Next Article in Journal
Down-Regulation of Treg Cells and Up-Regulation of Th1/Th2 Cytokine Ratio Were Induced by Polysaccharide from Radix Glycyrrhizae in H22 Hepatocarcinoma Bearing Mice
Previous Article in Journal
Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction
Article Menu

Article Versions

Export Article

Open AccessArticle
Molecules 2011, 16(10), 8332-8342; doi:10.3390/molecules16108332

Effect of EtOH/MgCl2 Molar Ratios on the Catalytic Properties of MgCl2-SiO2/TiCl4 Ziegler-Natta Catalyst for Ethylene Polymerization

Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
*
Author to whom correspondence should be addressed.
Received: 22 August 2011 / Revised: 21 September 2011 / Accepted: 27 September 2011 / Published: 29 September 2011
Download PDF [470 KB, uploaded 18 June 2014]

Abstract

MgCl2-SiO2/TiCl4 Ziegler-Natta catalysts for ethylene polymerization were prepared by impregnation of MgCl2 on SiO2 in heptane and further treatment with TiCl4. MgCl2·nEtOH adduct solutions were prepared with various EtOH/MgCl2 molar ratios for preparation of the MgCl2-supported and MgCl2-SiO2-supported catalysts in order to investigate the effect on polymerization performance of both catalyst systems. The catalytic activities for ethylene polymerization decreased markedly with increased molar ratios of [EtOH]/[MgCl2] for the MgCl2-supported catalysts, while for the bi-supported catalysts, the activities only decreased slightly. The MgCl2-SiO2-supported catalyst had relatively constant activity, independent of the [EtOH]/[MgCl2] ratio. The lower [EtOH]/[MgCl2] in MgCl2-supported catalyst exhibited better catalytic activity. However, for the MgCl2-SiO2-supported catalyst, MgCl2 can agglomerate on the SiO2 surface at low [EtOH]/[MgCl2] thus not being not suitable for TiCl4 loading. It was found that the optimized [EtOH]/[MgCl2] value for preparation of bi-supported catalysts having high activity and good spherical morphology with little agglomerated MgCl2 was 7. Morphological studies indicated that MgCl2-SiO2-supported catalysts have good morphology with spherical shapes that retain the morphology of SiO2. The BET measurement revealed that pore size is the key parameter dictating polymerization activity. The TGA profiles of the bi-supported catalyst also confirmed that it was more stable than the mono-supported catalyst, especially in the ethanol removal region.
Keywords: Ziegler-Natta catalyst; silica; MgCl2; ethanol; spherical support; morphology; polyethylene Ziegler-Natta catalyst; silica; MgCl2; ethanol; spherical support; morphology; polyethylene
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Patthamasang, S.; Jongsomjit, B.; Praserthdam, P. Effect of EtOH/MgCl2 Molar Ratios on the Catalytic Properties of MgCl2-SiO2/TiCl4 Ziegler-Natta Catalyst for Ethylene Polymerization. Molecules 2011, 16, 8332-8342.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top