
Molecules 2011, 16, 7256-7266; doi:10.3390/molecules16097256 

 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 
Article 

Use of Graphite Oxide and Graphene Oxide as Catalysts in the 
Synthesis of Dipyrromethane and Calix[4]pyrrole 

Shive Murat Singh Chauhan * and Sweta Mishra 

Bioorganic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India; 
E-Mail: sweta.chem19@gmail.com 

* Author to whom correspondence should be addressed; E-Mail: smschauhan@chemistry.du.ac.in; 
Tel.: +91-11-27666845; Fax: +91-11-27666845. 

Received: 6 July 2011; in revised form: 17 August 2011 / Accepted: 19 August 2011 /  
Published: 25 August 2011 
 

Abstract: Graphite oxide and graphene oxides have been used as solid catalysts for  
the synthesis of 5,5-dialkyldipyrromethanes and calix[4]pyrroles in organic and aqueous 
solutions at room temperature. 
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1. Introduction 

Graphene is a two dimensional sheet of sp2 hybridized carbon with remarkable thermal, mechanical 
and electronic properties [1-4]. Top down is an important method for the preparation of graphene by 
oxidation of graphite [5], as compared to other methods [6,7]. Graphite oxides containing OH, epoxy 
and carboxyl groups have been prepared by oxidation of graphite via minor modification of known 
methods [8,9] and their structures have been characterized by different spectroscopic methods [10-12]. 
The presence of polar groups is responsible for the acidic solutions formed when graphite and 
graphene oxides are suspended in aqueous media [13,14]. In organic synthesis polycarbon acids 
[15,16] and polyacids on carbon nanostructures [17-20] are considered more robust in aqueous as well 
as organic solvents than other solid acids [20-23] such as ion exchange resins [24], heteropolyacids 
[25-27] and layer transition metal oxides [28,29].  
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One of the most important methods developed for the mass production of graphene is exfoliation of 
graphite oxide in aqueous solution to single layers of graphene oxide. This exfoliation can be 
performed in aqueous solution alone or in presence of surfactants [30], polymers [31,32], ionic liquids 
[33] and polar solvents [34,35]. Aqueous suspensions of graphene oxide have been used in the 
oxidation of alcohols and cis-stilbene and the hydration of various alkynes to the corresponding 
aldehydes, acids and ketones under mild conditions [36,37]. The electrical conductivity of the 
graphene oxide differs from that of pristine graphene, hence various attempts have been made to 
deoxygenate graphene oxide to the maximum extent to regain the aromaticity and electrical 
conductivity. The hydroxyl and the epoxy groups and some carboxylic groups can be removed by 
reduction of graphite oxide by hydrazine, ascorbic acid and other reducing agents [38-40].  

Porphyrinogens and more stable calix[4]pyrroles are important tetrapyrrolic macrocycles used in 
biosynthesis of porphyrinoids [41], supramolecular chemistry [42], anion receptor [43,44] and material 
chemistry [45-47]. They are synthesized by condensation of pyrroles with dialkylketones in the 
presence of aqueous acids [48,49], Lewis acids [50,51] and solid acids including zeolites [52], 
molecular sieves [53,54] and Amberlyst-15 [55] under different reaction conditions. Although various 
solid acids have been used in the synthesis of different calix[4]pyrroles, to the best of our knowledge 
graphite oxide and graphene oxides have not been used for this purpose. Hence, we report the 
synthesis of selected calix[4]pyrroles in aqueous suspensions of graphite oxide and graphene oxides 
under different reaction conditions (Scheme 1).  

Scheme 1. Synthesis of dipyrromethane and calix[4]pyrrole. 
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2. Results and Discussion 

The reaction of acetone (2a) with pyrrole (1) in a suspension of graphite oxide (GO) in 
dichloromethane at room temperature gave dipyrromethane (3a) as the major product. The structure of 
3a was confirmed by spectroscopic data, mixed melting point [56] and comparison of HPLC retention 
times with an authentic sample (Table 1). The reaction of 1 with cyclohexanone (2b) gave the 
corresponding dipyrromethane 3b in 70% yield. An analogous condensation of pyrrole and 2b in 
dichloromethane in the presence of the solid acid zeolite HY gave dipyrromethane 3b in 63% yield, 
along with other products, whereas the same reaction in the presence of HZSM in dichloromethane 
gave dipyrromethane 3b and calix[4]pyrrole 4b in 53 and 11% yield, respectively [52]. The reaction of 
1 with 2a in the presence of Al-MCM-41 zeolite gave 3a and 4a in 12 and 70% yield, respectively 
[52]. The reaction of the above in the presence of AmberlystTM-15 gave 4a and N-confused 
calix[4]pyrrole in 83 and 14% yield, respectively [55]. The high yield of 4a in acetone may be 
explained by initial formation of 3a which on subsequent reaction with acetone leads to 
calix[4]pyrrole. This was also confirmed by reaction of 3a with 2b with the formation of 5 in 17% 
yield. (Table 1) [52]. The reaction of 1 and 2a was performed in other polar solvents and the results are 
reported in Table 1. A moderate yield of calix[4]pyrrole 4 was obtained when the reaction was 
performed in methanol or acetonitrile (Table 1). The graphite oxide is stable in organic solvents and it 
may be used several times without much loss of catalytic activity (Table 1, entry 14). 

Table 1. Graphite oxide catalyzed condensation of pyrrole and acetone in different solvents a. 

Entry Solvent Catalyst 2 Conversion of 
pyrrole (%) 

Yield of product (wt%) b,c

3 4 Other  
1 CH2Cl2 GO 2a 99 99 - - 
2 CH2Cl2 

d GO 2a 99 99 - - 
3 CH2Cl2 GO 2b 90  73 2 15 
4 CH2Cl2 

d GO 2b 86 70 - 9 
5 CH2Cl2 

d Zeolite HY[52] 2b 87.9 62.7 - 16.2 
6 CH2Cl2 

d HZSM-5(30)[52] 2b 69.6 53.0 10.7 5.9 
7 CH2Cl2 

d Al-MCM-41 2a 95 12.3 70.3 12.4 
8 CHCl3 AmberlystTM-15[55] 2a 99  83 14 e 
9 CHCl3 GO 2a 99 97 2 - 

10 CCl4 GO 2a 99 95 3 - 
11 Methanol GO 2a 100 90 10 - 
12 CH3CN GO 2a 98 80 13 5e 

13 Ethylene glycol GO 2a 98 34 7 57 

14 Acetone g GO 2a 99 27 62 (50) f 10e (6) f 
a Reaction conditions: pyrrole (14.4 mmol), acetone (14.4 mmol); graphite oxide (50 mg); solvent 
(20 mL); reaction time: 20h; b yields were calculated by HPLC; c other products may be 
tripyrromethane, open chain tetramer or N-confused calix[4]pyrrole; d reaction were performed in 
10h in order to compare the results; e N-confused calix[4]pyrrole; f Isolated yield; g Catalyst was 
reused over three runs. 
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The formation of calix[4]pyrrole 4a in excess acetone may be explained by initial formation of 3a 
which on subsequent reaction with acetone leads to 4a. The reaction of 3a with cyclohexanone lead to 
cailx[4]pyrrole 5 (Scheme 1). 

The reaction of 1 and 2a in the presence of graphite oxide suspended in aqueous solution gave 3a as 
major product in 92% yield (Table 2). The reaction of pyrrole and ketones regardless of the ratio of 
starting compounds, forms the dialkyldipyrromethanes in the presence of weak acid in aqueous 
solutions [48]. The increase in the ratio of acetone decreases the yield of 3a and a minor amount of 4a 
was observed (Table 2).  

Table 2. Reaction of pyrrole and acetone in presence of graphite oxide in aqueous solution a. 

Entry Pyrrole:Acetone Conversion of pyrrole 
(%) 

Yield of product (wt%) b,c 
3 4 Other  

1 1:1 93 92 - 1 
2 2:1 97 97 - - 
3 5:1 99 98 - 1 
4 1:1.5 98 97 - 1 
5 1:5 100 96 3 1 
6 1:10 100 84 8 2 d 

a Reaction conditions: water (20 mL); Graphite oxide (50 mg); reaction time: 20h; b yields were 
calculated by HPLC peak area; c other products may be tripyrromethane, open chain tetramer or  
N-confused calix[4]pyrrole; d N-confused calix[4]pyrrole. 

 
The reaction of 1 and 2a in the presence of graphite oxide and SDS gave dipyrromethane (48%), 

calix[4]pyrrole (35%) and N-confused calix[4]pyrrole in 10% yield at room temperature in 1.5 to 3 h 
(Table 3).  

Table 3. Reaction of pyrrole and acetone in the presence of graphite oxide and surfactant 
and salts in aqueous solution a. 

Entry Surfactant and salts Time Conversion of 
pyrrole (%) 

Yield of product (wt%) b,c

3 4 Other  
1 SDS alone 24 h No reaction - - - 
2 SDS+GO 1.5–3 h 93 48 35 10 d 
3 CTAB + GO 24 h 96 93 - 3 
4 PEG + GO 24 h 99 96 - 3 
5 Poly(sodium 4-styrenesulfonate)  

+ GO 
24 h 89 84 5 - 

6 Sodium methanesulfonate + GO 24 h 99 99 - - 
7 Methanesulfonic acid  

(2 × 10−2 M) 
24 h 99 79 2 - 

8 Sodium trifluoromethane sulfonate 
+ GO 

24 h 99 99 - - 

a Reaction conditions: water (20 mL); graphite oxide (50 mg); surfactant and salts (50 mg); b yield 
were calculated by HPLC peak area; c other products may be tripyrromethane, open chain tetramer 
or N-confused calix[4]pyrrole; d N-confused calix[4]pyrrole. 
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The addition of SDS to graphite oxide in aqueous solution forms the corresponding acid which 
catalyzes the formation of dipyrromethane in low and calix[4]pyrrole in high yields. The graphite 
oxides have been dispersed in SDS and poly(sodium 4-styrenesulphonate) in aqueous solution [32]. 
The reactions of 1 with 2a in the presence other surfactants and salts are given in Table 3. The reaction 
of 1 and 2a in the presence of reduced graphene oxide [57,58] in aqueous solution gave 3a as major 
product and 4a as minor product (Table 4).  

Table 4. Reaction of pyrrole and acetone in presence of reduced graphene oxide a. 

Entry Solvent Time Conversion of 
pyrrole (%) 

Yield of product (wt%) b,c

(3) (4) Other  
1 Dichloromethane 24 h 99 98 1 - 
2 Methanol 24 h 99 94 5 - 
3 Acetone 24 h 100c 52 25 10 d 

4 Water 24 h 92 82 - 10 
5 Water + SDS 24 h 92 69 1 22 

a Reaction conditions: solvent (20 mL); catalyst: reduced graphene oxide (50 mg); b yields were 
calculated by HPLC peak area; c other products may be tripyrromethane, open chain tetramer or  
N-confused calix[4]pyrrole; d N-confused calix[4]pyrrole. 

The reduced graphene oxide agglomerizes in aqueous solution, but in the presence of organic 
solvents [59] and ionic liquids [60] it may be dispersed in aqueous solution. Suitable chemical 
modifications of reduced graphene oxides have been used to solubilize the graphene oxides in aqueous 
[60] and organic solvents [61]. The above results indicate that graphite and graphene oxide may be 
used as solid acids in various organic transformations. 

3. Experimental 

3.1. General 

The infrared spectra (IR) were recorded on a Perkin-Elmer FT-1710 spectrophotometer. 1H-NMR 
spectra were recorded in CDCl3 on a Bruker Avance 400 MHz spectrophotometer with TMS as 
internal standard. UV-Vis spectra were recorded on Perkin-Elmer Lambda 35 spectrophotometer. 
Raman spectra were recorded on inVia Renishaw Raman spectrophotometer using a green (514 nm) 
laser. Powder XRD were recorded on a Bruker Discover 8 X-ray diffractometer. HPLC analysis was 
performed on a Waters 2998 using a Waters PAH C18 HPLC column (4.6 × 250 mm) and methanol as 
the eluent. Starting materials such as pyrrole (1) and acetone (2) were obtained from Acros USA and 
distilled immediately prior to use. The experimental operations were performed under ambient 
conditions. Neutral alumina was used for all the chromatographic purifications. Graphite powder was 
obtained from Alfa Aesar, USA.  

3.2. Preparation of Authentic Samples 

5,5-Dimethyldipyrromethane (3a) was prepared by following the literature procedure starting from 
acetone and pyrrole in ionic liquid [56] and aqueous solution [48]; m.p. 56 °C (lit [56] 55–57 °C); 
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1H- NMR: 1.61 (s, 6H, –CH3), 6.08 (s, 2H, β-pyrrole), 6.1 (d, 2H, β-pyrrole), 6.5 (d, 2H, α-pyrrole), 
7.64 (s, br, 2H, NH-pyrrole); HPLC retention time = 3.1 min. 

Octamethylcalix[4]pyrrole (4a) was prepared by following a literature procedure [55] starting from 
acetone and pyrrole; m.p. 294 °C (lit [55] 296 °C ); 1H-NMR: 7.01 (4H, br s, NH), 5.89 (8H, d,  
J = 2.5 Hz, β-pyrrole), 1.50 (24 H, s); HPLC retention time = 3.8 min. 

3.3. Preparation of Catalysts 

3.3.1. Graphite Oxide 

KMnO4 (9 g) was added in portions to a cooled (0 °C) solution of conc. H2SO4 (69 mL) containing 
graphite (3 g) and NaNO3 (1.5 g). The mixture was stirred at room temperature for 5 days. Distilled 
water (138 mL) was added slowly to the reaction mixture while the temperature was kept well below 
98 °C for 3 h. The resultant bright-yellow suspension was diluted and a solution of H2O2 (6 mL, 30%) 
was added dropwise. The reaction mixture was centrifuged and washed to remove the remaining salts. 
The wet graphite oxide was dewatered by vacuum drying (50 °C). UV-Vis (λmax) (H2O) = 230 nm, 
(DMF) = 269 nm. FTIR (cm−1) = 3447 (OH), 1740 (C=O), 1636 (OH bending), 1091 (C-O). Raman 
spectra: 1350 (D band), 1584 (G band), D/G ratio: 0.85. XRD data: 10.5°. 

3.3.2. Graphene Oxide 

Aqueous colloids of single layer graphene oxide nanosheets were produced by exfoliation of 
graphite oxide dispersed in deionized water with ultrasonication [32]. 

3.3.3. Preparation of Reduced Graphene Oxide 

Graphite oxide (75 mg) was dispersed in water (75 mL) with sonication. Sodium borohydride  
(600 mg) was added to the GO dispersion after the pH being adjusted to 9–10 with 5 wt% sodium 
carbonate solution. The mixture was then kept at 80 °C for 1 h under constant stirring. During 
reduction, the dispersion turned from dark brown to black accompanied by outgassing. UV-Vis (λmax) 
(H2O) = 270 nm. FTIR (cm−1) = 3440 (O-H), 1740 (C=O), 1091 (C-O). Raman spectra: 1350 (D 
band), 1584 (G band), D/G ratio: >1. 

3.4. The Reaction of Pyrrole and Acetone in Organic Solvents 

Equimolar amounts of pyrrole (14.4 mmol) and acetone (14.4 mmol) were taken up in 
dichloromethane (20 mL). Graphite oxide (10% w/w) was added in portions to the reaction mixture, 
which was stirred at ambient temperature for the appropriate time (as indicated in Table 1). The 
reaction progress was monitored by thin layer chromatography (TLC) with petroleum ether-chloroform. 
After the completion of reaction, the catalyst was removed by filtration and washed thoroughly with 
CH2Cl2 to dissolve all the contents. The filtrate was concentrated to give the crude product, which was 
subjected to column chromatography over neutral alumina eluting with petroleum ether-chloroform to 
afford pure calix[4]pyrrole and further elution of column gave dipyrromethane. The reaction mixture 
was analysed by HPLC. The HPLC yields are given in Table 1. 
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3.5. The Reaction of Pyrrole and Acetone in Aqueous Solution  

Equimolar amounts of pyrrole (14.4 mmol) and acetone (14.4 mmol) were taken up in water  
(20 mL). Graphite oxide (10% w/w) was added in portions to the above reaction mixture that was 
stirred at ambient temperature for the appropriate time (Table 2). The reaction progress was monitored 
by thin layer chromatography (TLC) with petroleum ether-chloroform. After completion of reaction, 
the catalyst was removed by extraction with CH2Cl2. The organic layer was separated dried over 
sodium sulfate, filtered and the filtrate was concentrated to give the crude product, which was 
subjected to column chromatography over neutral alumina eluting with petroleum ether-chloroform to 
afford pure calix[4]pyrrole and further elution of column gave dipyrromethane. The reaction mixture 
was analysed by HPLC. The HPLC yields are given in Table 2.  

3.6. The Reaction of Pyrrole and Acetone in Aqueous Solution in Presence of Suphonate Salts 

Pyrrole (14.4 mmol), acetone (14.4 mmol) and surfactant/salt (0.034 mmol) were taken up in water 
(20 mL). Graphite oxide (10% w/w) was added in portions to the reaction mixture, which was stirred 
at ambient temperature for the appropriate time (Table 3). The reaction progress was monitored by thin 
layer chromatography (TLC) with petroleum ether-chloroform. After the completion of reaction, the 
catalyst was removed by extraction with CH2Cl2. The organic layer was separated dried over sodium 
sulfate, filtered and the filtrate was concentrated to give the crude product, which was subjected to 
column chromatography over neutral alumina eluting with petroleum ether-chloroform to afford pure 
calix[4]pyrrole and further elution of column gave dipyrromethane.The reaction mixture wasanalysed 
by HPLC. The HPLC yields are given in Table 3.  

3.7. The Reaction of Pyrrole and Acetone Catalyzed by Reduced Graphene Oxide under Different 
Conditions 

Equimolar amounts of pyrrole (14.4 mmol) and acetone (14.4 mmol) were taken up in different 
solvents (20 mL). Graphene oxide (10% w/w) was added in portions to the above reaction mixture that 
was stirred at ambient temperature for the appropriate time (Table 4). The reaction progress was 
monitored by thin layer chromatography (TLC) with petroleum ether-chloroform. After completion of 
reaction, the catalyst was removed by filtration or extraction. Filtrate was concentrated to give the 
crude product, which was subjected to column chromatography over neutral alumina eluting with 
petroleum ether-chloroform to afford pure calix[4]pyrrole and further elution of column gave 
dipyrromethane.The reaction mixture was analysed by HPLC. The HPLC yields are given in Table 4.  

4. Conclusions 

Graphite oxide and reduced graphene oxides have been used as solid acid catalysts for the room 
temperature preparation of dipyrromethanes and calix[4]pyrroles in organic and aqueous solutions. 
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