Next Article in Journal
Synthesis of Porphyrin-Dendrimers with a Pyrene in the Periphery and Their Cubic Nonlinear Optical Properties
Previous Article in Journal
Selective Covalent Conjugation of Phosphorothioate DNA Oligonucleotides with Streptavidin
Molecules 2011, 16(8), 6927-6949; doi:10.3390/molecules16086927
Article

A Comparative Study of Physical and Chemical Processes for Removal of Biomass in Biofilters

1
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
11
 and
12,*
1 Laboratorio de Catálisis y Materiales, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738 Mexico, D.F., Mexico 2 Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Unidad Profesional Lázaro Cárdenas, Col. Casco de Santo Tomás, 11340, México, D.F., Mexico 3 Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Unidad Profesional Adolfo López Mateos, Zacatenco, 07700, México, D.F., Mexico 4 Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo Ex-Hacienda de la Concepción, Tilcuautla, 42080 Pachuca de Soto, Hgo, Mexico 5 Aeris Environmental Technologies, Edifici Eureka, Campus de la Universidad Autónoma de Barcelona, 08193 Barcelona, Spain 6 Instituto de Investigaciones Quimicobiológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Mujica s/n, 58066 Morelia, Michoacán, Mexico 7 Facultad de Ingeniería en Tec. de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "D" Planta Alta Ciudad Universitaria, Francisco J. Mujica s/n, 58066, Morelia, Michoacán, Mexico 8 Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n esquina Miguel Othón de Mendizabal. Unidad Profesional Adolfo López Mateos, 07738, México, D.F., Mexico 9 Laboratorio de Microscopía Electrónica de Ultra Alta Resolución (Lameuar), Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152 Col. San Bartolo Atepehuacan, 07730, México D.F., Mexico 10 Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Centro Universitario de la Costa Sur, Universidad de Guadalajara, V. Gómez Farías 82, San Patricio-Melaque 48980, Jalisco, Mexico 11 Departamento de Química Física e Enxeñería Química I, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain 12 Departamento de Ingeniería de Sistemas Ambientales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Unidad Profesional Adolfo López Mateos, Zacatenco, 07700, México, D.F., Mexico
* Author to whom correspondence should be addressed.
Received: 11 July 2011 / Revised: 2 August 2011 / Accepted: 5 August 2011 / Published: 15 August 2011
Download PDF [687 KB, uploaded 18 June 2014]
SciFeed

Abstract

After 6 months of operation a long-term biofilter was stopped for two weeks and then it was started up again for a second experimental period of almost 1.3 years, with high toluene loads and submitted to several physical and chemical treatments in order to remove excess biomass that could affect the reactor’s performance due to clogging, whose main effect is a high pressure drop. Elimination capacity and removal efficiency were determined after each treatment. The methods applied were: filling with water and draining, backwashing, and air sparging. Different flows and temperatures (20, 30, 45 and 60 °C) were applied, either with distilled water or with different chemicals in aqueous solutions. Treatments with chemicals caused a decrease of the biofilter performance, requiring periods of 1 to 2 weeks to recover previous values. The results indicate that air sparging with pure distilled water as well as with solutions of NaOH (0.01% w/v) and NaOCl (0.01% w/v) were the treatments that removed more biomass, working either at 20, 30 or 45 °C and at relatively low flow rates (below 320 L h−1), but with a high biodegradation inhibition after the treatments. Dry biomass (g VS) content was determined at three different heights of the biofilter in order to carry out each experiment under the same conditions. The same amount of dry biomass when applying a treatment was established so it could be considered that the biofilm conditions were identical. Wet biomass was used as a control of the biofilter’s water content during treatments. Several batch assays were performed to support and quantify the observed inhibitory effects of the different chemicals and temperatures applied.
Keywords: downward flow; biofilter; backwashing; air sparging; biofilm; clogging; batch assay; filter bed; biomass control downward flow; biofilter; backwashing; air sparging; biofilm; clogging; batch assay; filter bed; biomass control
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
RIS
MDPI and ACS Style

Flores-Valle, S.O.; Ríos-Bernÿ, O.; Chanona-Pérez, J.; Fregoso-Aguilar, T.; Morales-González, J.A.; Prado-Rubianes, O.J.; Herrera-Bucio, R.; López-Albarán, P.; Morales-González, Á.; Garibay-Febles, V.; Domínguez, E.G.; Kennes, C.; Veiga-Barbazán, M.C.; Mendoza-Pérez, J.A. A Comparative Study of Physical and Chemical Processes for Removal of Biomass in Biofilters. Molecules 2011, 16, 6927-6949.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert