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Abstract: Astringency is an important characteristic of red wine quality. The sensation is 

generally thought to be produced by the interaction of wine tannins with salivary proteins 

and the subsequent aggregation and precipitation of protein-tannin complexes. The 

importance of wine astringency for marketability has led to a wealth of research on the 

causes of astringency and how tannins impact the quality of the sensation, particularly with 

respect to tannin structure. Ultimately, the understanding of how tannin structure impacts 

astringency will allow the controlled manipulation of tannins via such methods as micro-

oxygenation or fining to improve the quality of wines. 
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1. Introduction 

Tannins, including grape-derived condensed tannins (flavonoids) produce sensations of astringency 

in food and drink and form the ‘structure’ or ‘body’ of red wine. The term astringency refers to the 

drying and a puckering sensation in the mouth [1] and is a characteristic of red wine and its mouth-feel 

[2-5]. Wine tannin quality is dependent on the maximum intensity of the mouth feel, total duration and 

time taken to reach maximum intensity [6], as well as the extent of mouth drying and mouth roughness 

[1,7,8]. The spectrum of subtle differences in astringency sensations was compiled as a ‘red wine 
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mouth-feel wheel’ by Gawel et al. [9], which include such descriptors as ‘powder’ through to 

‘adhesive’ and ‘aggressive’. Astringent sensations of wine are considered pleasant when balanced with 

other factors including alcohol and sugar content. Higher concentrations of tannins and acids compared 

with sugar results in a highly astringent wine that is considered ‘harsh’, ‘unripe’ or ‘green’, and 

conversely, higher concentrations of sugars can result in a wine that may be described as ‘thick’ or 

‘flabby’ [10]. Astringency influences the quality of red wine [11,12] and therefore knowledge of the 

structures of astringent compounds in a wine matrix and the impact of these structures on the sensory 

properties can be an important aspect of winemaking.  

Tannins characteristically have a propensity to bind to proteins and therefore can potentially cause 

gastrointestinal problems by denaturing digestive enzymes in the gut. Salivary proteins are believed to 

bind efficiently to tannins to offset this effect and also to act as a detection mechanism [13-15]. The 

resulting aggregation of the protein-tannin complexes and subsequent increase in friction is generally 

thought to give rise to the sensation of astringency [14,16], however these interactions are only part of 

the complex sensation that can give a range of perceptions from a velvety smooth texture to a harsh, 

puckering sensation [9,17,18]. 

The astringency of wine is influenced by a number of factors, including the structures and quantity 

of the tannin in wine [19], the presence of macromolecules such as polysaccharides [20,21] and 

residual sugars [22], the concentration of smaller molecules such as anthocyanins and catechin 

monomers [7,23], the acidity [24,25], and ethanol concentration [8,24]. Ultimately the understanding 

of how different wine constituents contribute to astringency will enable growers and winemakers to 

have more control over the characteristics of the produced wine. 

2. Mechanisms of Astringency 

Astringency is a complex process involving many mechanisms and is generally considered to be a 

tactile sensation caused by a loss of lubricity in oral saliva [6,26]. The exact mechanisms of this 

process are not well understood, yet many factors are known to contribute to an astringent sensation, 

including an increase in friction [26,27], interactions between tannins and oral epithelial proteins [28] 

or with taste receptors, particularly bitter receptors in the case of small condensed tannins [6,7,29], and 

a change in saliva viscosity [30]. These factors are summarized here and are covered in more detail in 

the review by Bajec and Pickering [31]. 

The main mechanism behind the loss of saliva lubricity is thought to result from the interaction of 

astringent agents, such as tannins, with salivary proteins and glycosaminoglycans 

(mucopolysaccharides). The subsequent aggregation and precipitation of the protein-tannin complexes 

has been shown to reduce the lubricity of saliva by increasing friction in the oral cavity [14,16,32]. 

This process causes a drying and grainy sensation in the mouth and the sensation has been shown to 

differ based on the size and concentration, as well as the hardness or softness, of the precipitate 

[27,33]. The formation of soluble aggregates between hydrolysable tannins and gelatin in vitro has also 

shown to produce an astringent sensation in vivo, suggesting that precipitation is not a necessary to 

induce an astringent sensation [34]. Any remaining unbound tannins may interact with other oral 

surfaces, and experiments by Payne et al. [28] have demonstrated that tannins also interact with oral 

epithelial cells. This interaction was increased at lower pH, which correlated directly with an increase 
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in perceived astringency. Further, tannins and their analogues may degrade in solution [35] and thus 

interact with taste receptors, particularly the bitter receptors [29,36].  

The physiological response of the individual tasting the wine will also influence how they perceive 

the wine astringency. Salivary flow rate, viscosity and protein composition vary between people and 

the latter has been shown to have a significant effect on perceived astringency [8,14,37]. Higher 

concentrations of particular saliva proteins and a higher flow rate of saliva have been shown to 

generally reduce the sensation of astringency [6,37]. Saliva viscosity is not directly correlated with oral 

lubrication, however the sensation of astringency can be produced by a decrease in saliva viscosity, 

which thus increases friction [27].  

Astringency involves many factors, however the key element in the development of this sensation is 

that astringent agents, particularly tannins, interact with proteins in saliva. The exact composition of 

saliva varies among individuals, it is generally reported as comprising mostly of proline-rich proteins 

(PRPs) as well as histidine-rich proteins (histatins or HRPs), α-amylase, lactoferrin, and mucin-

glycoproteins [13,31,37,38], with PRPs and HRPs being the main tannin-binding proteins. Details of 

other tannin-binding salivary components are described in a review by Bennick [39]. PRPs are 

intrinsically unfolded proteins consisting of multiple tandem repeats, which provide numerous binding 

sites for interactions with tannins [40-43], particularly those amino acids that form part of a 

polyproline (PPII) helix [44].  

PRPs are sub-classified as either basic, acidic or glycosylated proteins based on differences in 

amino acid sequences [21,31]. Basic PRPs amount to around 23% of PRPs in human parotid saliva and 

are involved directly with binding to food tannin to prevent it from inhibiting digestion enzymes in the 

stomach [39,43]. The amino acid sequences of many of these proteins have been determined and IB5 

in particular has been widely used as a model PRP for many tannin-protein interaction studies due to 

its low complexity and representative structure [43-45]. Basic PRPs have been proposed as being the 

main tannin-binding PRPs [46], which may be due to the extended conformations of these proteins 

[47]. Acidic and glycosylated PRPs have also been found to bind to hydrolysable tannins [48], as well 

as flavanol polymers and monomers [49], suggesting that they may also contribute to the sensation of 

astringency. Acidic PRPs make up around 30% of known PRPs and are known to have a high affinity 

for binding with calcium and may therefore be part of the dental pellicle [39,46,48]. Glycosylated 

PRPs are the least abundant, incorporating only 17% of known PRPs and are responsible for oral 

lubrication and antibacterial activity [44]. Complexes of tannin and glycosylated PRPs have been 

shown to remain soluble, whereas complexes with non-glycosylated PRPs are more likely to 

precipitate from solution [50] although the impact of these findings on astringency is not known.  

.Histidine-rich proteins also important tannin-binding proteins in saliva, but only constitute 2.6% of 

salivary protein. They tend to be smaller than PRPs with histidine making up about a quarter of the 

amino acids present. Twelve different HRPs (HRP1-12) have been isolated from human saliva and 

their structures determined, with HRPs 1, 3 and 5 accounting for the vast majority of these proteins. 

All three HRPs have been found to bind and precipitate hydrolysable tannins, although HRP 1 

demonstrated reduced capacity for precipitating condensed tannins compared with HRP 3 and 5 

[51,52]. The extended structure and natively unfolded nature of PRPs and HRPs also allow access to 

binding sites more readily than proteins with more globular configurations including amylase [38,45]. 
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The structures of salivary proteins, as well as those of the wine tannins, impact upon the extent of 

protein-tannin interactions in the oral cavity and thus influence the resulting astringency of wine. 

3. Red Wine Tannins  

Red wine tannins consist of condensed tannins extracted from grapes and subsequently structurally 

modified during wine-making. A small percentage of hydrolysable tannins are extracted from oak 

barrels or chips during aging [53], however these compounds alone are unlikely to contribute to 

astringency [54]. Condensed tannins from grape skins are extracted earlier in the fermentation process. 

As fermentation continues, tannins begin to be extracted from grape seeds and flesh [55,56]. Cold 

soaking of grapes has also been shown to increase the extraction of seed tannins in the absence of 

ethanol, which may be related to the softening of the seeds prior to fermentation [57].  

Grape skin tannins consist of long polymeric chains ranging from 3 to 83 flavanol subunits (degrees 

of polymerization, DP) and are composed of procyanidins and prodelphinidins [29,58-62]. The tri-

hydroxylated prodelphinidin subunits consist mainly of epigallocatechin (1, Figure 1), but with trace 

amounts of gallocatechin (2, Figure 1) and epigallocatechin 3-O-gallate (3, Figure 1) [62]. The tannin 

extracted from the skin of commercially ripe grapes consists of a portion of anthocyanins covalently 

bound to the oligomeric condensed tannins [63]. In the major winegrape varieties, anthocyanins 

include malvidin- (4), cyanidin- (5), peonidin- (6), petunidin- (7) and delphinidin- (8) 3-O-glucosides 

(Figure 2) [2,64], which may be incorporated into the structure of skin tannins. Seed tannins have a 

lower average degree of polymerization than skin tannins and are composed mainly of catechin (9, 

Figure 1) and epicatechin (10, Figure 1) subunits, with a greater proportion of galloylated units (13–

29%) compared with skin tannins (3–6%) [65,66]. The size of seed tannins has been reported as 

between DP 2 to 17 [29,66-68]. The smaller molecular weight of seed tannins may be the reason for 

the reported bitterness of these compounds, and this may explain why seed tannins are considered 

undesirable in wine [65,69]. Flesh tannins exhibit greater molecular mass than seed tannins and 

comprise both epicatechin gallate and epigallocatechin subunits [68]. Grape stem tannins can 

contribute to the phenolic composition of wine and potentially increase the tannin concentration. The 

Dp of stem tannins ranges from 4 to 28, with a lower proportion of epigallocatechin subunits compared 

with epicatechin gallate subunits [70,71]. 

During fermentation, the structure of the extracted grape tannin is altered by enzymatic and 

chemical oxidation processes as well as indirect condensation reactions [64,65,72], which are 

facilitated by oxidation products such as acetaldehyde pyruvic acid and glycoxylic acid [73-75]. For 

example, acetaldehyde-mediated condensation reactions initially may involve the formation of ethyl-

linked procyaninidin oligomers or pigmented polymers [76,77]. These can further polymerize to form 

coloured tannins that are potentially more prone to folding and intramolecular bonding than the more 

linear structures of grape tannins [78]. Wine tannin structure is less understood than grape tannin 

structure, which is largely because the structure is more resistant to traditional methods of tannin 

analysis such as acid-catalysed cleavage of the interflavan bonds and subsequent thiolysis or reaction 

with phloroglucinol [78,79]. 

After fermentation, wine constituents continue to undergo chemical changes which influence the 

structure of the tannin content. The acidic and slow oxidative conditions in wine lead to bond breaking 

and rearrangement reactions [33,80], which are thought to cause the polymerization of tannins, as well 
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as the formation of different pigments and pigmented polymers [81-84]. Tannins from aged wines also 

have a greater quantity of coloured anthocyanins incorporated into the structure than tannins isolated 

from young wines [79] and this, to at least some extent, accounts for the decrease in anthocyanin 

concentration in wine with aging [85,86]. Oxidized tannins have been shown to feature greater 

intramolecular interactions, altering the conformation of the tannin in solution to more condensed or 

folded structures rather than the extended forms of grape tannins [78]. The changes in tannin structure 

with grape fermentation and wine aging are likely to impact upon the binding of the tannin with 

salivary proteins and thus the astringency of the wine. 

Figure 1. Structures of condensed tannin subunits (flavan-3-ol monomers) 

 

 Flavan-3-ol Monomer R1 R2 R3 
1 Epigallocatechin OH H OH 
2 Gallocatechin H OH OH 
3 Epigallocatechin 3-O-gallate O-Gal H OH 
9 Catechin H OH H 
10 Epicatechin OH H H 

Figure 2. Structures of anthocyanins in wine. 
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planar pro-S face of the heterocyclic amide bonds in proline [16,41]. Hydrogen bonding is an 

enthalpy-driven electrostatic interaction that occurs between the tertiary amide or carbonyl groups of a 

proline subunit of a PRP [15,87] or the histidine imidazole ring or terminal carbon of an HRP, and the 

tannin hydroxyl groups [52,88]. The hydroxyl groups on the aromatic rings of condensed tannins have 

an acidic proton that acts as a proton donor, and a lone electron pair on the plane of the aromatic ring 

that functions as a proton acceptor. The ability of the tannin to bind to multiple sites on the randomly-

coiled protein condenses the protein-tannin complex and making it more spherical [40]. 

The second stage of interaction involves the formation of protein aggregates with bound tannins, 

through self-association, causing cross-links between protein-tannin complexes [24,40,43]. The third 

stage of interaction occurs when the protein aggregates eventually coalesce producing colloidal 

particles that lead to precipitation of protein-tannin complexes, [14,40]. These processes have been 

shown to involve hydrogen bonding [72,87,89]. The concentration of salivary proteins affects the 

initial protein-tannin interaction, while environmental factors including pH, ionic strength and 

temperature influence the precipitation of formed aggregates in the second and third stages of 

interaction [90]. Differences in the size and hardness of the precipitate can impact upon the perceived 

astringency [22].  

Greater concentrations of tannins have been shown to correlate directly with increases in perceived 

astringency [3,19], and differences in tannin structures have been shown to have a substantial impact 

upon the efficacy of protein binding as well as the perception of astringency [22,91,92]. Enhanced 

protein binding has been reported from tannins of greater molecular size and structural flexibility, 

containing a greater proportion of catechin subunits to epicatechin or epigallocatechin subunits, and 

more C4-C8 bonds than C4-C6 bonds [20,41,93,94]. Larger tannins with greater structural flexibility, 

such as freely rotating interflavan bonds and gallate groups, have a greater propensity to bind to 

proteins due to a larger number of available binding sites for interaction with the proline or histidine 

residues [16,65,95,96]. The increased size of the tannin also permits greater self-association, thereby 

promoting complex aggregation. The correlation between tannin size and efficacy in protein binding 

has been shown to have an upper limit depending on the tannin structure, since steric hindrance can 

prevent access to binding sites and greater molecular weight may limit solubility [16,97]. The presence 

of anthocyanins in the tannin structure also reduces the protein-binding capacity of the compound [65], 

although pigmented polymers have also been found to be positively associated with a puckering 

sensation [11,22].  

The conformation of tannins in solution has been shown to substantially affect the protein-binding 

efficacy of tannins. Flavan-3-ol subunits linked through a C4-C8 bond, such as procyanidin B3 (11, 

Figure 3). This results in a comparatively extended and more linear structure than C6-C8 bonds, such 

as procyanin B5 (12, Figure 3), which potentially enables greater interaction with more binding sites 

proteins rather than greater intra-molecular bonding [38]. Further, the stereochemistry of the 4-8 

interflavan bond is dependent on the flavan-3-ol isomer of the upper subunit, relating to either a 

catechin derivative or epicatechin derivative, respectively. Catechin subunits reportedly have a higher 

specificity for PRPs relative to the epi-isomer, and these results also correlate with an increase in the 

perception of astringency for catechin compared with epicatechin [7,38,98], further demonstrating the 

stereo-specific binding nature of condensed tannins. The subsequent stereochemistry of the interflavan 

bond between these subunits may also influence the conformation of the formed polymer, resulting in 
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the dominance of either an extended or compact form [99,100]. Both configurations have been shown 

to have a strong affinity for PRPs, with extended polymers promoting the formation of aggregates and 

compact polymers demonstrating greater hydrophilic interactions [72,87].  

Figure 3. Structures of procyanidin dimers B3 (11) and B5 (12). 

 

The aging of wine gradually alters the purple hue of young wine to brick-red and is considered to 

render the tannins less astringent. The change in hue is related to the formation of more stable 

pigments such as vitisin A and B and their derivatives from grape anthocyanins [101,102], as well as 

oxidative browning [103]. The cause for the decrease in astringency of red wine over time remains 

uncertain. A decrease in tannin concentration as a result of fining by residual proteins or 

polysaccharides [104], polymerization and subsequent precipitation, or conversely, depolymerization 

of tannins may contribute to the reduction in astringency [35]. However, some aged wines reportedly 

have similar concentration of tannin as young wines [3] and yet aged wines are generally considered to 

be less astringent, which suggests that tannin structural changes may also impact upon the perceived 

astringency [105]. Aged wine tannins have been shown to be larger than young wine tannins [79], a 

characteristic that is generally correlated with greater astringency [91]. Therefore it is possible that 

increased intramolecular bonding due to oxidation results in reduced structural flexibility and thus 

protein interaction, which may impact the astringency of aged wines. Artificially oxidized tannins have 

also been shown to have greater hydrophobicity than ‘native’ tannins [33], which may also impact 

upon the binding efficacy. 
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increased oxygen exposure on red wine may contribute to a stabilization of wine colour and improved 

flavor and aroma [107-109]. One of the impacts of MOX treatment may be to produce changes in 

tannin structure that mimic the changes produced during aging, thus changing the perceived 

astringency of the wine [108,110]. The long term impacts of MOX on red wine are still being 

investigated. 

5. The Impact of the Wine Matrix on Astringency 

The interaction of wine tannin with salivary proteins, and the size and stability of the resulting 

protein-tannin complexes, are also dependent on other parameters of the wine matrix, particularly the 

pH and ethanol concentrations. Additional factors, including the concentration of organic acids, sugar, 

available acetaldehyde concentration, viscosity, and the presence of other compounds that interact with 

tannins such as residual yeast proteins and grape polysaccharides, can also impact upon the perception 

of astringency. The serving temperature of wine was found to have a minimal impact on the sensation 

of astringency [111].  

Ethanol concentration varies in red wine from approximately 11% to 15% and higher 

concentrations have been shown to decrease the perception of astringency in model wines [24,58] and 

alter the astringency sub-qualities of wine [8], although one report indicated an increase in astringency 

with ethanol concentration [112]. A decrease in astringency with increasing ethanol concentration may 

at least in part be due to the conformational changes of tannins in higher ethanol wines. This may 

reduce the binding of tannins to proteins as well as the self-association of bound tannins, limiting the 

formation of protein aggregates [24]. Higher ethanol concentrations in model wine has also been 

shown to decrease the formation of protein-tannin aggregates [49,113]. Increasing ethanol 

concentration between 10 and 20% has also been shown to disrupt hydrophobic interactions between 

tannins and apple cell wall material, particularly for high molecular weight compounds with a higher 

degree of galloylation [98]. Further, greater ethanol concentrations may also increase the lubricity of 

the oral cavity, reducing the perception of roughness [8,24]. An increase in protein precipitation with 

ethanol concentration of 13% compared with aqueous solutions may relate to the change in solubility 

of the formed protein-tannin complexes [112]. Zanchi and colleagues demonstrated differences in 

ethanol solubility in a mixture of grape-seed tannins due to both self-aggregation [114,115] and PRP-

tannin aggregation [33], which is likely to relate to differences in the structure of the tannins. Changes 

in solubility of tannins in wine may also influence the resulting astringency [115]. Finally, an increase 

in viscosity of the solution with greater ethanol content may also decrease the perception of 

astringency as well as protein-tannin interactions [8,30,89]. 

The pH of wine generally ranges from pH 3.2 to 3.8 and this difference is sufficient to elicit 

changes in astringency. Lowering the pH of wine and model wine solutions has been shown to 

increase the intensity of astringency as well as increase the association of tannins with proteins 

[24,116]. This effect is more significant than increasing the concentration of individual organic acids 

such as malic, lactic and tartaric acid [24,25], however greater organic acid concentrations combined 

with greater acidity have been shown to contribute to the chalky characteristics of red wine [22]. A 

combination of low pH and high organic acid concentration was also shown to be responsible for 

increasing the astringency of fermented coconut sap [117].  
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Tannins have been shown to bind to residual proteins or polysaccharides in the wine matrix, thereby 

reducing the concentration available for salivary protein interaction and thus reducing astringency 

[118]. This has been demonstrated in fruit, with the decrease in astringency of ripening fruit attributed 

to an increase in polysaccharides rather than a decrease in tannin concentration [32,119]. Different 

polysaccharides reduce the astringency of tannins by different mechanisms of action. Arabic gum and 

β-cyclodextrin preferentially bind to polyphenols, inhibiting protein-tannin interactions, while the 

polyelectrolytic properties of pectin enable it to bind directly to protein/polyphenol complexes, thereby 

increasing the water solubility of these complexes and preventing them from precipitating out of 

solution [21,120-122]. The polysaccharides in wine are classified based on their net charge, either 

neutral or acidic. Neutral polysaccharides in wine include arabinogalactan and pectin polysaccharides 

from grape cell walls and mannoprotein from the yeast during fermentation, and the main acidic 

polysaccharide is rhamnogalacturonan II. All polysaccharides have been shown to reduce the 

perception of astringency by some degree, however the acidic polysaccharides have shown a greater 

impact on astringency reduction [20,21,66,119]. The concentration of ethanol and ionic strength of the 

solution have also been shown to impact tannin-polysaccharide interactions as well as tannin-protein 

interactions [122]. 

Higher concentrations of sucrose and anthocyanins in wine have been associated with lower 

astringency ratings in wines and reducing the unpleasant ‘puckering’ sensation of young wines 

[22,123-125]. The use of the sweetening agent, aspartame, however, had no impact on the perceived 

astringency of model wine, suggesting that the reported association between high sucrose 

concentrations and reduced astringency may have been due to the increased viscosity of the solution 

[30]. The presence of oxidizing agents that promote polymerization such as acetaldehyde and 

glycoxylic acid have been shown to increase the perception of astringency, presumably due to the 

increase in tannin size [23]. Ethyl-linked flavan-3-ol dimers formed from reactions with acetaldehyde 

have been shown to have the same astringency as non ethyl-linked flavan-3-ol dimers [23]. The 

interactions of these factors in the wine matrix as well as differences in tannin structures and 

concentrations, all impact upon the perceived astringency of red wine.  

6. Conclusions 

There has been considerable research into the mechanisms involved in wine astringency perception, 

the factors affecting astringency in wine and the structures of some of the contributing tannins and yet 

there is still a great deal to understand with respect to how the tannins present in grapes relate to wine 

tannins and astringency in the corresponding wine. Greater knowledge of the structure/ function 

relationships in protein binding, and knowledge of how tannin structure can be selectively changed to 

improve astringency would have important implications in winemaking. 
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