,  
H-2, H-2*, CH, 2H), 3.63 (s, 2 x OCH3, 6H), 3.55 (s, H-3, H-3*, 2H); 13C-NMR (100 MHz; CDCl3) δC 
158.7 (C-4', C-4'*), 158.3 (C-1", C-1"*), 147.5 (C-2", C-2"*), 144.8 (C-9, C-9*), 144.6 (C-5", C-5"*), 
135.3 (C-1', C-1'*), 130.7 (C-4, C-4*), 129.3 (C-7, C-7*), 125.6 (C-2', C-2'*, C-6', C-6'*), 125.4 (C-5, 
C-5*), 125.1 (C-6, C-6*), 118.1 (C-8, C-8*), 117.3 (C-3", C-3"*), 114.2 (C-3', C-3'*, C-5', C-5'*), 
111.4 (C-4", C-4"*), 63.5 (C-2, C-2*), 57.2 (C-3, C-3*), 55.2 (2 x OCH3); HRMS (+ESI) [M+H]+: 
637.2341, C40H33N2O6 requires 637.2333. 

4. Conclusions 

Although previous studies by our group have demonstrated the synthetic utility of benzophenone 
(an organocatalyst) as an effective additive for dramatically improving the yield of indolines (and 
suppressing bisindoline formation), the present study demonstrated that even in the absence of 
benzophenone, the amide structure can also under certain conditions discriminate between the indoline 
and bisindoline forms (enhancing the former and suppressing the latter). Stilbene 5 (with an n-
butyramide moiety) will, on exposure to FeCl3, give the corresponding indoline 14a in 63% yield, 
compared to stilbene 6 (with an isobutyramide moiety) which yields indoline 15 in 29%. Previously 
undiscovered steric, conformational and stereoelectronic effects have been considered in this study 
involving eight stilbenes. 

We would like to draw the reader’s attention to some intriguing electronic effects. For example, 
stilbene 9 with an ortho-methoxy substituent dramatically shifts the electron density in the olefinic 
bond (see Table 1). The C(7) olefinic proton is now more deshielded than the C(8) proton. This in turn 
changes the position of the positive charge and unpaired electron (in the radical cation) compared to 
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stilbenes 11 and 12 with predictable consequences for the cyclization/dimerization. These 
transformations exploit FeCl3 (an environmentally friendly oxidant) as the single electron transfer 
reagent [19-21]. Further developments will be reported in due course. 
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