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Abstract: Although considerable progress in oncology therapeutics has been achieved in 
the last century, cancer remains one of major death causes in the World and for this reason, 
the development of novel cancer drugs remains a pressing need. Natural marine 
compounds represent an interesting source of novel leads with potent chemotherapeutic or 
chemo-preventive activities. In the last decades, structure-activity-relationship studies have 
led to the development of naturally-derived or semi-synthetic analogues with improved 
bioactivity, a simplified synthetic target or less toxicity. We aim here to review a selection 
of natural compounds with reported anticancer activity isolated of marine sources and their 
associated analogues published in 2010. 

Keywords: marine anticancer compounds; natural analogues; synthetic derivatives; cancer 
 

1. Introduction 

Despite the continuous and important advances in biomedical research, the World Health 
Organization predicts that there will be more then 11 million cancer-related deaths per annum by 2030 [1]. 
Recent research highlights the isolation of promising compounds with effective anticancer activities 
from natural sources. An example of these compounds is trabectedin (PharmaMar’s Yondelis®) [2], 
which represents the first anticancer drug isolated from a marine source. Almost 50 percent of the 
antitumor agents approved over the last 50 years have consisted of compounds either derived from 
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natural sources or (hemi-) synthetic analogues of these products [3]. Natural compounds remain a rich 
source of promising chemotherapeutic or chemo-preventive agents [4-8]. 

The sea covers over seventy percent of the Earth’s surface, and ecosystems such as coral reefs 
contain high levels of biodiversity compared to rainforests. The sea contains many untapped sources of 
drugs with promising activities due to the extensive variety of marine habitats (influenced by factors 
such as UV-exposure, the presence of sunlight, and salinity levels) [9]. Over 2700 scientists from over  
80 nations, who assessed the diversity, distribution and abundance of marine life, conducted a marine 
census. The census resulted in the discovery of over 6000 potentially new species [10-13]. As a 
consequence of this research effort, it is clear that the marine environment represents a largely 
unexploited reservoir of unknown natural compounds, which need to be evaluated for potential 
medicinal applications. 

Natural derivatives of potent bioactive compounds from marine organisms can be bio-synthesized. 
It is well known that in some cases, like that of the plant-derived polyphenol curcumin, the synthetic 
analog exerts a higher activity compared to the parent compound [14,15]. In addition to natural 
analogs, chemical modification is an extensive and exceptionally powerful tool for the development of 
novel drug candidates [16]. Structure-activity-relationship studies of marine compounds can lead to the 
design of analogs that have greater activity together with a simplified synthetic approach, as reported 
with bryostatin 1, a compound produced by the marine bryozoan Bugula neritina, which has been 
studied for several years by the Wender research group [17,18]. 

Many reviews on natural compounds from marine environments have been published [6,19-25]. 
Here, however, we will focus only on selected marine anti-cancer agents and analogues either 
discovered or synthesized in 2010 or whose biological activity was discussed in that year. 

2. Marine Natural Compounds and Their Derivatives Published in 2010 

2.1. Cryptosphaerolide (1) 

Fenical et al. isolated cryptosphaerolide (1, Figure 1), an ester-substituted sesquiterpenoid, in 2010 
from the ascomycete strain CNL-523 (Cryptosphaeria sp.) [26]. This marine product exerts 
cytotoxicity (IC50 of 4.5 μM) on the HCT-116 colon carcinoma cell line. A biochemical study revealed 
that this compound inhibited myeloid leukemia cell differentiation protein Mcl-1, a critical player 
involved in life/death decisions of individual cells [27], with an IC50 of 11.4 μM. Studies on a 
hydrolyzed analog of this compound demonstrated that the presence of a hydroxylated ester side chain, 
linked to the core sesquiterpenoid group, is responsible for the observed anti-cancer activity [26] 
(Figure 2). 

2.2. Manzamine A (2) 

The alkaloid manzamine A (2, Figure 1), which has been isolated from various marine sponges, 
exerted a cytotoxic effect against AsPC-1 pancreatic cancer cells, with an IC50 in a range of 4.2 μM, 
after 3 days of treatment [28]. Additionally, it was reported that manzamine A inhibited AsPC-1 
pancreatic cancer cell migration in vitro, and it decreased their overall metastatic potential. Fluorescent 
microscopy after staining with annexin V indicated an onset of apoptosis. 
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2.5. HESA-A, a Drug from Herbal-Marine Origin 

HESA-A (patented by researchers in Iran) is composed of both plant and marine materials, 
including material from Penaeus latisculatus (king prawn), Carum carvi (Persian cumin) and Apium 
graveolens (celery). HESA-A consists of both mineral and organic constituents and a small amount of 
water (45%, 50% and 5%, respectively) [35]. The exact biological targets of HESA-A have not been 
determined to date, but it is thought that this multi-component drug acts using a variety of 
pharmacological mechanisms [36]. Its efficiency as a non-toxic, chemotherapeutic agent has been 
confirmed recently in various in vivo and pre-clinical studies [35,37-40]. 

2.6. Spongistatin 1 (5) 

The Pettit group isolated the macrocyclic lactone spongistatin 1 (5) from a marine sponge of the 
genus Spongia in 1993; this marine lactone exerted strong cytotoxicity on a panel of 60 types of human 
cancer cells [41]. Spongistatin 1 was reported to inhibit glutamate-induced tubulin polymerization 
(IC50 of 3.6 μM in PtK1 kangaroo rat kidney cells) through its interaction with the Vinca alkaloid 
domain of tubulin, which leads to the inhibition of mitosis [42]. 

After treatment of A549 lung cancer cells with spongistatin 1 (1 nM), cell cycle arrest at the  
G2-M phase, the simultaneous up-regulation of GADD45α-γ and down-regulation of c-Myc were  
observed [43]. Various studies have reported that this marine product triggers caspase-dependent 
apoptosis in leukemia cells, even in primary leukemia cell lines, at low concentrations (1 nM) [43-45]. 

This compound did not induce significant apoptosis in healthy peripheral blood cells, highlighting 
its potential use as a therapeutic drug [44]. Several structure-activity-relationship studies have been 
conducted to date (Figure 6); Kishi et al. noted that a C-23 epimer and spongistatin 1 had similar 
cytotoxic effects [46]. Paterson et al. reported that dehydration of the E-ring (C35-C36) led to an increase 
in cytotoxic potency, but that altering the side chain resulted in an important loss of activity [47]. A 
hydrogen-chlorine substitution in spongistatin 1 resulted in a 10-fold reduction in cytotoxicity [41]. In 
2008, Heathcock et al. evaluated the toxicity of acyclic spongistatin 2 analogs, which contained only 
the E- and F-rings, as well as cyclic EF, ABEF and ABCD ring derivatives. In all derivatives tested, 
cytotoxicity was lost [48]. More recently, Smith et al. noted that an ABEF analog had cytotoxic effects 
when used in the nanomolar range, although its potency was 1,000 times weaker than that of 
spongistatin 1 [49]. In summary, these results demonstrate that the ABEF ring system, as well as the 
triene side chain, are crucial for spongistatin 1 cytotoxicity. 

2.7. Bromopyrrole Akaloids 

Marine sponges from the genera Agelas, Axinella and Hymeniacidon are known to synthesize 
bromopyrrole alkaloids [50,51]. In 1990, various compounds from a similar chemical class, namely 
hymenialdisine (6), debromo-hymeniaidisine (7) and agelasine G (8) were shown to exert significant 
cytotoxic activity against murine lymphoma cells (ED50 of 2.0–3.1 μg/mL). In contrast to these 
compounds, axinohydantoin (9) was significantly less active (IC50 of 18 μg/mL) [51,52]. Additionally, 
dibromophakellstatin (10) exhibited cytotoxicity against various human cancer cells at sub-micromolar 
concentrations, but replacement of the urea group with a guanidine resulted in a decrease in activity [53].  



M

 

I
o
m
3
b
a
c
c
2
d
H

2

H
c
T
p
n
e
in

Molecules 2

n 2010, Xu
observed w
methyl ester
3.8–17.2 μg
bromopyrrol
apoptosis [5
cyclobutane
cell prolifera
200 μg/disk
derivative a
However, de

Figure
compo
pharm

: hig

2.8. β-Carbo

Crews et
Hyrtios retic
cancer cell ty
The core str
publications
namely 5-b
eudistomins
n sub-micro

011, 16  

u et al. demo
with a nov
r (11). This
g/mL) and 
le triggered
54]. Anoth
 unit, halted
ation or sur

k) [56]. Th
and debrom
etailed mech

e 6. Summ
ound spong

macophores 
gher, similar

olines 

t al. isolate
culates. Thi
ypes, with a
ructure of 

s [58,59]. T
bromo-8-me
-J-D (17–1

omolar rang

 

onstrated th
vel bromop
s compound

in xenogr
d cell cycle

her compou
d cell motil
rvival [55]. 
he three sc
mosceptrin, 
hanistic stu

mary of st
gistatin 1 
identified d
r, lower cyt

ed a novel 
is β-carboli
an IC50 as lo
β-carboline

To date, a f
ethoxy-1-m
8), and 14-

ge. Further i

  

hat bromopy
pyrrole, N-
d inhibited 
rafted mice
e arrest in 

und, sceptri
lity in a var
It has been

eptrin deriv
exhibited 

dies on the 

tructure-act
(5) concer

during the s
totoxicity).

β-carboline
ine exhibite
ow as 1.2 μ

e may repre
few β-carbo

methyl-β-car
methyleudi
investigation

yrrole alkalo
-(4,5-dibrom
the prolifer

e (MIC at 
the G1 ph

in (12), co
riety of can
n reported t
vatives, na
lower anti-
pathways a

tivity relati
rning the o
studies are 

e, named h
ed antiprolif
μg/mL for no
esent a prom
oline alkalo
rboline (15
istomin C (
ns on the af

 

oids have an
mopyrrole-2
ration of hu
40 mg/kg)

hase, and t
omposed of
cer cells (at
to be noncy
amely nakam
-motility ef

affected by s

ionship (SA
observed an
highlighted

hyrtiocarbol
ferative acti
on-small cel
mising chem
oids have b
5) [60], n
19) [62]. O
ffected path

nti-cancer a
2-carbonyl)-
uman cance
). It has a
that it indu
f two brom
t 40 μM) [5

ytotoxic to m
muric acid
ffects comp
sceptrin stil

AR) result
nti-cancer 

d in color (X

ine (14), fr
ivity when a
ll lung canc
mical class

been isolate
norharman 

Only the latt
hways need 

  

activity in vi
-L-aminoiso
er cells in v
also been r
uced caspas
mopyrroles 
55] but had 
monkey kid

d (13), its 
pared to sc
ll need to be

ts of the 
cytotoxicity

X: inactive;

 

rom the ma
applied to a
cer (H522-T
, as reporte
d from mar
(16) [61]

ter had cyto
to be condu

  563

ivo. This wa
ovaleric aci
vitro (IC50 o
reported th
se-dependen
bound to 
no effect o

dney cells (
methyl este
ceptrin [55
e conducted

marine 
y. The 
; , =, 

arine spong
a panel of 1

T1) cells [57
ed in sever
rine source
], 2-methy
otoxic effec
ucted. 

 
35

as 
id 
of  
at 
nt 
a 

on 
at 
er 

5]. 
d. 

ge 
13 
7]. 
al 

es, 
yl-
cts 



Molecules 2011, 16              
 

 

5636

2.9. Makaluvamine Analogs 

Makaluvamines (20) (a type of pyrroloiminoquinone) were first isolated from marine sponges 
belonging to the genera Zyzzya and Histodermella [63,64]. These products exert cytotoxic activity 
against various cell lines by inhibiting DNA topoisomerase II [65]. Anti-cancer activity was observed 
with bioactive synthetic analogs of these compounds. Imidazoquinoxalinone derivatives 21 have been 
reported to be less active due to the presence of an electro-deficient benzimidazole ring; the naturally 
occurring compound contains an indole ring. Under physiological conditions, the cationic 
makaluvamines were reported to be active, whereas imidazoquinoxalinones analogs are not charged, 
which explains the decreased activity of the latter [66,67]. Velu et al. evaluated the biological activity 
of makaluvamines containing various substitutions at the 7-position of the pyrroloiminoquinone ring. 
Observations from many natural derivatives allowed them to conclude that the presence of functional 
groups at this position greatly increased cytotoxic potential (Figure 7). In vitro testing with a NCI 
panel of 60 human cancer cell types indicated that the 7-benzyl- and 7-(4-fluorobenzyl) analogs  
(BA-TPQ and FBA-TPQ, respectively) exhibited the greatest cytotoxic effects [68,69]. These 
promising results lead various groups to perform pre-clinical studies. In breast cancer cell lines, both 
products significantly decreased cancer cell growth, induced apoptosis and caused cell cycle arrest at 
submicromolar concentrations (0.5 μM). Additionally, it has been reported that the anticancer activity 
was independent from the activity of p53 in cancer cells [70,71]. FBA-TPQ also strongly inhibited 
cancer cell proliferation, activated apoptosis and caused cell cycle arrest in prostate cancer cells, in the 
low micromolar range (2 μM). Furthermore, androgen receptor (AR) and prostate-specific antigen 
(PSA) levels, as well as the expression of apoptosis-related proteins were reduced [72]. A pharmacological 
study conducted in mice revealed that intravenously-injected BA-TPQ accumulated in the lungs, kidneys 
and spleen; it even reached low concentrations in the brain. However, this product was systemically toxic 
(indicated by animal weight loss) when administered at a concentration of 10 mg/kg [73]. The data 
presented here clearly indicated that makaluvamine analogs represent a promising choice for future 
clinical trails, and they may promote the development of novel anticancer drugs. 

Figure 7. Summary of structure-activity relationship (SAR) results of the marine 
compounds makaluvamines (20) concerning the observed anti-cancer cytotoxicity. The 
pharmacophores identified during the studies are highlighted in color (X: inactive; , =, 

: higher, similar, lower cytotoxicity).  
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2.10. Cyclopentenones 

In 1977, cyclopentenones were shown to possess antitumor properties and to down-regulate cellular 
metabolism [74,75]. It is has been noted that prostaglandins A1, A2 and J2 (compounds 22–24), which 
are known cancer-proliferation inhibitors, carry an α,β-unsaturated cyclopentenone ring linked to alkyl 
chains [76]. It is not surprising that the bioactivity of prostaglandins is mainly due to the presence of 
the cyclopentenone ring. An α,β-unsaturated ketone group is thought to act as an important alkylating 
center through a Michael-type reaction with cysteine [74-76]. Detailed mechanistic studies indicated 
that cyclopentenone (25) caused cell cycle arrest by the repression of cyclin D1, inhibited constitutive 
NF-κB activity and lead to the induction of apoptosis [77,78]. Novel cytotoxic cyclopentenones, 
namely didemnenone (26) and trichoderone (27), have been isolated from the didemnid ascidian 
Lissoclinum sp., and from the marine-derived fungus Trichoderma sp. [79,80]. In both cases, the IC50 
was in the micromolar range. These findings highlight the anticancer potential of cyclopentenone 
groups, making them interesting compounds on which to focus future studies.  

2.11. Heteronemin and Semi-Synthetic Derivatives 

The pentacyclic scalarane heteronemin (28) was first isolated in large quantities from the sponges 
Heteronema erecta and Hytios sp. in 1976 [81]. Crews et al. reported heteronemin had cytotoxic 
effects when applied to brine shrimp and giant kelp (Macrocystis pyrifera) gametes [82]. In 
cytotoxicity assays, this sesterterpene induced cell death in human thyroid carcinoma cells and an analog, 
12-deacetoxy-21-hydroxyheteronemin, exhibited significant cytotoxicity against K562 cells [83,84]. The 
biological pathways affected by this marine product have since been identified. It has also been shown 
that heteronemin exerts antitubercular activity by inhibiting farnesyl transferase [85,86]. Furthermore, 
results from our laboratory have clearly shown that heteronemin attenuates NF-κB pathway activation 
through the down-regulation of proteasome activity [87]. Heteronemin triggered caspase-dependent 
apoptosis in K562 cells, and it sensitized K562 cells to TNFα-induced apoptosis [87]. 

Two structure-activity-relationship studies were published in 2009, with focus on the  
anti-carcinogenic effects induced by this compound [88,89] (Figure 8). Despite the fact that half of the 
tested analogs showed little or no cytotoxicity towards normal human oral fibroblasts or monkey 
kidney epithelial cells, these studies demonstrated that the oxygen atoms at positions C-25 and C-16 
were crucial for the cytotoxic activity of heteronemin, whereas the double bond at position C-17-C-24 
was of marginal importance [88,89]. To summarize, these promising results indicate that heteronemin 
and some of its derivatives represent interesting candidates for future chemotherapeutic drug research. 

2.12. Latrunculin A and B 

Latrunculins A and B (compounds 29,30) were first isolated from the Red Sea sponge Negombata  
magnifica [90,91]. The core structure of both compounds consists of a macrolide fused to a 
tetrahydropyran moiety, where the latter is linked to a 2-thiazolidinone side chain. These were the first 
marine natural products reported to bind reversibly to actin, leading to its disorganization [91]. These 
compounds also exerted potent activity on the angiogenesis, migration and proliferation of cells [92,93]. 
Latrunculin A has a therapeutic index (T/C) of 146% in mice [94], a remarkable result, considering the 



Molecules 2011, 16              
 

 

5638

actin-active agents jaspamide and cucurbitacin did not have comparable therapeutic indices in case 
study conducted by scientists in the Developmental Therapeutics Program (DTP) at the NCI [95,96]. 
X-ray crystallography demonstrated that 2-thiazolidinone fits perfectly into actin pockets, and each 
polar oxygen, except for the O2-ester, forms a hydrogen bond with actin [97]. 

Figure 8. Summary of structure-activity relationship (SAR) results of the marine 
compound heteronemin (28) concerning the observed anti-cancer cytotoxicity. The 
pharmacophores identified during the studies are highlighted in color (X: inactive; , =, 

: higher, similar, lower cytotoxicity). 

  

Several structure-activity-relationship studies have been completed [92,98-101]. The deletion of 
methyl groups from the macrocycle group of latrunculin B resulted in an increased activity and a 
simplified synthetic target [99]. The composition of latrunculin A’s 16-membered macrolide, as well as 
the conformation of its thiazolidinone ring play critical roles in its anticancer activities, as observed 
with human solid cancer cell lines HCT-116 and MDA-MB-435 [98]. Carbamate derivatives exerted 
2.5- to 5-fold greater anti-invasive activity against the extremely metastatic human prostate PC-3M 
cancer cells, with lower actin binding properties [101] (Figure 9). El Sayed et al. demonstrated that 
both 17-O-phenylethyl- and N-hydroxymethyl-analogs of latrunculin A had higher activity than the 
parent product [100]. 

2.13. Dermacozines 

Dermacozines (31), phenazine-type pigments, have been isolated from marine actinomycetes 
isolated from Mariana Trench sediment from a depth of 10.898 meters by Jaspar’s research group [102]. 
This novel class of phenazines has been characterized and confirmed through in-depth analysis of  
1D-,2D-NMR data combined to high-resolution MS, UV-data and CD spectroscopy. Hence these 
marine products exerted a cytotoxicity activity versus leukemic K562 cancer cells with an IC50-range 
from 7 to 220 μM. A structure-activity-relationship study showed that a carboxamide moiety nor a 
lactone ring or a benzyl function majorly affected the observed cytotoxicity of the products  
(Figure 10). However, an additional carboxylic anhydride linked to the phenazine core structure led to 
a 20-fold increase in observed cytotoxicity in contrast to an imide ring. The latter did not alter the 
observed activity [102]. Further mechanistic studies on the pathways affected by dermacozines need to 
be conducted. 

I 

II 

III 

Heteronemin 28  

  I  : -OAc derivative   
 : =O analogue   

 II : scalaradial    
III : no double bond   

OH

HH

H

O

OAc

AcO

12 
16 
17 

24 25 

6 

1 



Molecules 2011, 16              
 

 

5639

Figure 9. Summary of structure-activity relationship (SAR) results of the marine 
compound latrunculin A (29) concerning the observed anti-cancer cytotoxicity. The 
pharmacophores identified during the studies are highlighted in color (X: inactive; , =, 

: higher, similar, lower cytotoxicity).  

 

Figure 10. Summary of structure-activity relationship (SAR) results of the marine 
compounds dermacozines (31) concerning the observed anti-cancer cytotoxicity. The 
pharmacophores identified during the studies are highlighted in color (X: inactive; , =, 

: higher, similar, lower cytotoxicity). 

  

4. Conclusions 

This review provides insight into the current literature regarding marine natural products and their 
derivatives which was published in 2010. The data presented here indicate the great value of natural 
marine products, as well as their synthetic analogs. The data suggest that these synthetic analogs, in 
particular, could be important candidates for further studies involving structural modifications to 
improve the pharmacological profile of native marine metabolites. Furthermore, a simplified analog 
with equipotent activity can lead to the development of a simplistic synthesis process, which would 
guarantee a sufficient supply if bioactive products for further investigation. In conclusion, the isolation 
or modification of novel marine products, as well as their analogs, and the subsequent evaluation of 
their bioactivity will push the discovery of novel promising chemotherapeutic drugs forward. 
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