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Abstract: Hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) (1), 
pentamethylene-1,5-bis(N,N-dimethyl-N-dodecylammonium bromide) (2), tetramethylene-
1,4-bis(N,N-dimethyl-N-dodecylammonium bromide) (3), trimethylene-1,3-bis(N,N-
dimethyl-N-dodecylammonium bromide) (4) and ethylene-1,2-bis(N,N-dimethyl-N-
dodecylammonium bromide) (5) have been obtained and characterized by FTIR and NMR 
spectroscopy. DFT calculations have also been carried out. The optimized bond lengths, 
bond angles and torsion angles calculated by Hartree-Fock/3-21G(d,p) approach have been 
presented. MIC values for A. niger, P. chrysogenum, C. albicans have been determined and 
the relationship between MIC and spacer length has been discussed. 
 
Keywords: polymethylene-α,ω-bis(N,N-dimethyl-N-dodecyloammonium bromides); FTIR 
and NMR spectra; DFT calculations; antifungal activity 

__________________________________________________________________________________ 

1. Introduction 

Quaternary ammonium salts were introduced as antimicrobial agents by Domagk over seventy years 
ago [1]. The first generation of quaternary ammonium compounds (QAC) were standard benzalkonium 
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chlorides, i.e., alkylbenzyldimethyl-ammonium chloride, with specific alkyl distributions, i.e., C12, 
40%; C14, 50% and C16, 10% [2]. The second generation of QAC was obtained by substitution of 
aromatic rings in alkylbenzyldimethylammonium chlorides by chlorine or alkyl groups to get the 
products like alkyldimethylethylbenzylammonium chloride with alkyl distributions of C12, 50%; C14, 
30%; C16, 17% and C18, 3%. The dual quaternary ammonium salts are the third generation of QAC. 
These products are a mixture of equal proportion of alkyldimethylbenzylammonium chloride with 
alkyl distribution C12, 68%; C14, 32% and alkyldimethylethylbenzylammonium chloride with alkyl 
distribution C12, 50%; C14, 30%; C16, 17% and C18, 3%. The twin chain quaternary ammonium salts, 
like didecyldimethylammonium chloride are the fourth generation of QAC. The concept of the 
synergistic combination in the dual QACs has been applied to twin chain quaternary ammonium salts. 
The mixture of dialkyldimethylammonium chloride (dioctyl, 25%; didecyl, 25%, octyldecyl, 50%) 
with benzalkonium chloride (C12, 40%; C14, 50%; C16, 10%) is the newest blend of quaternary 
ammonium salts which represents the fifth generation of QACs [2]. Because of the increasing 
resistance of microorganisms to commonly used disinfectants, the synthesis of new types of 
microbiocides is a very important topic. One of the new groups with good antimicrobial activity are 
cyclic quaternary ammonium salts [3]. Some cyclic quaternary ammonium salts have been obtained 
previously by intramolecular cyclisation of amine derivatives [4-9]. Another way, i.e., reaction of alkyl 
halides with cyclic amines can lead to chiral cyclic quaternary ammonium salts [10]. 

In recent years the number of applications of quaternary ammonium salts has increased 
considerably. They are used as biocides [11-15], and phase-transfer catalysts, especially in 
enantioselective reactions [16-21]. Pyrrolidinium salts are analogues of oxotremorine and are used as 
muscarinic agonist [5]. Some of quaternary ammonium salts exist as ionic liquids, which can be used 
as ”green solvents” [22-26] and electrolytes for liquid batteries [27,28].   

In this work we report the synthesis, FTIR and NMR spectroscopy, DFT calculations and 
antimicrobial properties of polymethylene-α,ω-bis(N,N-dimethyl-N-dodecyloammonium bromides) 1-
5. These compounds belong to a new class of quaternary ammonium salts, the so called gemini 
surfactants, where two tertiary amines are connected at the nitrogen atoms by a spacer. For symmetric 
gemini surfactants the notation [m-s-m] is applicable, where m is the number of carbon atoms in alkyl 
chain and s is a number of methylene groups in a spacer. Antimicrobial activity of [12-s-12] against 
Staphylococcus aureus depends on the length of spacer, and for s = 4 MIC is four times lower than for 
s = 2 [29]. Gemini alkylammonium surfactants  are very promising microbiocides. 

2. Results and Discusion 
 
2.1. Synthesis 

 
Polymethylene-α,ω-bis(N,N-dimethyl-N-dodecyloammonium bromides) 1-4 have been obtained by 

reaction of N,N-dimethyl-N-dodecylamine with 1,6-dibromohexane, 1,5-dibromopentane, 1,4-dibromo-
butane and 1,3-dibromopropane, respectively. Ethylene-1,2-bis(N,N-dimethyl-N-dodecyloammonium 
bromide) (5) has been obtained by reaction of N,N,N’,N’-tetramethylethylenediamine with 1-bromo-
decane. The reaction times were significantly shorter in comparison to procedures described in the 
literature, which is due to the more polar solvent that we used. The reaction yields were very high and 
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varied from 83 to 92%. The analysis of melting points of gemini surfactants 1-5 shows the relationship 
between m.p. and the number of carbon atoms in the spacer (Figure 1). 
 

Figure 1. The relationship between melting points of 1-5 and number of carbon atoms in the spacer.  

Number of carbon atoms in the spacer
1 2 3 4 5 6 7

M
el

tin
g 

po
in

t [
o C

]

180

190

200

210

220

230

 
 

A higher number of carbon atoms in the spacer corresponded to a higher melting point. This clearly 
suggests stronger hydrophobic interactions between the hydrocarbon chains with elongation of spacer 
and better packaging in the crystal. Solubility in water of polymethylene-α,ω-bis(N,N-dimethyl-N-
dodecyloammonium bromides) also depends on the spacer length. Ethylene-1,2-bis(N,N-dimethyl-N-
dodecyloammonium bromide) (5) is soluble in water below 0.1% wt./wt. while hexamethylene-1,6-
bis(N,N-dimethyl-N-dodecylammonium bromide) (1) is readily soluble in water. 
 
2.2. DFT calculations 

 
The structure and numbering for 1-5 are given in Figure 2. The structures optimized at the 

HartreeFock/3-21G(d,p) level of theory are shown in Figure 3. The geometry parameters, energy and 
dipole moments computed using the Hartree-Fock/3-21G(d,p) method are given in Table 1. The 
calculated energy depends on the number of carbon atoms in the spacer. The relative stabilizing energy 
ΔE (a.u.) is a difference between calculated energy for 5, i.e., compound with ethylene group as a spacer 
and for 1, i.e., a compound with a hexamethylene spacer (Table 1). According to this assumption the most 
stable is hexamethylene-1,6-bis(N,N-dimethyl-N-dodecylammonium bromide) (1, Figure 4).  
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Figure 2. Structures and numbering of hexamethylene-1,6-bis(N,N-dimethyl-N-dodecyl-
ammonium bromide) (1), pentamethylene-1,5-bis(N,N-dimethyl-N-dodecylammonium 
bromide) (2), tetramethylene-1,4-bis(N,N-dimethyl-N-dodecylammonium bromide) (3), 
trimethylene-1,3-bis-N,N-dimethyl-N-dodecylammonium bromide) (4) and ethylene-1,2-
bis(N,N-dimethyl-N-dodecylammonium bromide) (5).  
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Figure 3. Structures of 1-5 optimized by the Hartree-Fock/3-21G(d,p) method; (a) 
hexamethylene-1,6-bis(N,N-dimethyl-N-dodecylammonium bromide) (1), (b) penta-
methylene-1,5-bis(N,N-dimethyl-N-dodecylammonium bromide) (2), (c) tetramethylene-
1,4-bis(N,N-dimethyl-N-dodecylammonium bromide) (3), (d) trimethylene-1,3-bis(N,N-
dimethyl-N-dodecylammonium bromide) (4) and  (e) ethylene-1,2-bis(N,N-dimethyl-N-
dodecylammonium bromide) (5). 
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Table 1. Selected parameters of investigated compounds 1-5 calculated by the Hartree- 
Fock/3-21G(d,p) method. 

Parameters 1 2 3 4 5 
Energy (a.u) -6551.697749 -6412.885113 -6474.064183 -6396.071637 -6357.506938 

Dipole moment  
(Debye) 

20.4558 17.1183 4.7632 7.1234 6.5095 

Bond length (Å)      
N+…Br- 3.895 

4.235 
3.932 
3.902 

3.862 
3.954 

4.116 
4.116 

3.638 
3.768 

C(i)-H…Br- 3.681 3.727 3.674 3.297 3.383 
C(j)-H…Br- 3.859 3.551 3.477 3.213 3.111 
C(l)-H…Br- 3.851   1.550  
C(h)-H…Br-  3.661 4.003   

N-C(h) 1.537 1.536 1.534  1.550 
N-C(i) 1.506 1.501 1.503 1.536 1.529 
N-C(j) 1.520 1,540 1.539 1.541 1.550 

C(j)-C(k) 1.540 1.538 1.528   
C(h)-C(g) 1.533 1.535 1.533 1.541 1.544 

Bond angle (o)      
N-C(h)-C(g) 115.7 116.4 116.2 114.5 114.5 
N-C(j)-C(k) 115.0 116.7 115.7 110.2 - 
C(j)-N-C(h) 110.0 113.0 111.6 108.2 110.8 
C(i)-N-C(h) 107.1 108.3 108.1 110.6 113.4 

Dihedral angle (o)      
N-C(h)-C(g)-C(f) 167.4 177.8 179.9 -179.4 -174.0 
N-C(j)-C(k)-C(l) 160.0 -158.9 -179.9 - - 
C(i)-N-C(h)-C(g) 168.7 56.6 175.4 -69.7 -49.1 
C(i)-N-C(j)-C(k) 43.7 -176.4 148.5 161.4 - 

C(a)-C(b)-C(c)-C(d) 179.7 -179.6 180.0 180.0 180.0 
C(j)-N-C(h)-C(g) 47 172.1 58.6 172.9 -166.2 

 
The highest stabilizing energy of 1 is a consequence of intramolecular hydrophobic interactions 

between two alkyl chains (Figure 3a). In compound 5 with an ethylene spacer, the distance between two 
nitrogen atoms is 3.8 Ǻ, whereas the thickness of the dodecyl group is over 5.1 Ǻ. These distances were 
calculated using the data from Table 1. Because of the N···N distance and geometry conditions, the 
structure of 5 with an ethylene group in the spacer is much more open and two dodecane chains cannot 
interact each other. Thus the stabilizing energy of 5 is low. In general as the spacer becomes longer the 
alkyl chains get closer together and compounds are more stabilized. In case of pentamethylene-1,5-
bis(N,N-dimethyl-N-dodecylammonium bromide) (2) the stability of the structure is slightly decreased by 
conformational strain (Figure 4). Additionally, bromide anions in 1-4 are engaged in three non-linear 
weak intramolecular interactions with carbon atoms (Figure 3, Table 1). 
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Figure 4. The relationship between number of carbon atoms in the spacer and relative 
energy ΔE (a.u.) of 1-5. 
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In 5 the bromide atom forms only two non-linear weak intramolecular C-H···Br interactions. Bromide 
anions interact also via Coulombic attractions with positively charged nitrogen atoms. The N+···Br- 
distances are given in Table 1. The conclusions concerning stability of 1-5 in gas phase are in accordance 
with the stability of 1-5 in the solid state expressed by an increasing melting points for compounds with 
longer spacer.  
 
2.3. FTIR spectra study 
 

The FTIR spectra of polymethylene-α,ω-bis(N,N-dimethyl-N-dodecyloammonium bromides) 1-5 
were measured in KBr pellets at 20 °C.  

Figure 5. FTIR spectrum of ethylene-1,2-bis(N,N-dimethyl-N-dodecylammonium bromide) (5). 
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The spectra show typical bands of stretching asymmetric (νas) and symmetric (νa) vibrations as well 
as bands of deformation vibrations (δ), at 2850-2980 cm-1 and 1360-1490 cm-1, respectively (Figure 5). 
No significant changes were observed between the FTIR spectra of 1 with the longest spacer and 5 
with the shortest spacer.   
 
2.4. 1H-NMR and 13C-NMR spectra 
 

The proton chemical shift assignments (Table 2) of polymethylene-α,ω-bis(N,N-dimethyl-N-
dodecyloammonium bromides) 1-5 are based on 2D COSY experiments, in which the proton-proton 
connectivity is observed through the off-diagonal peaks in the counter plot (Figure 6). The relations 
between the experimental 1H and 13C chemical shifts (δexp) and the GIAO (Gauge-Independent Atomic 
Orbitals) isotropic magnetic shielding tensors (σcalc) are shown in Figures 5 and 6. Both correlations 
are linear, described by the relationship: δexp = a + b·σcalc The a and b parameters are given in Table 2. 
It has been reported in the literature [20] that the correlation between the experimental chemical shifts 
and calculated isotropic screening constants are usually better for carbon-13 atoms than for protons. 
The protons are located on the periphery of the molecule, thus are more sensitive to solute-solvent 
interactions than carbon atoms which are more hidden. For this reason the correlation between the 
experimental and calculated data for protons is worse than that for carbon atoms. The differences 
between calculated and experimental shifts for protons and carbons are due to different phases. The 
calculated shifts describe single molecules in the gas phase, while experimental shifts include all 
interactions in the condensed phase.  
 

Table 2. Chemical shifts (δ, ppm) in CD3Cl calculating GIAO nuclear magnetic shielding 
tensors (σcalc) for hexamethylene-1,6-bis(N,N-dimethyl-N-dodecylammonium bromide) (1) 
and ethylene-1,2-bis(N,N-dimethyl-N-dodecylammonium bromide) (5). The predicted 
GIAO chemical shifts were computed from the linear equation δexp. = a + b·σcalc with a and 
b determined from the fit the experimental data ( r is the correlation coefficient). 

     δexp.    δcalc σcalc     δexp.      δcalc     σcalc 
Hexamethylene-1,6-bis(N,N-dimetyl-N-dodecyldodecylammonium bromide) (1) 
Carbon-13   Proton    
C (a) 13.84 14.98 199.37 H (a) 0.88 1.16 32.767 
C (b) 22.63 21.93 193.49 H (b) 1.25 1.27 32.644 
C (c) 31.60 30.49 186.25 H(c) 1.25 1.21 32.711 
C (d) 29.17 29.62 186.98 H (d) 1.25 1.22 32.699 
C (e) 29.17 29.35 191.11 H (e) 1.25 1.24 32.676 
C (f) 26.06 24.74 191.23 H (f) 1.25 1.22 32.704 
C(g) 
C(h) 
C(i) 
C(j) 
C(k) 
C(l) 
a 

22.38 
64.38 
50.73 
63.81 
21.51 
24.42 

 

24.60 
67.19 
49.27 
61.86 
23.33 
22.38 

250.5599 

155.19 
170.35 
159.70 
192.31 
193.11 

H(g) 
H(h) 
H(i) 
H(j) 
H(k) 
H(l) 
 

1.72 
3.52 
3.39 
3.69 
1.98 
1.56 

2.03 
2.92 
3.35 
4.03 
1.78 
1.54 

30.40303 

31.787 
30.790 
30.308 
29.547 
32.068 
32.339 

b  -1.1816    -0.892456  
r2  0.98999    0.93883  
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Table 2. Cont. 
Ethylene-1,2-bis-(N,N-dimethyl-N-dodecylammonium bromide) (5) 
Carbon-13   Proton    
C (a) 14.3 15.84 199.21 H (a) 0.88 1.24 32.732 
C (b) 22.99 22.64 192.97 H (b) 1.30 1.35 32.568 
C (c) 31.84 30.32 185.92 H(c) 1.25 1.29 32.648 
C (d) 29.53 29.62 186.56 H (d) 1.25 1.30 32.637 
C (e) 29.53 29.31 186.85 H (e) 1.25 1.31 32.620 
C (f) 26.20 24.67 191.10 H (f) 1.25 1.31 32.623 
C(g) 
C(h) 
C(i) 
C(j) 
a 

22.60 
65.54 
51.29 
56.51 

 

23.77 
62.89 
50.24 
60.78 

232.9141 

191.93 
156.04 
167.64 
157.57 

H(g) 
H(h) 
H(i) 
H(j) 
 

1.81 
3.67 
3.43 
4.55 

1.33 
3.69 
3.11 
4.71 

22.6482 

32.598 
28.976 
29.866 
27.423 

b  -1.0897    -0.6541  
r2  0.98592    0.96714  

 
Figure 6. COSY NMR spectrum for hexamethylene-1,6-bis(N,N-dimethyl-N-
dodecyldodecylammonium bromide) (1). 

 
 

Figure 7. Experimental chemical shifts (δexp, CD3Cl) in hexamethylene-1,6-bis(N,N-
dimethyl-N-dodecylammonium bromide) (1) vs. the isotropic magnetic shielding (σcalc) 
from the GIAO/HF/3-21G(d,p) calculations for molecules δexp = a + b·σcalc : (a) 13C and (b) 1H. 
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Figure 8. Experimental chemical shifts (δexp, CD3Cl) in ethylene-1,2-bis(N,N-dimethyl-N-
dodecylammonium bromide) (5) vs. the isotropic magnetic shielding (σcalc) from the 
GIAO/HF/3-21G(d,p) calculations for molecules δexp = a + b σcalc : (a) 13C and (b) 1H. 
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2.5. Antimicrobial activity 
 

Minimal inhibitory concentration (MIC) values for all polymethylene-α,ω-bis(N,N-dimethyl-N-
dodecyloammonium) bromides against A. niger ATCC 16404 and A. niger LOCK 0439 are higher 
than those against P. chrysogenum LOCK 0531 and C. albicans ATCC 10231 (Table 3).  
 

Table 3. The minimal inhibitory concentration (MIC) (μM/mL) of polymethylene-α,ω-
bis(N,N-dimethyl-N-dodecyloammonium bromides) (1-5) for conidia and vegetative cells. 

 
Compound 

Strains 
A.niger 

ATCC 16404 
P.chrysogenum 

LOCK 0531 
A.niger 

LOCK 0439 
C.albicans 

ATCC 10231 
(1) 0.12 0.06 0.12 0.015 
(2) 0.12 0.06 0.24 0.015 
(3) 0.15 0.095 0.375 0.037 
(4) 0.3 0.15 0.4 0.075 
(5) 0.3 0.15 0.4 0.075 

 
Aspergillus niger is a fungus, which are very resistant to chemical disinfectants, what make them 

very difficult to removed from the surface and air. The highest antifungal activity was shown by 
hexamethylene-1,6-bis(N,N-dimethyl-N-dodecylammonium bromide) (1) and pentamethylene-1,5-
bis(N,N-dimethyl-N-dodecylammonium bromide) (2). In general for all fungal strains a longer spacer 
corresponds to a lower MIC (Figure 9). This phenomenon may result from the fact that polymethylene-
α,ω-bis(N,N-dimethyl-N-dodecyloammonium bromides) with long spacers are more flexible and 
connect more easily with the conidial surface. The MIC value of dodecyltrimethylammonium chloride, 
which is a monomer analog of polymethylene-α,ω-bis(N,N-dimethyl-N-dodecyloammonium 
bromides), against A. niger is 20 times higher than the MIC value for hexamethylene-1,6-bis(N,N-
dimethyl-N-dodecylammonium bromide) (1) [2]. This means that the same biocidal effect can be 
obtained using at least ten times less dimeric surfactant instead of a monomeric surfactant. These are 
fundamental results for the application of gemini surfactants like polymethylene-α,ω-bis(N,N-
dimethyl-N-dodecyloammonium bromides), as chemical microbiocides.  
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Figure 9. The relationship between number of methylene groups in the spacer of 
polymethylene-α,ω-bis(N,N-dimethyl-N-dodecyloammonium bromides) 1-5 and MIC  
of conidia. 

 

 

 

 

 

 

 

 

 
The minimal concentrations which inhibit 48-hour mycelium development for hexamethylene-1,6-

bis(N,N-dimethyl-N-dodecylammonium bromide) (1) and pentamethylene-1,5-bis(N,N-dimethyl-N-
dodecylammonium bromide) (2) are significantly higher than those for conidia. (Table 4). The higher 
MIC values for mycelium in comparison to conidia result from the character of mycelium growth. 
Fragments of hypha growing by apical elongation are sensitive to disinfectants, while portions of the 
hyphae away from the tips are more resistant [30]. This resistance is due to a thicker cellular wall that 
hinders penetration of microbiocide molecules. Another reason of this resistance is wall porosity, 
which decreases with age [31].  

Table 4. (MIC, μM/mL) of hexamethylene-1,6-bis(N,N-dimethyl-N-dodecylammonium 
bromide) (1) and pentamethylene-1,5-bis(N,N-dimethyl-N-dodecylammonium bromide) (2) 
for mycelium and pseudomycelium. 

 
Compound 

Strains 
A.niger 

ATCC 16404 
P.chrysogenum 

LOCK 0531 
A.niger 

LOCK 0439 
C.albicans 

ATCC 10231 
1 0.31 0.31 0.31 0.31 
2 0.31 0.76 0.76 0.45 

 
3. Experimental  
 
3.1. General 
 

The NMR spectra were measured with a Varian Gemini 300VT spectrometer, operating at 300.07 
and 75.4614 MHz for 1H and 13C, respectively. Typical conditions for the proton spectra were: pulse 
width 32°, acquisition time 5s, FT size 32 K and digital resolution 0.3 Hz per point, and for the carbon 
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spectra pulse width 60°, FT size 60 K and digital resolution 0.6 Hz per point, the number of scans 
varied from 1,200 to 10,000 per spectrum. The 13C and 1H chemical shifts were measured in CDCl3 
relative to an internal standard of TMS. All proton and carbon-13 resonances were assigned by 1H 
(COSY) and 13C (HETCOR). All 2D NMR spectra were recorded at 298 K on a Bruker Avance DRX 
600 spectrometer operating at the frequencies 600.315 MHz (1H) and 150.963 MHz (13C), and 
equipped with a 5 mm triple-resonance inverse probe head [1H/31P/BB] with a self-shielded z gradient 
coil (90° 1H pulse width 9.0 μs and 13C pulse width 13.3 μs). Infrared spectra were recorded in the KBr 
pellets using a FT-IR Bruker IFS 66 spectrometer. The ESI (electron spray ionization) mass spectra 
were recorded on a Waters/Micromass (Manchester, UK) ZQ mass spectrometer equipped with a 
Harvard Apparatus syringe pump. The sample solutions were prepared in methanol at a concentration 
of approximately 10-5 M. The standard ESI – MS mass spectra were recorded at a 30 V cone voltage. 

 
3.2. Computational details  

 
The calculations were performed using the Gaussian 03 program package [32] at the Hartree-Fock 

[33,34] levels of theory with the 3-21 basis set [33]. The NMR isotopic shielding constants were 
calculated using the standard GIAO (Gauge-Independent Atomic Orbital) approach [32-35] of 
GAUSSIAN 03 program package [36]. 

 
3.3. Antimicrobial study 
 
Fungal strains. The antifungal activity of the gemini surfactants was evaluated against Aspergillus 
brasiliensis (previously A. niger) ATCC 16404, Aspergillus niger LOCK 0439, Penicillium 
chrysogenum LOCK 0531 and Candida albicans ATCC 10231.  

Antifungal activity. Minimal inhibitory concentrations (MIC values) against conidia of moulds were 
measured by a tube standard 2-fold dilution method. Malt Extract Broth (Merck) was used for the 
antifungal tests. Moulds were preincubated on MEA slant for 5 days at 28 ºC, yeast – for 1 day at  
37 ºC. Conidia suspensions of each strain were prepared by adding sterile water containing 0.1% (w/w) 
Tween 80 to the slant. The yeast cell suspension of Candida albicans was prepared by similar 
procedure but without Tween 80. The conidia and yeast cells were adjusted to 1-2 × 106 cells/ml by 
counting them in Thoma chamber. One mL of conidia suspension was mixed with 1 mL of media 
containing the tested compounds and incubated at 28 ºC for 72 h – moulds, 37 ºC for 48 h - yeast. The 
MICs were defined as the lowest concentration of the compounds at which there was no visible 
growth. Minimal inhibitory concentrations (MIC values) against mycelium of moulds were measured 
by the suspension method. Conidia and yeast cells suspensions were prepared in the same way as for 
the conidia test. Next, 1.5 mL of inoculum was mixed with 12 mL of MEB medium and incubated for 
48 h - moulds at 28 ºC, yeast- 37 ºC. After this time, 1.5 mL of tested gemini surfactants in different 
concentrations were added and all cultures were incubated another 48 h. The control sample was 
culture of mycelium without gemini surfactants. In this case, the MICs were defined as the lowest 
concentration of the compounds at which the development of mycelium in comparison to the control 
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sample was inhibited. Each experiment was repeated three times and the mean values were used to 
compute the MICs. 

3.4. Synthesis  
 
Hexamethylene-1,6-bis(N,N-dimethyl-N-dodecyldodecylammonium bromide) (1). N,N-Dimethyl-N-
dodecylamine (18.2 g, 0,09 M) was mixed with 1,6-dibromohexane (10,7 g, 0.04 M) in acetonitrile  
(80 mL). The reaction mixture was heated under reflux for 5 h. The solvent was evaporated under 
reduced pressure and the residue was dried over P4O10 and then recrystallized from acetonitrile, yield 
84%, m.p. 231-232 °C; Elemental analysis: found (calc) %C 60.54 (60.88); %H 11.75 (11.12); %N 
4.03 (4.18); ES+MS m/z 255 (C34H74N2/2); 1H-NMR: δ 0.88 [6H, H(a)], 1,25 [4H, H(b)], 1.25 [4H, 
H(c)], 1.25 [4H, H(c)], 1.25 [4H, H(d)], 1.25 [20H, H(e)], 1.25 [4H, H(f)], 1.72 [4H, H(g)], 3.52 [4H, 
H(h)], 3.39 [12H, H(i)], 3.69 [4H, H(j)], 1.98 [4H, H(k)], 1.56 [4H, H(l)]; 13C-NMR: δ 13.84 C(a), 
22.63 C(b), 31.60 C(c), 29.17 C(d), 29.17 C(e), 26.06 C(f), 22.38 C(g), 64.38 C(h), 50.73 C(i), 63.81 
C(j), 21.51 C(k), 24.42 C(l)  

 
Pentamethylene-1,5-bis(N,N-dimethyl-N-dodecyldodecylammonium bromide) (2). N,N-Dimethyl-
dodecylamine (9.3 g, 0.04 M) was mixing with 1,5-dibromopentane (5.0 g, 0.02 M) in acetonitrile  
(80 mL). The reaction mixture was heated under reflux for 4 h. The solvent was evaporated under 
reduced pressure and the residue was dried over P4O10 and then recrystallized from acetonitrile, yields 
86%, m.p. 226-227 °C; Elemental analysis found (calc) %C 59.99 (60.35); %H 11.58 (11.05); %N 
4.02 (4.27); ES+MS m/z 248 (C33H72N2/2); 1H-NMR: δ 0.88 [6H, H(a)], 1,36 [4H, H(b)], 1.25 [4H, 
H(c)], 1.25 [4H, H(c)], 1.25 [4H, H(d)], 1.25 [20H, H(e)], 1.25 [4H, H(f)], 1.73 [4H, H(g)], 3.52 [4H, 
H(h)], 3.38 [12H, H(i)], 3.86 [4H, H(j)], 2.08 [4H, H(k)], 1.62 [2H, H(l)]; 13C-NMR: δ 13.98 C(a), 
22.79 C(b), 31.75 C(c), 29.28 C(d), 29.28 C(e), 26.20 C(f), 22.46 C(g), 64.45 C(h), 50.69C(i), 63.76 
C(j), 21.73 C(k), 22 53 C(l).  

 
Tetraethylene-1,4-bis(N,N-dimethyl-N-dodecyldodecylammonium bromide) (3). N,N-Dimethyl-
dodecylamine (9.7 g, 0.05 M) was mixing with 1,4-dibromobutane (4.9 g 0.03 M) in acetonitrile  
(80 mL). The reaction mixture was heated under reflux for 5 h. The solvent was evaporated under 
reduced pressure and the residue was dried over P4O10 and then recrystallized from mixture 
acetonitrile:aceton, yields 92%, m.p. 225-226 °C; Elemental analysis found (calc) %C 58.74 
(59.80); %H 11.47 (10.98); %N 4.18 (4.36); ES+MS m/z  241(C32H70N2/2); 1H-NMR: δ 0.88 [6H, 
H(a)], 1,26 [4H, H(b)], 1.26 [4H, H(c)], 1.26 [4H, H(c)], 1.26 [4H, H(d)], 1.26 [20H, H(e)], 1.26 [4H, 
H(f)], 1.76 [4H, H(g)], 3.46 [4H, H(h)], 3.33 [12H, H(i)], 3.85 [4H, H(j)], 2.08 [4H, H(k)]; 13C-NMR: 
δ 13.81 C(a), 22.60 C(b), 31.59 C(c), 29.19 C(d), 29.19 C(e), 26.08 C(f), 22.37 C(g), 64.75 C(h), 50.67 
C(i), 63.17C(j), 19.57 C(k). 

 
Threemethylene-1,3-bis(N,N-dimethyl-N-dodecyldodecylammonium bromide) (4). N,N-dimethyl-
dodecylamine (9.7 g, 0.05 M) was mixing with 1,3-dibromopentane (4.6 g, 0.03 M) in acetonitrile  
(80 mL). The reaction mixture was heated under reflux for 6 h. The solvent was evaporated under 
reduced pressure and the residue was dried over P4O10 and then recrystallized from mixture 
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acetonitrile:aceton, yields 86%, m.p. 199-200 °C; Elemental analysis found (calc) %C 58.81 
(59.22); %H 10.56 (10.90); %N 4.17 (4.46); ES+MS m/z 234 (C31H68N2/2); 1H-NMR: δ 0.88 [6H, 
H(a)], 1,35 [4H, H(b)], 1.26 [4H, H(c)], 1.26 [4H, H(d)], 1.26 [20H, H(e)], 1.26 [4H, H(f)], 1.79 [4H, 
H(g)], 3.55 [4H, H(h)], 3.42 [12H, H(i)], 3.82 [4H, H(j)], 2.77 [4H, H(k)]; 13C-NMR: δ 13.87 C(a), 
22.73 C(b), 31.66 C(c), 29.27 C(d), 29.27 C(e), 26.13 C(f), 22.42 C(g), 66.00 C(h), 50.99, C(i), 60.64 
C(j), 18.55 C(k). 

 
Ethylene-1,2--bis (N,N-dimethyl-N-dodecyldodecylammonium bromide) (5). N,N,N’,N’-Tetra-
methylethylamine (2 g, 0.02 M) was mixing with bromododecane (4.6 g, 0.03 M) in acetonitrile  
(30 mL). The reaction mixture was heated under reflux for 4 h. The solvent was evaporated under 
reduced pressure and the residue was dried over P4O10 and then recrystallized from mixture 
ethanol:ethyl acetate, yields 83%, m.p. 186-187 °C; Elemental analysis found (calc) %C 58.49 
(58.62); %H 10.83 (10.82); %N 4.57 (4.56); ES+MS m/z 227 (C30H66N2/2); 1H-NMR): δ 0.88 [6H, 
H(a)], 1,30 [4H, H(b)], 1.25 [4H, H(c)], 1.25 [4H, H(d)], 1.25 [20H, H(e)], 1.25 [4H, H(f)], 1.81 [4H, 
H(g)], 3.67 [4H, H(h)], 3.43 [12H, H(i)], 4.55 [4H, H(j)]; 13C-NMR (CDCl3): δ 14.03 C(a), 22.99 C(b), 
31.84 C(c), 29.53 C(d), 29.53 C(e), 26.20 C(f), 22.60 C(g), 65.54 C(h), 51.29, C(i), 56.51 C(j). 
 

4. Conclusions 
 

Polymethylene-α,ω-bis(N,N-dimethyl-N-dodecyloammonium  bromides) 1-4 have been obtained 
with good yield after short reaction times by reaction of N,N-dimethyl-N-dodecylamine with 1,6-
dibromohexane, 1,5-dibromopentane, 1,4-dibromobutane and 1,3-dibromopropane. Ethylene-1,2-bis-
(N,N-dimethyl-N-dodecyloammonium bromide) (5) has been prepared in good yield by reaction of 
N,N,N’,N’-tetramethylethylenediamine with 1-bromodecane. The structures of the title compounds 
have been analyzed by FTIR and NMR spectroscopy, as well as by DFT calculations. Properties of 
polymethylene-α,ω-bis(N,N-dimethyl-N-dodecyloammonium bromides) 1-5, including energy, melting 
points, solubility and antifungal activity, depend strongly on the length of the spacer. The longer the 
spacer the better the water solubility, stability and antifungal activity. Hexamethylene-1,6-bis(N,N-
dimethyl-N-dodecyloammonium bromide) shows the best antifungal activity and can be used as an 
efficient microbiocide.  
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