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Abstract: Lactoferrin, a multifunctional iron binding glycoprotein, plays an important role 
in immune regulation and defence mechanisms against bacteria, fungi and viruses. 
Lactoferrin’s iron withholding ability is related to inhibition of microbial growth as well as 
to modulation of motility, aggregation and biofilm formation of pathogenic bacteria. 
Independently of iron binding capability, lactoferrin interacts with microbial, viral and cell 
surfaces thus inhibiting microbial and viral adhesion and entry into host cells. Lactoferrin 
can be considered not only a primary defense factor against mucosal infections, but also a 
polyvalent regulator which interacts in viral infectious processes. Its antiviral activity, 
demonstrated against both enveloped and naked viruses, lies in the early phase of infection, 
thus preventing entry of virus in the host cell. This activity is exerted by binding to heparan 
sulphate glycosaminoglycan cell receptors, or viral particles or both. Despite the antiviral 
effect of lactoferrin, widely demonstrated in vitro studies, few clinical trials have been 
carried out and the related mechanism of action is still under debate. The nuclear 
localization of lactoferrin in different epithelial human cells suggests that lactoferrin exerts 
its antiviral effect not only in the early phase of surface interaction virus-cell, but also 
intracellularly. The capability of lactoferrin to exert a potent antiviral activity, through its 
binding to host cells and/or viral particles, and its nuclear localization strengthens the idea 
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that lactoferrin is an important brick in the mucosal wall, effective against viral attacks and 
it could be usefully applied as novel strategy for treatment of viral infections. 
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1. Introduction 

Lactoferrin was identified in 1939 in bovine milk [1] and isolated in 1960 from both human [2,3] 
and bovine milk [4]. Lactoferrin, highly conserved among human, bovine, mouse, and porcine species, 
is a glycoprotein of about 690 amino acid residues belonging to the transferrin family, able to 
reversibly chelate two Fe(III) per molecule with high affinity (Kd ~ 10−20 M) retaining ferric iron to pH 
values as low as 3.0, whereas transferrin retains iron to pH of about 5.5 [5,6]. The iron-binding affinity 
is high enough that, in the presence of lactoferrin or transferrin, the concentration of free iron in body 
fluids cannot exceed 10–18 M, thus preventing the precipitation of this metal as insoluble hydroxides, 
inhibiting microbial growth and hindering formation of reactive oxygen species. As is apparent from 
three dimensional (3D) structure of human lactoferrin (hLf) [7,8], the molecule is folded into two 
homologous lobes (N-lobe residues 1–333 and C-lobe residues 345–691). The two lobes are connected 
by a peptide (residues 334–344), which forms a 3-turn α-helix, whereas the peptide in transferrin is 
irregular and flexible. There are non-covalent interactions, mostly hydrophobic, where the two lobes 
pack together (Figure 1). 

Figure 1. Structure of lactoferrin. From Baker and Baker [9]. 

 

The amino acid sequence of hLf [10] has a high degree of identity with human transferrin (~60%), 
and the characteristic twofold internal sequence repeat suggests an ancestral gene duplication. The N 
and C-terminal halves have ~40% sequence identity. 
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2. Structure 

2.1. Iron-Binding Sites 

The two lobes of lactoferrin are further divided into two domains (N1 and N2, C1 and C2) and each 
lobe binds one Fe(III) ion in a deep cleft between two domains (Figure 1). The iron sites are highly 
conserved in all iron-binding proteins, suggesting a common evolutionary origin [11,12]. The ligands 
for Fe(III) are the same in both lobes: One aspartic acid, two tyrosines, and one histidine (Asp-60,  
Tyr-92, Tyr-192, and His-253 in the N-lobe and Asp-395, Tyr-433, Tyr-526, and His-595 in the  
C-lobe), together with two oxygens from the CO3

2− anion (Figure 2). 

Figure 2. Iron binding site in the N-lobe of lactoferrin. From Baker and Baker [9]. 

 

Spectroscopic studies and the 3D structure suggest that the CO3
2− ion binds first, thus neutralizing 

the positive charge of the arginine residue (Arg-121 in the N-lobe and Arg-465 in the C-lobe) [6,13]. 
The participation of the CO3

2− ion in the iron coordination binding appears to be ideal for iron 
reversible binding [6] since the protonation of CO3

2− ion is a likely first step in the breakup of the iron 
site at low pH [14]. 

2.2. Conformational Changes 

Iron binding and release are associated with large conformational changes in which lactoferrin 
adopts either an open or closed state. The iron-saturated form is closed and much more compact than 
the apo form [15]. In apo-lactoferrin, the N-lobe is in an open state, while the C-lobe is still closed, 
thus providing an important clue to the dynamic behaviour of the apo-protein. However, other crystal 
structures of lactoferrin of different species show some diversity in C-lobe that can adopt open forms, 
through the same kind of conformational change as was seen for the N-lobe [13]. 
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The comparisons of structural and functional data on lactoferrin and transferrin have suggested the 
importance of cooperative interactions between the two lobes of the molecule, mediated by the  
α-helices. Both lactoferrin and transferrin share the property that their bound Fe(III) is spontaneously 
released in vitro at low pH. For transferrin, the iron release at low pH is considered to be important for 
iron delivery to cells [16]. The ferri-transferrin is internalized by transferrin receptor-mediated 
endocytosis, and then iron is released and the receptor is recycled to the cell surface. 

Although there are indications that the transferrin receptor plays an active part in this process, the 
ability of transferrin to begin releasing iron at the endosomal pH of about 5.5 is also a critical factor. In 
contrast, lactoferrin retains Fe(III) to much lower pH, approximately 3.0. The key difference between 
lactoferrin and transferrin appears to be a cooperative interaction between the two lobes in lactoferrin that 
does not occur in transferrin. Iron release from the isolated N-lobe of lactoferrin begins at pH 5.0 [17], 
similarly to transferrin (pH 5.5). It can be supposed that in the absence of the lactoferrin C-lobe, 
Fe(III)-binding is substantially destabilized. Furthermore, studies on mutant lactoferrin have shown 
that when Fe(III)-binding in the N-lobe is disabled, Fe(III)-binding in the C-lobe is unaffected, while, 
when binding in the C-lobe is disabled, Fe(III)-binding in the N-lobe is destabilized, occurring at pH 
~5.0 [18]. Therefore, there are cooperative interactions between the two lobes of lactoferrin through 
which Fe(III)-binding in the C-lobe stabilizes Fe(III)-binding in the N-lobe. Conversely, isolated  
N lobe of transferrin has an iron release at a pH identical to that of the intact protein. Therefore, the 
lactoferrin structure suggests that the C-terminal helix, which contacts the N-lobe close to the hinge, 
plays a very important role [19]. 

As in all lactoferrins, the linker peptide between the two lobes forms an α-helix, whereas in all 
transferrins has a flexible, extended and irregular structure. It can be hypothesized that the rigidity of 
the helical linker in lactoferrins allows a stronger interaction between the two lobes that stabilizes 
Fe(III)-binding in the N-lobe delaying the iron release at low pH [14]. 

2.3. Binding of other Metals 

Lactoferrin is classified as an iron binding protein, but can also bind other metal ions including 
Cu2+, Mn2+, Zn2+, even if with lower affinity. Metal binding can be assayed by an increase in 
adsorption at 240–280 nm as consequence of ionization of the tyrosine ligands which bind to the metal 
ions [13]. The crystal structures of lactoferrin saturated with Mn2+ or Zn2+ have all shown closed 
forms, thus suggesting that lactoferrin could possess a role in binding other metal ions [9]. Moreover, 
it has been demonstrated that Mn2+- or Zn2+- saturated forms maintain some physiological functions of 
lactoferrin, unrelated to its iron binding capability [20] but probably related to its three remarkable 
concentrations of positive charge: Residues 1–7, 13–30 and inter-lobe region, close to the connecting 
helix [9]. 

2.4. Glycosylation 

Lactoferrin is a glycosylated protein, possessing different number and location of putative 
glycosylation sites, according to different species [9]. In particular, hLf possesses three glycosylation 
sites (Asn-137, Asn-478 and Asn-623) and bovine lactoferrin (bLf) five (Asn-233, Asn-368, Asn-476 
and Asn-545). The nature and the location of the glycosylation sites do not influence the polypeptide 
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folding or iron and other molecules binding properties. Conversely, the loss of carbohydrate or sialic 
acid increases its sensitivity to proteolysis [9] or influences some physiological functions [20]. 

3. Human and Bovine Lactoferrin Gene Structure and Regulation 

hLf gene maps to human chromosome 3p21.3 [21], while bLf gene is localized to chromosome 22 
and syntenic group U12 [22]. The lactoferrin gene is organized into 17 exons. The size of the gene 
varies from 23 to 35 kb among human [23-25] and bovine species [26]. The signal peptide of 
lactoferrin consists of 19 amino acids, 11 of which are conserved within these two species. The first 
five amino acids of bovine protein include two basic amino acids, whereas the human protein begins at 
glycine and follows with four arginines, which make the hLf unique. The numbers of amino acids 
encoded by 15 of the 17 exons in these species are identical, and in 12 locations they have identical 
codon interruptions at the intron-exon splice junctions. Comparing the lactoferrin gene promoters from 
different species, common and different characteristics are observed. The hLf and bLf promoters 
contain a non-canonical TATA box, but only hLf has multiple steroid hormone response elements, 
while none are found in the other species studied, suggesting that the lactoferrin gene is differentially 
regulated among different species by steroid hormones [27]. The hLf gene expression is upregulated 
by estrogen with a magnitude of response that is cell-type specific (mammary glands, uterus) and by 
retinoic acids. 

4. Concentrations in Human Body 

Lactoferrin is expressed and secreted by glandular epithelial cells and by neutrophils. The highest 
levels (~7 g/L) is found in human colostrum [28], while it is also present at lower levels in mature 
milk, in most exocrine secretions (Table 1), and in the secondary granules of mature neutrophils [29,30]. 
Lactoferrin concentration increases in infection and/or inflammation sites due to the recruitment of 
neutrophils. 106 neutrophils synthesize 15 μg of lactoferrin. 

Table 1. Lactoferrin concentrations in human secretions. 

Biological fluids Concentration (mg/mL) 
Colostrum  8 
Milk 1.5–4 
Tears 2 
Saliva 0.008 
Joint fluid 0.001 
Vaginal secretion 0.008 
Seminal fluid 0.112 
Cerebrospinal fluid Undetectable 
Plasma 0.0004 

5. Lactoferrin as Human Innate Defence against Infections 

Even if lactoferrin and transferrin are similar in many respects, they possess different functions: 
Transferrin seems to exert a pivotal role in iron uptake by cells, whereas lactoferrin, which is found in 



Molecules 2011, 16              
 

6997

many mucosal secretions, can be considered an important brick in the mucosal wall exerting a potent 
protective function. 

Unlike transferrin, the capability of lactoferrin to retain iron at acid pH, which characterizes 
infection and inflammation sites, together with its cationic nature (pI ~ 9) may be responsible for its 
ability to bind to various microbial and viral negative surface structures [31-33], and to anionic 
molecules such as DNA [34], heparin [35], glycosaminoglycans [36] could explain the different 
functions ascribed to this protein (Figure 3). 

Figure 3. Distribution of surface charge of human lactoferrin. Blue: positive; red: negative. 
From Baker and Baker [9]. 

 

In mucosal secretions, which first have been injured by microorganisms, iron limitation (10–18 M) 
is considered in the healthy humans a physiological status hindering microbial growth. Conversely, an 
increase of iron concentration in the secretions, as a consequence of some pathologies, favours 
microbial virulence [37]. In human mucosa, peptides and proteins, including lactoferrin, symbolize the 
bricks of natural non-immune defences against microbial infections [38]. 

6. Antibacterial Activity of Lactoferrin Related and Unrelated to Its Iron Withholding Ability 

The first function attributed to lactoferrin was antibacterial activity depending on its ability to 
sequester iron necessary for bacterial survival and growth [39]. This action of lactoferrin was 
considered bacteriostatic, as reversible by the addition of ferric iron [40]. 

However, bacterial pathogens are able to overcome iron limitation by means of two principal 
systems. The first is represented by the synthesis of small chelators, siderophores, which bind ferric 
iron with high affinity and transport it into bacteria through a specific receptor [41,42]. In addition to 
the synthesis of siderophores, some highly host-adapted bacterial species acquire iron directly through 
surface receptors able to specifically bind lactoferrin, and transport it across the outer membrane. The 
iron is bound by a periplasmic iron-binding protein, FbpA, and transported into the cell via an inner 
membrane complex comprised of FbpB and FbpC [43]. 

A lactoferrin bactericidal iron independent effect was also described [44]. A direct interaction 
between lactoferrin and lipopolysaccharide (LPS) of Gram-negative or lipoteichoic acid of Gram 
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positive bacteria is required for the lethal effect [45-47]. Furthermore, it has been demonstrated that 
lactoferrin binds to the lipid A of LPS [48,49], inducing a release of LPS. This bactericidal activity of 
lactoferrin appears to be located in the N-terminal region as its derivative cationic peptide, called 
lactoferricin (Lfcin), is several fold more active than the intact protein [50-52]. However, the release of 
LPS can be annulled by high calcium concentration in the culture media [53]. As lactoferrin is also 
able to bind Ca(II) through the carboxylate groups of the sialic acid residues, present on two glycan 
chains, it cannot be ruled out that the release of LPS from Gram-negative bacteria can be also due to 
this additional binding property of lactoferrin [53]. 

7. Inhibition of Viral Infections by Lactoferrin 

The antiviral activity of hLf was first demonstrated in mice infected with the polycythemia inducing 
strain of the Friend virus complex (FVC-P) [54]. Since 1994, a potent antiviral activity of both hLf and 
bLf against enveloped and naked viruses has been shown [55]. In most of these studies, when 
lactoferrin was tested both in apo- and in metal-saturated forms, no striking differences in the antiviral 
effect between the different forms were reported. Both lactoferrins act in the early phase of the viral 
infection thus preventing entry of virus into the host cell, either by blocking cellular receptors or by 
direct binding to virus particles [20]. bLf is often reported to exhibit higher antiviral activity than hLf [56]. 

Concerning lactoferricin, a pepsin-digested lactoferrin derivative, the antiviral activity of this highly 
positively charged loop domain of lactoferrin, was demonstrated for the first time by Andersen and  
co-workers [57] against human cytomegalovirus (HCMV) infection in vitro. 

7.1. Herpesvirus 

The in vitro activity of hLf and bLf against human cytomegalovirus (HCMV) infection has been 
described in 1994 [55]. Successively, other studies showed that both lactoferrin and cyclic lactoferricin 
prevented HCMV entrance into the host cells [58]. It has been reported that when negatively charged 
groups were added to lactoferrin by succinylation, the antiviral potency was mostly decreased, whereas 
the addition of positive charges through amination of the protein resulted in an increased anti-HCMV 
activity [57]. 

Successively other authors confirmed that lactoferrin inhibit the early steps of cytomegalovirus 
infection and that the antiviral effect is due to its cationic properties [59]. hLf as well as bLf, 
independently of iron-saturation or the presence of sialic acid, inhibited infection and replication of 
HSV-1 in human embryo lung cells [55]. Both hLf and bLf were found to prevent HSV-1 and HSV-2 
cytopathic effect and yield in Vero cells [60,61]. 

The effectiveness of apo-lactoferrin on HSV-1 and HSV-2 infection was compared with that of 
metal ion saturated forms [Fe(III)-, Mn(II)-, Zn(II)-lactoferrin] and results of this study showed that 
the antiviral effect of the differently saturated bLf towards both viruses was mainly exerted during the 
initial viral adsorption phase [61]. 

In the attempt to identify the regions of lactoferrin responsible for the anti-HSV-1 activity, the 
inhibiting effect of peptide fragments, derived from the tryptic digestion of bLf, were also analyzed [62]. 
Among high molecular weight peptides, one fragment corresponding to the C-lobe was ten-fold more 
effective than another one corresponding to a large portion of the N-lobe. On the other hand, this last 
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one was still six-fold less active than native bLf [62,63]. Two negatively charged small peptides 
deriving from N-lobe, previously shown effective on HSV-1 infection, have been further studied and 
results of this research demonstrated that the net negative charge of these peptides was not responsible 
for the antiviral activity [64]. 

It is well known that the initial attachment of HSV to cells occurs through binding of the viral 
glycoprotein(s) gC or gB to heparan sulfate of host cells. In the absence of HS, virus can bind to 
chondroitin sulfate proteoglycans, although with lower efficiency [65]. Marchetti and co-workers [66] 
demonstrated that bLf was a strong inhibitor of HSV-1 infection in cells expressing either heparan 
sulfate or chondroitin sulfate or both, but was ineffective or less efficient in glycosaminoglycan 
deficient cells or in cells treated with glycosaminoglycan-degrading enzymes, suggesting that the  
anti-HSV-1 activity of lactoferrin is dependent on its interaction with cell surface glycosaminoglycan 
chains of heparan sulfate and chondroitin sulfate [65]. 

The mechanism of inhibiting activity of both hLf and bLf against HSV-2 has been further 
investigated [67]. The antiviral effect of these proteins towards HSV-2 strain and its glycoprotein C 
(gC)-truncated derivative HSV-2 gC-neg1 has been tested in monkey kidney cells. The results 
indicated that the antiviral activity of bLf does not involve gCeHS interaction as there was no 
difference in its effectiveness towards wild type and mutant virus. As regards hLf, the mutant virus 
HSV-2 gC-neg1 was more sensitive compared with the wild type, suggesting that the human protein 
might interact with some viral structures that in wild-type viruses are masked by gC. When the 
modulation of HSV-2 infection by bLf and hLf was investigated under different experimental 
conditions, the bovine protein proved more effective than the human protein. Moreover, differently 
from what observed with HSV-1, bLf inhibited HSV-2 plaque-forming activity also in cells devoid of 
GAG expression, thus suggesting that bLf may block a virus receptor of non-GAG nature [67]. This 
observation adds new information on the anti herpes virus activity of this protein, confirming it as an 
outstanding candidate for the treatment of herpetic infections. 

Concerning hLf, in addition to inhibiting the adsorption and post-attachment events of HSV-1 
infection, hLf is also able to neutralize HSV-1 and that the inhibition of cell-to-cell spread involves 
viral gD [68]. 

Andersen and co-workers [69] demonstrated that bovine Lfcin inhibited HSV-1 and HSV-2 
infection probably by blocking the entry of the virus and that the human homolog (amino acids 18–42), 
which shares 36% sequence similarity with Lfcin (amino acids 17–41), displayed much lower antiviral 
activity. The same authors [70] demonstrated that also Lfcin was dependent on the presence of heparan 
sulfate at the cell surface to exert its antiviral activity. Other studies demonstrated that lactoferrin and 
several of the Lfcin derivatives exhibited similar affinity for heparan sulfate, but the lactoferrin 
proteins were more active compared with the smaller peptides [71]. 

The antiviral activity has also been reported for human Lfcin [72]. The anti-HSV activity of Lfcin 
seems to involve viral interaction with the cell surface glycosaminoglycan heparan sulfate, thereby 
blocking viral entry. Lfcin inhibited cell-to-cell spread of both HSV-1 and HSV-2. Inhibition of cell 
to-cell spread by bovine Lfcin involved cell surface chondroitin sulfate. Based on transmission 
electron microscopy studies, human Lfcin, like bovine Lfcin, was randomly distributed intracellularly, 
thus differences in their antiviral activity could not be explained by differences in their distribution. In 
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contrast, the cellular localization of iron-saturated (holo)-lactoferrin appeared to differ from that of apo-
lactoferrin, indicating that holo- and apo- lactoferrin may exhibit different antiviral mechanisms [72]. 

Lactoferrin and Lfcin agaist HSV-1 cellular uptake and intracellular trafficking were further studied 
by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the 
bLf- and bovine Lfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few 
virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in 
addition to their interference with the uptake of the virus into host cells, lactoferrin and Lfcin also exert 
their antiviral effect intracellularly [73,74]. 

Concerning in vivo studies against CMV, experiments in BALB/c mice showed that the 
administration of bLf, before murine CMV infection, completely protected mice from death [75]. 
Successively, other authors also analyzed the anti-cytomegalovirus activity of lactoferrin in vivo in rat 
models with and without immune suppression, demonstrating that treatment with lactoferrin 
(intravenously) was helpful when infection was initiated with cell-free virus, but not with virus 
infected leukocytes and that lactoferrin exerted its effects via inhibition of cell entry rather than via 
stimulation of the immune system [59]. In in vivo studies on HSV-1, it has been demonstrated that 
topical administration of 1% bLf, prior to the virus inoculation, suppressed HSV-1 infection in the 
mouse cornea but not viral propagation [76]. The influence of bLf feeding on the HSV-1 cutaneous 
infection of mice has been evaluated and results of this study, in which mice were infected with HSV-1 
ten days after lactoferrin administration, showed that lactoferrin inhibited the appearance of skin 
lesions [77]. 

Recently, it has been also reported that cervicovaginal lavage differently inhibited HSV infection by 
a mean value of approximately 57% during the follicular or luteal phase, but only by 36% in hormonal 
contraceptive users [78]. Being lactoferrin synthesis under steroid control, its influence on the antiviral 
activity of cervical fluids cannot be ruled out. 

Concerning animal herpes virus, it has been reported that exposure of susceptible cells to bLf prior 
or during viral adsorption strongly inhibited feline herpes virus 1 (FHV-1) replication [79]. Other 
studies demonstrated that both the apo- and holo-lactoferrin inhibited canine herpes virus multiplication 
in Madin-Darby canine kidney (MDCK) cells [80]. 

7.2. Human Immunodeficiency Virus (HIV) 

It has been demonstrated that both bLf and hLf were able to inhibit the HIV-1-induced cytopathic 
effect. Addition of negatively charged groups to lactoferrin by succinylation resulted in a strong 
antiviral effect on HIV-1 and HIV-2, while the addition of positive charges to lactoferrin through 
amination resulted in a loss of anti-HIV activity [58,81,82]. Both HIV-1 replication and syncytium 
formation were efficiently inhibited, in a dose-dependent manner, by apo- or holo-, Mn(II) and Zn(II)- 
lactoferrin [83]. Other studies demonstrated that bLf strongly inhibited viral reverse transcriptase but 
only slightly inhibited HIV-1 protease and integrase [84]. Studies on bLf-resistant HIV-1 variants 
showed that the viral envelope protein, which contains two mutations that are associated with an 
altered virus-host interaction and a modified receptor-co-receptor interaction, mediated the bLf 
resistance phenotype demonstrating that bLf targeted the HIV-1 entry process [85]. Recently, when 
proteins from milk and serum were tested for their ability to block dendritic cell-mediated HIV-1 
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transmission, bLf turned out to be the most potent inhibitor [86]. Finally, a synergy between lactoferrin 
in combination with Zidovudine against HIV-1 replication in vitro, has been reported [87]. 

It has been reported that oral administration of bLf suppressed oral inflammation in feline 
immunodeficiency virus FIV-infected cats with intractable stomatitis infection. This result suggests 
that bLf therapy may have a potential application to improve and protect functions of overactivated 
lymphocytes by modulating the cell proliferation, cell cycle and cytokines expression as shown in cats 
in terminal stage of FIV infection [88]. 

7.3. Friend Virus Complex (FVC) 

The effects of lactoferrin treatment on the development of erythroleukemia in the spleen of mice 
infected with FVC were studied [89]. The treatment was started at days 7 and 14 before viral infection 
and days 0, 1, 3, 7, and 11 after viral infection, and in the spleens were analyzed 14 days after 
infection. In mice whose treatment was initiated at days 0 and 1 few leukemic cells were present in the 
spleen whereas in mice whose treatment was initiated at day 3 leukemic cells began to spread out in 
the red pulp and encroached upon the white pulp and in mice whose treatment was initiated at days 7 
and 11 many leukemic cells were present in the red pulp. The morphologic features of the spleen in 
animals, whose treatment was initiated at day 7 or 14 before viral infection, were similar to those of 
untreated control groups [89]. Results of another in vivo study suggested that the protective effect of 
holo lactoferrin was probably due to an action on cells responding to the FVC or to an action on  
cells which influence the cells responding to the FVC or which influence the virus [54]. Finally,  
holo-lactoferrin and recombinant murine (rmu) interferon γ (IFNγ), alone or in combination, were used 
to influence disease progression in mice infected with the polycythemia-inducing strain of the Friend 
virus complex (FVC-P). Results of this study showed that spleen focus forming virus (SFFV) titers and 
levels of SFFV mRNA and genomic DNA dramatically decreased in mice treated with the 
combination of lactoferrin and rmu-IFNγ. Moreover, the combined treatment also enhanced the 
survival rates of FVC P-infected mice, suggesting a synergistic suppressive effect of lactoferrin with 
rmu-IFNγ on disease progression in FVC-P-infected mice [90]. 

7.4. Human Hepatitis C Virus (HCV) 

Both bLf and hLf effectively prevented human hepatitis C virus (HCV) infection in cultured human 
hepatocytes (PH5CH8), bLf being the most active. In this study, a direct interaction between 
lactoferrins and E1 and E2 HCV envelope proteins has been reported [91]. It has been also 
demonstrated that pre-incubation of HCV with bLf inhibits viral infection, while cell pretreatment with 
bLf was ineffective [92]. 

Further studies demonstrated that bLf inhibited HCV entry into the cells by interacting with viral 
particles immediately after mixing of bLf and HCV inoculum [93]. Nozaki and co-workers [94] better 
characterized the binding activity of lactoferrin to hepatitis C virus E2 envelope protein and 
determined the region of lactoferrin important for this activity. Results from this study provided the 
first identification of a natural protein-derived peptide that, specifically binding HCV E2 protein, 
prevented HCV infection [94]. 
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Successively, 33 amino acid residues (termed C-s3-33; amino acid 600-632) from hLf were found 
to be primarily responsible for the binding activity to the HCV E2 envelope protein and for the 
inhibiting activity against HCV infection. If this sequence was repeated two or three times, two or 
three C-s3-33 repeated sequences possessed a stronger antiviral activity than of C-s3-33, thus 
suggesting that tandem repeats of lactoferrin-derived anti-HCV peptide are useful as anti-HCV 
reagents [95]. Other two helical peptides deriving from lactoferrin were found to bind hepatitis C virus 
envelope protein E2 [96]. 

Concerning in vivo studies, following the first pilot study of Tanaka and co-workers [97], a trial was 
designed to evaluate the relationship between the dose of bLf and its effect on serum alanine 
aminotransaminase and HCV RNA levels in forty-five patients with chronic hepatitis C [98]. The 
excellent tolerance and potential anti-HCV activity of bLf shown in this trial suggested that further 
trials using a large number of patients were obligatory. In a successive study the effects of long-term 
oral administration of bLf on serum parameters in patients with chronic hepatitis C have been analyzed 
and results obtained suggested that oral administration of lactoferrin induced a Th1-cytokine dominant 
environment in the peripheral blood so favouring the eradication of HCV by a combined interferon 
therapy [99]. It has also been demonstrated that an elevated percentage of HCV infected patients were 
endotoxemic [100]. These patients were poor responders to the IFNα/ribavirin treatment and exhibited 
high serum levels of lactoferrin antibodies that affected the antiviral activity of lactoferrin and 
abrogated the lactoferrin binding to lipopolysaccharides. This interaction inhibited the binding of 
lipopolysaccharide to lipopolysaccharide-binding protein, thus preventing its fixation to CD14 (+) cells 
and leading to a reduced release of pro-inflammatory cytokines [101]. 

Concerning the effectiveness of oral bLf mono therapy, in a clinical trial patients with chronic 
hepatitis C randomly received either oral bLf at a dose of 1.8 g daily for 12 weeks, or an oral placebo. 
There was no significant difference in viral response rates between the two groups, indicating any 
significant bLf efficacy in patients with chronic hepatitis C [102]. 

Different results have been obtained by comparing the viral response to bLf mono therapy at higher 
doses (daily dose of 3.6 g instead of 1.8 g) for 8 weeks followed by bLf, interferon and ribavirin 
combined therapy for 24 weeks. The results showed that the decrease in HCV RNA titer by lactoferrin 
mono therapy contributes to the effectiveness of the combined therapy of interferon and ribavirin in 
patients with chronic hepatitis C [103]. 

An interesting observational study has been reported on Egyptian patients feed with camel milk 
which contains lactoferrin. In in vitro model, purified camel lactoferrin interacts with HCV, thus 
leading to a complete virus entry inhibition [104]. 

7.5. Human Hepatitis B Virus (HBV) 

Lactoferrin also prevents HBV infection in cultured cells and, differently to HCV, cell pretreatment 
with lactoferrin was required to inhibit HBV infection. As pre-incubation of HBV with bLf had no 
inhibitory effect on viral infection, these results suggested that bLf interaction with susceptible cells 
was important for its anti-HBV effect [105]. However, it was unclear whether bLf could inhibit HBV 
amplification in HBV-infected cells. 



Molecules 2011, 16              
 

7003

Recently, Li et al. reported that bLf, and its iron-, and zinc-saturated forms significantly inhibited 
the amplification of HBV-DNA in a dose-dependent manner in HBV-infected HepG2 cells, while bLf 
hydrolysate were ineffective [106]. 

Mother-to-child transmission of HBV is among the most important causes of chronic HBV 
infection and is the commonest mode of transmission worldwide. WHO postulates that chronic HBV 
infection of the mother could not be an argument against breastfeeding. Even if breast milk provides a 
number of bioactive including lactoferrin, there have not been sufficient studies that can even partially 
explain the possible effect of breastfeeding on eventual prevention of mother-to-child transmission of 
HBV [107]. 

7.6. Respiratory Syncytial Virus (RSV) and Parainfluenza Virus (PIV) 

It has been demonstrated that lactoferrin inhibited both RSV absorption and growth in vitro 
nevertheless its antiviral activity was low when added to an infant formula [108]. Successively, Sano 
and co-workers [109] showed that RSV-induced IL-8 secretion from HEp-2 cells was down regulated 
by lactoferrin and that both RSV infectivity and uptake were decreased by lactoferrin treatment. To 
clarify the mechanism of this effect, the interaction of lactoferrin with RSV F protein, the most 
important surface glycoprotein for viral penetration, was examined and results obtained showed that 
lactoferrin directly interacted with the F (1) subunit, which involved antigenic sites of F protein [109]. 
Concerning PIV, Lf exhibits antiviral activity against hPIV-2 by inhibiting virus adsorption to the 
surface of the cells thus preventing viral infection and replication [110]. 

7.7. Alphavirus 

The mechanism of hLf antiviral activity was also investigated by utilizing alphaviruses (Sindbis 
virus and Semliki Forest virus) adapted or non-adapted to interaction with heparan sulfate [111]. 
Results obtained demonstrated that lactoferrin was able to prevent in vitro infection only by heparin 
sulfate-adapted viral strains suggesting that hLf inhibited infection of heparan sulfate-adapted 
alphavirus by interfering with virus-receptor interaction [111]. 

7.8. Hantavirus 

Hantaviral foci number, in cultured cells infected with SR-11, was reduced with bLf treatment [112]. 
Mechanisms of anti-hantaviral activities of bLf and ribavirin (Rbv) were also investigated. 
Preincubation of cells with bLf before infection inhibited hantavirus focus formation of 85% whereas 
post infection treatment with Rbv inhibited the focus formation of 97.5%. Conversely, other in vitro 
experiments showed that Hantaan hantavirus, the prototype hantavirus, is insensitive to several 
antiviral salivary proteins, and is partly resistant to the antiviral effect of saliva [113]. 

It has been found that combined bLf and Rbv treatment completely prevented focus formation [114]. 
Consequently, in in vivo studies, bLf pre- and Rbv post-treatment were evaluated in suckling mice 
infected with hantavirus, of which 7% survived. Lactoferrin administered before viral challenge 
improved survival rates to up to 70% for single administration and up to 94% for double 
administration. Rbv gave survival rates up to 81%. These results suggested that both lactoferrin and 
Rbv were efficacious in the treatment of hantavirus infection in vivo [114]. 
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7.9. Human Papillomavirus (HPV) 

Results of studies carried out utilizing HPV 16-like particles and cultured cells demonstrated that 
lactoferrin acted early in the HPV uptake process with a dose-dependent relationship and that bLf was 
a more potent inhibitor of HPV entry than hLf [115]. Differently, bLf and hLf were found both potent 
inhibitors of HPV-5 and -16 infections [ex115ora 116]. Moreover, bovine Lfcin 17–42 and human 
Lfcin 1–49 had an antiviral effect and this efficacy differed depending on size, charge and structures of 
the Lfcin [116,117]. 

7.10. Rotavirus 

The anti-rotavirus effect of bLf was tested in cultured human intestinal cells (HT-29 cells), expressing 
the differentiation phenotype of mature enterocytes, the in vivo target of rotavirus infection [118]. 
Results obtained showed that bLf prevented either virus attachment to intestinal cell receptors or an 
unknown post adsorption step. Although the antiviral activity was mediated by the N-lobe [119], it was 
hypothesized that bLf prevention of viral attachment was not related to a competition for common 
binding sites on HT-29 cells, since the rotavirus strain utilized in this study binds to glycidic residues 
different from glycosaminoglycans [120], and flow cytometry assays demonstrated a specific 
interaction of lactoferrin with viral particles. The bLf inhibition in the post adsorption step could be 
attributed to the withholding of calcium, which is important for the morphogenesis of the virus. Other 
studies investigated the role of metal binding, sialic acid and tryptic fragments of bLf in the activity 
towards rotavirus infection [119], Results obtained demonstrated that the effect of differently metal 
saturated lactoferrin was exerted during and after the viral attachment step, the removal of sialic acid 
enhanced the anti-rotavirus activity of lactoferrin, and that a large fragment (86–258) and a small 
peptide (324–329: YLTTLK) obtained by tryptic digestion of bLf were able to inhibit rotavirus even if 
at lower extent than undigested protein [119]. 

The effect of whey protein concentrate supplemented with or without lactoferrin on a rotavirus 
infection model in suckling rats has been also investigated, focusing on the diarrhoea process and gut 
and systemic host immune function. Whey protein concentrate supplemented with or without 
lactoferrin reduces the severity of rotavirus-induced acute gastroenteritis and modulates the immune 
response against the pathogen [121]. 

7.11. Feline Calicivirus (FCV) 

Incubation of bLf cultured cells either before or together with FCV inoculation substantially 
reduced FCV infection. Lactoferrin was detected on the surface of cells by immunofluorescence, 
suggesting that the interference of viral infection may be attributed to lactoferrin binding to  
susceptible cells, thereby preventing the attachment of the virus particles [122]. Lfcin also reduced 
FCV infection [122]. It has been further found that increasing the net negative charges of lactoferrin by 
acylation eliminated its antiviral effects against feline calicivirus [123]. 
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7.12. Adenovirus 

Both bLf and hLf prevented adenovirus infection in vitro in a dose-dependent manner [124] and, as 
already reported for other viruses, bLf showed the highest antiviral activity. Differently from that 
observed with poliovirus [125] and in agreement with data reported for many other virus models, 
metal-saturation of bLf did not significantly influence its activity against adenovirus infection. bLf 
inhibited the early step of viral infection, preventing adenovirus antigen synthesis only when pre 
incubated with epithelial cells or when added during the attachment step. bLf activity was mediated by 
the N-lobe, whereas the C-lobe lacked of any effect [126]. Moreover, bovine Lfcin is able to prevent 
adenovirus infection [127]. 

This antiviral activity of bLf occurs through bLf interaction with adenovirus particles and in 
particular, with the adenovirus penton base (polypeptide III), the protein responsible for viral 
attachment to the integrin cell receptors [128]. 

However, the interaction of bLf with host cell receptors cannot be excluded. The primary receptor 
described for infection of most adenovirus species (A, C, D, E and F) was the coxsakievirus-
adenovirus receptor (CAR) [129-131]. The infection of adenovirus serotype 5 (species C), a common 
human pathogen exploited as a viral vector for gene therapy and vaccination, involves binding of the 
viral fiber knob to CAR on the target cells [132], followed by an interaction between the viral penton 
base with integrins on the cell surface [133]. It has been reported that adenoviral infection was 
prominently enhanced by bLf but not hLf, and was not prominently enhanced using blood monocyte-
derived macrophages, suggesting that the relevant receptor is expressed on monocyte-derived dendritic 
cells [134]. These data are conflicting with those showing an antiviral effect against adenovirus by 
both hLf and bLf [124,126]. 

Concerning adenovirus serotypes 19 and 37 shown to be etiological agent of epidemic 
keratoconjunctivitis [135], it is important to underline that the tears contain lactoferrin, produced in the 
acinar cells of the lacrimal gland, at a concentration of around 2.2 mg/mL [136]. In tears, due to the 
high concentration of free lactoferrin, it is most likely that lactoferrin provides a protective role against 
viral adhesion and pathogenesis [137]. Conversely, commercial hLf (Sigma-Aldrich) was found to 
promote adenoviral infection of corneal epithelial cells [138] as well as hLf or bLf from milk or 
recombinant hLf from rice to enhance adenoviral infection of some myeloid cells [139] This 
paradoxical enhancement of adenoviral infection by lactoferrin should be explained by the high degree 
of degradation of commercial hLf showed by Johansson et al. [138], and by different glycosilation sites 
of rhLf, as well as by the degrees of purity or of iron saturation not reported by Adams et al. [139]. 

7.13. Picornavirus 

Studies on poliovirus type 1 infection in Vero cells demonstrated that both bLf and hLf inhibited 
viral cytopathic effect with a dose-dependent relationship by interfering with an early step of viral 
infection [125]. Other researchers have studied the ability of bLf fully saturated with ferric, zinc and 
manganese ions to prevent poliovirus infection. Results obtained demonstrate that only Zn(II)-
lactoferrin was capable of inhibiting infection when added after the viral adsorption step. As the 
inhibition was proportional to the different degrees of lactoferrin metal saturation, the possibility that 
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this phenomenon could be mediated by the intracellular delivery of metal ions, already demonstrated 
for iron saturated lactoferrin [140], has been investigated. This hypothesis was confirmed by the 
dose34 dependent inhibition obtained with the addition of different zinc sulfate concentrations to 
infected monolayers [125]. It is likely that zinc could interfere with viral protein maturation as it has 
been previously demonstrated that the inclusion of zinc, at a concentration that inhibits the proteolytic 
post translational processing of poliovirus polyprotein, resulted in impaired poliovirus infection [141]. 
Moreover, the incubation of poliovirus in a Zn(II) containing buffer resulted in marked structural 
alterations of the capsid and an increase in the permeability to RNase, so that the infectivity of the 
virus was significantly affected [142]. 

hLf and bLf were also assayed in vitro to assess their inhibiting capacity on the cytopathic effect of 
enterovirus 71 (EV71) on human embryonic rhabdomyosarcoma cells [143]. Both proteins were found 
to be potent inhibitors of EV71 infection, with bLf being the most active. Results from kinetic 
experiments suggested that lactoferrin probably exerted its effect on viral adsorption. 

An interesting study has been carried out in a transgenic mouse model for demonstrating the 
protective effects of recombinant lactoferrin against EV71 infection. Transgenic mice carrying alpha 
lactalbumin-porcine lactoferrin and BALB/c wild-type mice were infected with EV71. Following 
EV71 inoculation on the 4th day of life, pups ingesting transgenic milk showed the significantly higher 
survival rate and heavier body weight compared with wild-type mice. RT-PCR analysis for EV71 viral 
RNA showed that the recombinant porcine lactoferrin had a blocking effect on EV71 infection. Our 
data suggest that oral intake of porcine lactoferrin-enriched milk exhibited the ability to prevent EV71 
infection [144]. 

The effect of lactoferrin on echovirus 6 infection in vitro was also investigated [145]. Results of this 
study showed that echovirus 6 infected cells die as a result of apoptosis and that programmed cell 
death is inhibited by bLf treatment. This was the first report in which the prevention of viral-induced 
apoptosis by lactoferrin was demonstrated [145]. 

The same authors have successively investigated the mechanism of bLf anti-echoviral effect 
demonstrating that echovirus infects susceptible cells by an endocytic pathway and that lactoferrin 
treatment is able to prevent viral genome delivery into the cytoplasm. It is likely that lactoferrin 
interaction with echovirus capsid proteins induces alterations that stabilize the conformation of the 
virion making it resistant to uncoating. 

Taken together the results of these studies, the inhibition of echovirus 6 infectivity by lactoferrin 
seems to be dependent on its interaction not only with cell surface glycosaminoglycan chains but also 
with viral structural proteins, demonstrating that this glycoprotein targets the virus entry process [146]. 
On the other hand, the lactoferrin efficacy could be based on its positive charge, because the increasing 
of net negative charges by acylation eliminated antiviral effects [123]. 

7.14. Rhinovirus 

Lactoferrin did not inhibit rhinoviruses, while human milk decreased the growth of some of the 
rhinoviruses [147]. 
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7.15. Influenza A Virus 

Influenza is one of the main plagues worldwide. The statistical likelihood of a new pandemic 
outbreak, together with the alarming emergence of influenza virus strains that are resistant to available 
antiviral medications, highlights the need for new antiviral drugs. 

It has been found in in vitro model that cell cultures died as a result of apoptosis following to H3N2 
influenza A virus infection. Similarly to that first demonstrated in echovirus 6, bLf treatment inhibited 
programmed cell death by interfering with function of caspase 3, a major virus induced apoptosis 
effector, as well as blocked nuclear export of viral ribonucleoproteins so preventing viral assembly [148]. 

Since 2003, H5N1 avian influenza A virus was detected and identified in South East Asia. Both the 
native and esterified bLf seem to be the most active antiviral proteins among the tested samples, 
followed by b-lactoglobulin. a-Lactalbumin had less antiviral activity even after esterification [149]. 

7.16. Japanese Encephalitis Virus 

It has been hypothesized that bLf could be effective against japanese encephalitis virus (JEV) 
through its ability to bind to glycosaminoglycan, one possible receptor for JEV. The results showed 
that bLf inhibited the early events essential to initiate JEV infection, which includes blocking virus 
attachment to cell membranes and reducing viral penetration. Even if these results support the premise 
that the interaction of bLf with cell surface expressed glycosaminoglycans, plays an essential role in 
the antiviral activity, bLf was functional in inhibiting viral entry into heparin sulfate-deficient cells. 
This finding provided evidence to suggest that also cell surface-expressed low-density lipoprotein 
receptor LDLR may play a role in JEV infection [150]. 

7.17. Tomato Yellow Leaf Curl Virus 

The antiviral activity of native and esterified whey protein fractions including lactoferrin was 
studied to inhibit tomato yellow leaf curl virus (TYLCV) on infected tomato plants. Whey proteins 
fractions and their esterified derivatives were sprayed into TYLCV-infected plants. Samples were 
collected from infected leaves before treatment, 7 and 15 days after treatment for DNA and molecular 
hybridization analysis. Native and esterified lactoferrin showed complete inhibition after 7 days [151]. 

8. Conclusions 

The protective effect of lactoferrin towards microbial infections has been widely demonstrated in a 
large number of in vitro studies. Its high cationic feature favors the binding to microbial and viral 
surface components as well as to heparansulfate proteoglycans (HSPG), cell receptors for bacterial 
adhesion and enveloped viral particle early interactions. The capability of lactoferrin to exert antiviral 
activity, through its binding to host cells or viral particles or both, strengthens the idea that this 
glycoprotein is an important brick in the mucosal wall, effective against viral attacks. During viral 
infection, the epithelium can be injured, with the consequence of loss of integrity and protection. As a 
matter of fact, the mucosa plays an important role as a protective physical and functional barrier between 
the external environment and underlying tissues, while the components of its secretions, especially 
lactoferrin are central elements in the initiation and regulation of innate and adaptive immune responses. 
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It is believed that the magnitude of inflammation is a major contributing factor to viral disease 
severity [152]. Epidemiological evidence and clinical observations of natural infections in humans 
suggest that different viruses may be associated with different inflammatory responses. Whether or not 
these differences can be attributed to the viruses themselves or to hosts that are susceptible to severe 
infection or prone to produce high levels of inflammation with a given virus is unknown. 

In this context it should be important to consider the role of lactoferrin in in vivo modulating the 
type or magnitude of the inflammatory response during viral infections. Unfortunately, few clinical 
trials on lactoferrin efficacy against viral infections have been carried out. The scarcity of clinical trials 
hinders to compare the inflammatory response and the lactoferrin efficacy in different animal models 
infected with different viruses. 

However, the antiviral activity of lactoferrin detected in cultured cell monolayers infected by 
enveloped and naked viruses, has been found to be not related to the degrees of lactoferrin iron 
saturation, while Zn- and Mn-saturated lactoferrin exerted a potent antiviral capacity against HSV, 
HIV and poliovirus infection [61,83,125]. 

Conversely, lactoferrin antiviral activity is strongly related to its binding to viral particles or to host 
cells or both. Lactoferrin antiviral activity is also associated to the prevention of Echovirus 6- and 
H3N2 influenza virus-induced apoptosis [145,148]. 

Figure 4 shows the different mechanisms of lactoferrin in preventing viral infection: The binding to 
viral particles (A), the binding to heparan sulfate glycosaminoglycans (HSGA) (B),the binding to viral 
receptors (C), and intracellular localization (D), involving apoptosis or inflammatory pathways. 

Figure 4. Different mechanisms of lactoferrin in preventing viral infection. 
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