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Abstract: Over the past century, various synthetic approaches have been suggested to the 

most famous dye of antiquity, Tyrian purple (6,6′-dibromoindigo). These synthetic routes 

have been exhaustively surveyed and critically evaluated from the perspective of 

convenience, cost, safety and yield. 
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1. Introduction 

6,6′-Dibromoindigo (1; see Scheme 1) is the chemical structure of the major component of Tyrian 

purple, the most famous dye of antiquity [1,2]. From ancient times the dye has been produced from 

secretions of various species of snails found off the Atlantic and Mediterranean coasts. Due to the 

minute amounts of dye found in the snails, the dye has always been very costly. Paul Friedländer, who 

in 1909 first identified the structure of the dye as 6,6′-dibromoindigo, required 12,000 Murex 

brandaris snails to produce 1.4 g of pure pigment [3]. Over the past century a variety of groups have 

undertaken to develop rational syntheses of this historic dye. Their efforts are surveyed and critically 

evaluated herein from the perspective of convenience, cost, safety and yield. Several possible 

improvements are also proposed. 
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2. Preparation Tyrian Purple from 4-Bromo-2-nitrobenzaldehyde 

2.1. The original synthesis and its elaborations 

Nearly all known syntheses of 6,6′-dibromoindigo (1) are based on the oxidative coupling of a 

6-bromoindole derivative, which is usually generated in situ. Thus, the first synthesis of 1, reported in 

1903 by Sachs and Kempf [4] (Scheme 1), was based on the Claisen condensation of 4-bromo-2-

nitrobenzaldehyde (8) with acetone, in analogy to the Baeyer-Drewsen process for the manufacture of 

indigo [5,6].  

Scheme 1. Sachs and Kempf synthesis 6,6′-dibromoindigo (1). 
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The substituted benzaldehyde 8 was prepared, in five steps starting from 2,4-dinitrotoluene (2), in 

an overall yield of about 34% [4,7,8]. Under the reaction conditions, the hydroxyketone 9 

spontaneously cyclizes and undergoes oxidative coupling, but it could be isolated using trisodium 

phosphate instead of NaOH in the Claisen condensation [8]. Interestingly, the yield of dibromoindigo 

in the final step was not reported. 

This original Sachs and Kempf route is clearly inconvenient, due to the lengthy preparation of the 

bromonitrobenzaldehyde 8. Subsequent syntheses were accordingly based on shorter methods for the 

preparation of this aldehyde. Thus, van der Lee prepared 8 in 4 steps from p-toluidine (10) [9] 

(Scheme 2). In the latter procedure, 10 is nitrated in concentrated sulfuric acid to give 4-amino-2-

nitrotoluene (11) or its sulfate [10-15], which is then diazotized and converted to 4-bromo-2-
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nitrotoluene (12) in a Sandmeyer reaction or one of its variants [9,11,12,16-21]. The substituted 

toluene is then condensed with amyl nitrite [22,23] to give the oxime 13. The latter is then oxidatively 

cleaved with ferric ammonium sulfate to give the desired aldehyde 8. 

Scheme 2. van de Leer approach to bromonitrobenzaldehyde 8. 
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This synthesis of 2 is indeed shorter, but at the expense of rather low yields. A modest improvement 

was achieved via a related scheme by Rottig [24], who used ethyl instead of amyl nitrite for the 

conversion of toluene 12 to oxime 13. Benzaldehyde 8 was subsequently condensed with acetone in 

the usual way to give dibromoindigo 1. However, despite these improvements, the reported overall 

yield of 1 based on the starting toluidine was only 5.5% [24]. 

An additional drawback of the above scheme is that even the modest yields of the benzaldehyde 8 

obtained by reaction of 12 with alkyl nitrites could not be reproduced by later workers. As an 

alternative to this reaction, Barber and Stickings [25] found that oxidation of 12 with chromic acid in 

the presence of acetic anhydride was a more reliable method, although the yields were hardly better. 

The latter method had previously been used to prepare o-nitrobenzaldehyde from o-nitrotoluene in two 

steps through the corresponding Diacetate [26-29]. The chromic acid oxidation of 12 was subsequently 

used by Pinkney and Chalmers [30] and by Torimoto and coworkers [31] in their syntheses of Tyrian 

purple, and also by Keinan and coworkers [32]. Recently, the procedure of Pinkney and Chalmers was 

improved by Imming and coworkers [33], who achieved an overall 10% yield of 1 from 10 (Scheme 3).  

Scheme 3. Imming route [33] to Tyrian purple. 
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The final condensation of the benzaldehyde 8 with acetone in all these reported syntheses 

consistently gives yields of no more than about 50% [34]. In 1950, Harley-Mason [35], following the 

earlier work of Thiele [36], reported that the sodium salt of 2-nitro-1-o-nitrophenylethyl alcohol (18), 

obtained by the nitro-aldol condensation (Henry Reaction) of o-nitrobenzaldehyde (16) with 

nitromethane (17), gives a 90% yield of indigo (19) when treated with alkaline sodium dithionite 

solution (Scheme 4).  

Scheme 4. Harley –Mason approach to indigo. 
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This procedure was later used by Voss and Gerlach [37] and by Cooksey [38], who obtained 66% 

and 69% yields, respectively, of 1 from the benzaldehyde 8. However, Imming and coworkers reported 

[33,39] that, for producing dibromoindigo 1 on a large scale, this procedure was not as practical as the 

original Baeyer-Drewsen indigo procedure [5,6]. 

2.2. Alternative preparations of 4-bromo-2-nitrotoluene (12) 

All the foregoing syntheses of Tyrian purple rely on 4-bromo-2-nitrobenzaldehyde (8) as the key 

intermediate, which is prepared via 4-bromo-2-nitrotoluene (12), which is obtained in turn by 

diazotization of 4-amino-2-nitrotoluene (11) or its sulfate (14). While the Sandmeyer reaction gives 

good yields, it is rather cumbersome and comparatively expensive, as is the immediate precursor 11. It 

is, therefore, reasonable to consider alternative syntheses of 12; in particular, a one-step preparation 

from a cheap starting material. The oldest of these consists of nitration of 4-bromotoluene (20)  

[13,40-48]. This reaction, however, usually gives a 5:4 mixture of isomeric bromonitrotoluenes 12 and 

21, accompanied by variable amounts of side products, depending on the conditions of the nitration 

(Scheme 5). Nevertheless, Keinan and coworkers have reported a 90% yield of 12 by performing the 

nitration with 100% nitric acid in a mixture of acetic acid and 98% sulfuric acid (Scheme 5) [32]. 

Scheme 5. Nitration approach to 4-bromo-2-nitrotoluene (12). 
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A third method for the preparation of 12 consists of brominating o-nitrotoluene (22) [31,38,49-54]. 

The conventional bromination procedure using catalysis by iron [55] gives here again an isomeric 

mixture of 12 and 6-bromo-2-nitrotoluene (23). Notwithstanding the report by Torimoto and 

coworkers [31] of a 78% crude yield of 12, Cooksey [38] confirmed that a 5:4 mixture of 12 and 23 is 

obtained, from which only a 19% yield of pure 12 could be obtained (by fractional recrystallization 

from ethanol). More recently, Otake and coworkers [54] have reported that bromination with bromine 

in the presence of a large amount of a Na-X type zeolite catalyst, without solvent, gives an 80% yield 

of 12 containing only 0.2% of 23. When carried out in ethyl acetate as a solvent, the product contained 

a 99:1 ratio of 12 to 23 (Scheme 6). 

Scheme 6. Bromination approach to 4-bromo-2-nitrotoluene (12). 
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2.3. Alternative preparations of 4-bromo-2-nitrobenzaldehyde (8) 

As we have noted, conversion of the bromonitrotoluene 12 to the corresponding benzaldehyde 8 is 

plagued with inconvenient reactions or low yields. In general the oxidation of toluenes to 

benzaldehydes is an important industrial process for which a universally optimal procedure has not yet 

been found. Regarding our case, we note that in their original synthesis of Tyrian purple (Scheme 1), 

Sachs and Kempf [7] reported a 70% two-step conversion of 2,4-dintrotoluene (2) to 2,4-dinitro-

benzaldehyde (5), by condensing p-nitrosodimethylaniline (3), followed by acidic hydrolysis of the 

intermediate nitrone 4 (substantially lower yields were later reported in an Organic Synthesis 

procedure based on this method [56]). The Sachs procedure is amenable only to the oxidation of 

toluenes substituted with at least two strongly electron-withdrawing groups in the ortho- and para- 

positions [57].  In a variation of this procedure, Barrow and coworkers [58,59] succeeded in preparing 

a number of aldehydes from the corresponding benzyl halides and aromatic nitroso compounds such as 

3. Nevertheless, Barber and Stickings [25] were unable to prepare 8 by reaction of 12 with bromine 

and 3.  

However, a more versatile procedure was developed by Kröhnke and coworkers [60-64], who found 

that conversion of the alkyl bromide group first to its pyridinium salt facilitates subsequent reaction 

with the aromatic nitroso compound to give the nitrone. An application of the Kröhnke method by 

Clarke [65] gave several substituted o-nitrobenzaldehydes in high overall yields from the respective 

toluenes. This application has served for a Organic Synthesis procedure by Kalir [66] for the 

preparation of o-nitrobenzaldehyde (16) in a 47-53% overall yield, and as the basis of a synthesis of 8 
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by Danieli and coworkers [67]. Cooksey [38] likewise reported a 55% overall yield of 8 using the 

Kröhnke procedure starting from 12 as part of his complete synthesis of 1 (Scheme 7). Although the 

Kröhnke procedure involves four steps for converting the substituted toluene to the respective 

benzaldehyde, it is relatively convenient. Indeed, the only step with a long reaction time is the benzylic 

bromination of the bromonitrotoluene 12. 

Scheme 7. Kröhnke conversion of 4-bromo-2-nitrotolune (8) to benzaldehyde (12). 
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Two additional methods of converting o-nitro-substituted toluenes to the corresponding 

benzaldehydes are also worth mentioning, although they have not been specifically applied to the 

synthesis of 8. These methods start with the first steps of the Reissert [68,69] and Batcho-Leimgruber 

[70-73] indole syntheses, respectively. In the first method, the toluene is condensed with diethyl 

oxalate (27), and the enolate anion of the resulting phenylpyruvate ester (28) is acetylated and oxidized 

[74] (Scheme 8).  The potassium ethoxide solution needed for the condensation can be prepared by 

treating an alcoholic potassium hydroxide solution with calcium oxide, thus obviating the need for 

using metallic potassium[75].  

Scheme 8. Transformation of o-nitrotoluenes to o-nitrobenzaldehydes. 
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In the second method, the toluene is condensed with dimethylformamide dimethyl acetal (31) and 

the resulting β-aminostyrene is then oxidized, either catalytically with oxygen [76] or 

stoichiometrically with sodium periodate [77]. The latter procedure was recently reported to give a 

nearly quantitative yield of 4-chloro-2-nitrobenzaldehyde (33) from 4-chloro-2-nitrotoluene (30) [78] 
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(Scheme 9). Both of the indole syntheses mentioned above have been applied to the preparation of 6-

bromoindole, as seen below. 

Scheme 9. Alternative transformation of o-nitrotoluenes to o-nitrobenzaldehydes. 
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A completely different approach to substituted benzaldehydes, which does not proceed from the 

corresponding toluenes, has been developed by Beech [79]. In this synthesis, a diazotized aniline is 

treated with a solution of formaldoxime in the presence of copper sulfate and sodium sulfite. The 

intermediate benzaldoxime is then cleaved with ferric ammonium sulfate to give the free 

benzaldehyde. The Beech method has been applied to the synthesis of a number of substituted 

benzaldehydes [79,80], including those containing an ortho nitro group [81-83]. In particular, it was 

used by Dandegaonker [84] to prepare 8 in 34% yield from 4-bromo-2-nitroaniline (34) (Scheme 10). 

Scheme 10. Beech method for the synthesis of 4-bromo-2-nitrobenzaldehyde (8). 
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The starting bromonitroaniline 34 has been prepared by a number of methods, but the most popular 

are 1) nitration of p-bromoaniline or its derivatives [50,85-94], and 2) bromination of o-nitroaniline or 

its derivatives, usually with bromine in acetic acid [95-107]. Here, too, each of these methods has its 

shortcomings. Nitration of p-bromoacetanilide (37) has been reported in some cases to give 4,6-

dibromo-2-nitroacetanilide in variable yields [89,101]. In addition, p-bromoacetanilide is not cheap 

and the nitration method amounts essentially to a three step synthesis starting from acetanilide (36), or 

a four step synthesis from aniline (35) [93] (Scheme 11).  

Scheme 11. Synthesis of bromonitroaniline 34. 
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Bromination of o-nitroaniline can likewise lead to formation of the dibrominated product [98, 102-

104,107], unless less than one equivalent of bromine is used [106]. However, newer, milder synthetic 

reagents have made the bromination of o-nitroaniline (39) an attractive route to the required 

bromonitroaniline 34. Among these, the most convenient appears to be hydrobromic acid with 

hydrogen peroxide (Scheme 12) [108-111]. Other reagents include tetrabromocyclohexadienone 

[112,113], N-bromosuccinimide [114-116], and bromine supported on an ion-exchange resin [117]. 

Scheme 12. Monobromination of o-nitroaniline (39). 

NH2

NO239

HBr, H2O2

NH2

Br NO234
85-99%  

 

Another novel method for the preparation of 8 has been reported by Voss and Gerlach [37]. In their 

procedure, p-dibromobenzene is nitrated to give 2,5-dibromonitrobenzene. Lithiation at the 2-position 

with phenyl- or butyllithium, followed by carbonylation of the lithium derivative with 

dimethylformamide, furnishes 8 in yields of up to 92% in a one-pot synthesis. Condensation with 

nitromethane then affords 1 as mentioned above (Scheme 13). This three-step approach to Tyrian 

purple from p-dibromobenzene is indeed very attractive, particularly in light of the high overall yield; 

nevertheless, subsequent researchers report difficulty with the lithiation step and could not reproduce 

the published yield [38,118]. 

Scheme 13. Voss and Gerlach approach to Tyrian purple. 
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3. Preparation of Tyrian Purple from 4-Bromo-2-aminobenzoic Acid or Its Derivatives 

3.1. Friedländer synthesis of Tyrian purple  

In their original studies on Tyrian purple and related compounds, Friedländer and coworkers 

[3,11,12] reported a new synthesis of 1 from 4-bromo-2-aminobenzoic acid (43). In this procedure, 

aminobenzoic acid 43 is treated with chloroacetic acid (45) [119] yielding the carboxyphenylglycine 



Molecules 2010, 15 
 

5481

derivative 46, which is cyclized in turn to the corresponding diacetylindoxyl 48. The latter is 

subsequently hydrolyzed and oxidized in air to give 1 (Scheme 14). 

Scheme 14. The Friedländer approach to Tyrian purple. 
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The Friedländer method closely follows the Bayer process for the production of indigo (19) from 

anthranilic acid (44) [120], in which the disodium salt of (2-carboxyphenyl)glycine (47) is cyclized to 

diacetylindoxyl (49) in acetic anhydride instead of being subjected to alkali fusion, as in the earlier 

BASF process [121]. 

The major drawback of the Friedländer method is the expense of the starting bromoanthranilic acid 

43. This compound had previously been prepared by Claus and Scheulen [88] from 4-bromo-2-

nitroaniline (34, from nitration of 39) by diazotization and conversion to the nitrile 50, hydrolysis to 

the acid 51 and reduction with zinc chloride (Scheme 15). 

Scheme 15. Claus and Scheulen preparation of bromoanthranilic acid 43. 
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Friedländer and coworkers reported two alternative syntheses of 43. In the first, 4-bromo-2-

nitrotoluene (12, obtained from 10) is reduced to the aniline 52, followed by acetylation, oxidation and 

hydrolysis (Scheme 16)[3,11,12].  
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Scheme 16. Friedländer approach to bromoanthranilic acid 43. 
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In the second, 2,4-dinitrobenzoic acid (55, prepared from 2,4-dinitrotoluene (2), presumably by 

oxidation with chromic acid [122] is partially reduced to 4-amino-2-nitrobenzoic acid (56) [123]. The 

latter is then converted by a Sandmeyer reaction to the bromonitrobenzoic acid 57 and then reduced 

with zinc and hydrochloric acid, yielding 43 (Scheme 17) [12,124]. 

Scheme 17. Alternate Friedländer approach to bromoanthranilic acid 43. 
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The procedures presented above have not been used subsequently to prepare Tyrian purple, but the 

individual reactions have been used for synthesis of the precursors 43 [50,125-129], 46 [125,129-132] 

and 48 [130-132]. 

3.2. Alternative syntheses of 4-bromo-2-aminobenzoic acid (43) and its derivatives 

As noted above, the major drawback to the Friedländer synthesis of 1 is its lengthy preparation of 4-

bromo-2-aminobenzoic acid (43). For this reason, Imming and coworkers have remarked that this 

approach is only of “historical interest” [33]. Nevertheless, a shorter route to this compound or its 

phenylglycine derivative 46 would indeed make it an attractive alternative to the other syntheses 

reviewed above. 

The first alternative to the multistep syntheses of 43 described above was reported by Waldmann 

(Scheme 18) [133].  
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Scheme 18. Waldmann procedure to bromoanthranilic acid 43. 
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In this procedure, sodium phthalate (59) (derived from phthalic anhydride, 58) is brominated in 

aqueous solution to give 4-bromophthalic acid (60). The diacid closes to the corresponding anhydride 

61 upon distillation, and the latter gives the corresponding imide 62 upon heating with urea. 

Subsequent Hofmann degradation, analogous to the production of anthranilic acid from 

phthalimide[134], then gives a product which was identified as 4-bromoanthranilic acid (43). 

At first glance, the Waldmann procedure seems attractive since the starting material and reagents 

are all inexpensive and most of the reactions proceed with high yields. Yields of up to 90% of  

4-bromophthalic acid (60) from bromination of phthalic acid have been reported [135], and conversion 

of 60 to the anhydride 61 has been reported in nearly quantitative yields [136]. Today 61 is an 

industrial compound which is readily available in high purity [137-139].  

The problem with the Waldmann procedure, however, is that the Hofmann reaction of substituted 

phthalimides is not regioselective. Thus, for example, reaction of 4-chlorophthalimide (63) gives a 

product containing up to 25% of 5-chloroanthranilic acid (66), in addition to the 4-substituted main 

product 64 (Scheme 19)[140]. Although use of benzonitrile as a solvent was reported to give improved 

selectivity in the synthesis of other substituted anthranilic acids from the corresponding phthalimides, 

complete selectivity has not been achieved [141]. It is, therefore, to be expected that the Waldmann 

procedure would give significant amounts of 5-bromoanthranilic acid (65) along with the desired acid 43. 

Scheme 19. Hofmann reaction of 4-halophthalimides. 
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An alternative synthesis of 4-bromoanthranilic acid 43 is reported in a recent patent [142] and 

consists of the Ullmann condensation[143,144] of 2,4-dibromobenzoic acid (67) with ammonia 

catalyzed by cuprous oxide[145] (Scheme 20). This procedure parallels the older synthesis of 4-
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chloroanthranilic acid (64) from 2,4-dichlorobenzoic acid (68) and ammonia [146], but as reported 

[142], requires considerably milder reaction conditions than for the chloro analogue. 

Scheme 20. Ullmann condensation of 2,4-dihalobenzoic acid 67 and 68 with ammonia. 
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The 2,4-dibromobenzoic acid (67) required in this procedure is usually prepared via the hydrolysis 

of 2,4-dibromobenzonitrile (71) [147-156] or by the oxidation of 2,4-dibromotoluene (45) [157-167]. 

Unfortunately, neither of these methods is particularly attractive. The nitrile 71 is almost always made 

from 2,4-dibromoaniline (70) by a Sandmeyer reaction [147,148,150-154], which amounts essentially 

to a lengthy synthesis starting from acetanilide (36) [151-153] (Scheme 21). An alternative preparation 

of 71 based on bromination of 4-bromo-2-nitrobenzonitrile (50) with calcium bromide [168] does not 

appear any more efficient, inasmuch as 50 can itself be converted in two steps to 4-bromoanthranilic 

acid (43), as discussed above (Scheme 15). 

Scheme 21. Preparation of 2,4-dibromobenzoic acid (67). 
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2,4-Dibromotoluene (75) is also a potential precursor for 2,4-dibromobenzoic acid (67). The former 

is usually prepared by multistep procedures [157,159-164,167,169-171], [for example, from 4-

nitrotoluene (72) [160,164,170] (Scheme 22)], since direct bromination of 4-bromotoluene (20) 

ordinarily gives an 7:1 mixture of 75 and 3,4-dibromotoluene (76) [158,160] (Scheme 23). 
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Scheme 22. Multi-step approach to 2,4-dibromotoluene (75) and 2,4-dibromobenzoic acid (67). 
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Scheme 23. Bromination of p-bromotoluene. 
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Dibromination of toluene (77) catalyzed by ethyl ether has likewise been reported to give a mixture 

of  2,4-  and 2,5-dibromotoluene (75 and 78, respectively) [172] (Scheme 24). 

Scheme 24. Dibromination of toluene. 
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One patent does report a 70% yield of dibromide 75 from the bromination of toluene (77) in carbon 

tetrachloride in the dark [173]. This is somewhat surprising, however, since bromination of 77 under 

similar conditions leads to 100% benzylic bromination, although the addition of K10-montmorillonite 

clay suppresses benzylic bromination yielding a 2:1 mixture of 4- and 2-bromotoluene (20 and 80, 

respectively) [174] (Scheme 25).  

Scheme 25. Bromination of toluene. 
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The most efficient method reported for production of 75, to our knowledge, uses bromine fluoride 

[175-176]. Dibromination of 77 with this reagent gave a reported 80% yield of the desired product 

[175] (Scheme 26). However, the hazards and cost of the elemental fluorine needed in preparing the 

reagent make this method rather unappealing.  

Scheme 26. Bromine fluoride bromination of toluene. 
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A more promising route to 2,4-dibromobenzoic acid consists of the oxidation of 2′,4′-

dibromoacetophenone (82) [142,177,178]. The latter compound is readily available through Friedel-

Crafts acetylation of 1,3-dibromobenzene (81)[177,179,180] (Scheme 27), as well as of the less 

expensive 1,4-dibromobenzene (40) (Scheme 28).  

Scheme 27. Acetylation of m-dibromobenzene. 
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Scheme 28. Isomerization/acetylation of p-dibromobenzene. 
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Not unexpectedly, there are also literature reports indicating that the products of the acetylation of 

1,4-dibromobenzene (40) are 4′-bromoacetophenone [181] and 2′,5′-dibromoacetophenone[177,182-

185]. However, that the main product is the desired 82 is plausible, given that 40 is rapidly 

transformed in the presence of the free Lewis acid catalyst to a mixture of isomers in which 81 

predominates [186-189]. This isomerization reaction is, in fact, the basis for an industrial process for 

the manufacture of 81 [190-193]. Troyanov and Dibinskaya [178] found that no dibromoacetophenone 

was formed when 40 was treated with a solution of the preformed acetylating complex, 

AlCl3·CH3COCl, without excess aluminum chloride (the Perrier method [194,195]), and thus 

concluded that the isomerization takes place under the usual reaction conditions in which excess 

aluminum chloride is present. 

The oxidation of the acetophenone 82 to the benzoic acid 67 has usually been performed by basic 

permanganate. Other potentially attractive methods for this transformation include the haloform 
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reaction [196-200] and catalytic oxidation with molecular oxygen [201-205]. Catalytic processes 

developed specifically for oxidation of substituted toluenes with oxygen [166,206-211] might also  

be considered. 

The Ullmann condensation, mentioned above (Scheme 20), has also been used to prepare analogues 

of N-(5-bromo-2-carboxyphenyl)glycine (46) directly by reaction of o-halo substituted benzoic acids 

with glycine (85). Thus, N-(2-carboxyphenyl)glycine (86) was prepared long ago by condensation of 

85 with salts of 2-chlorobenzoic acid (83) or 2-bromobenzoic acid (84) [212-215], and N-(5-chloro-2-

carboxyphenyl)glycine (87) has been reported recently as the condensation product of 85 with of 2,4-

dichlorobenzoic acid (68) [216-218] (Scheme 29). No specific example for the corresponding reaction 

of 2,4-dibromobenzoic acid (67) with glycine is reported, but condensations of 67 with phenoxide 

[150] and with aniline [219] are known.  

Scheme 29. Ullmann condensation preparation of n-(2-carboxyphenyl)glycines 86 and 87.  
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X
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Condensations of 4-bromo-2-chlorobenzoic acid (90) with aniline [220] and with p-anisidine [221] 

have likewise been reported to give products in which the ortho chlorine atom is replaced by the amino 

nucleophile. All known preparative syntheses of acid 90 are based on the oxidation of 4-bromo-2-

chlorotoluene (89) [221-224].  This, in turn, has been made by multistep procedures, either from 4-

amino-2-nitrotoluene (11) (Scheme30) [222,223] or from p-nitrotoluene (72) in a fashion analogous to 

the synthesis of the dibromotoluene 75 above (Scheme31)[225,226].  

Scheme 30. Synthesis of 4-bromo-2-chlorobenzoic acid (90) from 4-amino-2-nitrotoluene (11). 
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Scheme 31. Synthesis of 4-bromo-2-chlorotoluene (89) from 4-nitrotoluene (72). 
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The chlorination of 4-bromotoluene (20), like the bromination, is not completely stereospecific and 

gives a 7:1 mixture of 4-bromo-2-chlorotoluene (89) and the 4-bromo-3-chloro analog (93) [223,227] 

(Scheme 32).  

Scheme 32. Chlorination of p-bromotoluene. 
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Judging by the literature reports [220,221] on the condensations of 90, it seems plausible that 

condensation of 90 with glycine would furnish the phenylglycine 46. However, that the ortho chlorine 

ring atom is indeed replaced needs corroboration, inasmuch as recent kinetic studies indicate that the 

para bromine ring atom is more prone to displacement than the ortho chlorine [228,229]. 

4. Other Syntheses 

4.1. From 6,6′-diaminoindigo 

In 1914 Grandmougin and Seyder reported a synthesis of Tyrian purple by the Sandmeyer reaction 

of 6,6′-diaminoindigo (101) [230]. This is the only known synthesis of 1 in which the bromine atoms 

are introduced into a previously existing indigo skeleton. The requisite diaminoindigo 101 was 

prepared by reduction of 6,6′-dinitroindigo (100) [231,232] which, in turn, was prepared by way of (2-

carboxy-5-nitrophenyl)glycine (98) and 1,3-diacetyl-6-nitroindoxyl (99), starting from 2-amino-4-

nitrotoluene (94) [10,233-235] (Scheme 33). A shorter alternative synthesis of the intermediate 

dinitroindigo 100 had previously been reported by Friedländer and Cohn, who prepared it by 

condensation of 2,4-dinitrobenzaldehyde (5) with acetone.[236] (Scheme 34). 
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Scheme 33. Grandmougin and Seyder synthesis of Tyrian purple. 

CH3

O2N NH2
94

Ac2O
CH3

O2N NHAc
95

MnO4
-

COOH

O2N NHAc
96 (77%)

H+

COOH

O2N NH297 (96%)

ClCH2COOH

NaOH

COOH

O2N NHCH2COOH
98 (75%)

NaOAc, Ac2O

NO2N

OAc

Ac99 (80%)

H2SO4 

N

N
O

O
O2N

NO2

H

H

100

N

N
O

O
H2N

NH2

H

H

101

1. NaNO2, H2SO4

2. Cu2Br2

Zn, HCl

N

N
O

O
Br

Br

H

H

1

O2

 

Scheme 34. Friedlander preparation of dinitroindigo (100). 
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Whichever way the intermediate dinitroindigo (100) is made, this method nevertheless appears 

rather lengthy. The procedure of Grandmougin and Seyder could possibly be shortened by preparing 

the phenylglycine 98 by Ullmann condensation of 2-chloro-4-nitrobenzoic acid (103) with glycine 

(86). This reaction is not known in the literature; however, the analogous reaction of 86 with the 

isomeric 2-chloro-5-nitrobenzoic acid (104) to give [N-(2-carboxy-4-nitrophenyl)]glycine (105) 

followed by conversion of the latter to 1,3-diacetyl-5-nitroindoxyl (106) - is reported [237] (Scheme 

35). Even so, the final reaction steps with the sparingly soluble indigo derivatives appear rather 

cumbersome, and in any case the yield of 1 was not reported. 

Scheme 35. 1,3-Diacetyl-5-nitroindoxyl (106) from 2-chloro-4-nitrobenzoic acid (103). 

COOH

O2N Cl
103

1. Na2CO3, Cu

2. HCl

COOH

NHCH2COOH

O2N

105

NaOAc, Ac2O

N

OAc

Ac

O2N

106

COOH

Cl

O2N

104

+

 



Molecules 2010, 15 
 

5490

4.2. Dibromoindigo (1) from indoles  

A novel synthesis of 1, in which the bromine atom is introduced directly into a previously complete 

indole ring system, was reported in 1930 by Majima and Kotake [238]. In their synthesis, the Grignard 

reagent derived from indole [239,240] (107) is treated with ethyl chloroformate and the resulting 

indole-3-carboxylate 108 is brominated. Saponification of the product 6-bromoindole-3-carboxylate 

(109), followed by oxidation with ozonized air, furnished Tyrian purple (Scheme 36). 

Scheme 36. Conversion of indole (107) to Tyrian purple.  
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This synthesis would indeed be an attractive route to Tyrian purple (1) were it not for the fact that 

both the Grignard carboxylation and bromination reactions are not regioselective. Thus, both earlier 

and later reports indicate that only the ring nitrogen atom undergoes metalation [241,242]. In a more 

recent reinvestigation of the carboxylation of indole (107) with carbon dioxide, approximately equal 

amounts of 1-carboxyindole (111) and 3-carboxyindole (112) were obtained [243] (Scheme 37).  

Scheme 37. Carboxylation of Indole. 
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Moreover, it has also been shown that bromination of 108 followed by decarboxylation gives in fact 

a 45:55 mixture of 5-bromoindole (113) and 6-bromoindole (114)[244] (Scheme 38). 

Scheme 38. Bromination/decarboxylation of indole 108. 
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4.3. Dibromoindigo (1) from 6-bromoindole 

A synthesis of 1 starting from 6-bromoindole (114), and based on the biosynthetic pathway of 

indigo, has recently been published by Tanoue and coworkers [245]. In this procedure, 6-bromoindole 

(114) was iodinated regioselectively, giving 6-bromo-3-iodoindole (115). Nucleophilic substitution of 

the latter with silver acetate gave 3-acetoxy-6-bromoindole (116), hydrolysis of which then gave 

Tyrian purple (1) in 43% overall yield (Scheme 39). 

Scheme 39. Preparation of Tyrian purple from 6-bromoindole (114). 
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In terms of simplicity and convenience, this is, indeed, an attractive synthesis. However, the cost of 

the reagents, particularly the starting material, makes it very expensive route. 6-Bromoindole (114) is 

almost invariably made from 4-bromo-2-nitrotoluene (12), either by the Reissert indole synthesis 

[68,69] or by the Batcho-Leimgruber procedure [70-73]. In the Reissert synthesis, 12 is condensed 

with diethyl oxalate (27) and the resulting (4-bromo-2-nitrophenyl)pyruvic acid [52-54] (117) is 

reduced to give 6-bromo-2-indolecarboxylic acid [52,53] (118), which is then decarboxylated [53, 

246-252] (Scheme 40). While both the initial condensation and the final decarboxylation steps have 

been reported to give good to excellent yields, the reductive cyclization is less efficient and overall 

yields of the indole 114 are only moderate. Recent enhancements of the Reissert synthesis, such as the 

use of hydrogenation over platinum and palladium catalysts for the reduction [253], and the use of 

microwave thermolysis for the decarboxylation [254], have not been applied to the synthesis of 114.  

Scheme 40. The Reissert indole synthesis. 
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The Batcho-Leimgruber synthesis has more recently become the preferred method for preparing 

114. In this procedure, the starting nitrotoluene 12 is condensed with dimethylformamide dimethyl 

acetal (31), usually with an added equivalent of pyrrolidine (88) (or with tripiperidinomethane alone 

[21]), to give the substituted aminostyrene 89. This is then reduced, affording the desired 6-

bromoindole (81) (Scheme 41) [21,255-266]. While a variety of reducing agents have been used for 

the second step, buffered aqueous titanous chloride appears to be the most efficient, and overall yields 

of up to 77% have been reported [257,263]. It is recommended that the reduction step be monitored 

carefully in order to avoid overreduction to unsubstituted indole, which can make purification of the 

product difficult [260]. In an alternative application of Batcho-Leimgruber reaction for the synthesis of 

81, 2,4-dinitrotoluene (3) is converted to 6-aminoindole by reduction of the respective styrene and 

subsequently transformed to 81 by a Sandmeyer reaction [267]. 

Scheme 41. The Batcho-Leimgruber indole synthesis. 
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In an alternative synthesis of 114, indoline (121) is brominated in sulfuric acid in the presence of 

silver sulfate, giving largely 6-bromoindoline (122), accompanied by about 8% of the 4-bromo isomer 

[268]. The bromoindoline 122 is then dehydrogenated at -65 ºC via the azasulfonium salt with 

dimethyl sulfide [269], giving 114 (Scheme 42). This scheme enjoys the advantages of an inexpensive 

starting material and a short reaction sequence. However, the low temperatures needed for the 

dehydrogenation, plus the need for a chromatographic separation in order to obtain pure product, 

makes this method rather unsuited for the production of large quantities of 6-bromoindole (114). 

Scheme 42. Bromoindole 114 from indoline (121). 
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As noted above, the cost of the starting 6-bromoindole (114) and the reagents is the major drawback 

to the procedure of Tanoue and coworkers [245]. Inasmuch as 4-bromo-2-nitrobenzene (12) is the 

starting material for all practical syntheses of 81, it would appear more efficient to convert 12 to 4-
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bromo-2-nitrobenzaldehyde (8) and thence directly to 1, as detailed above, rather than to the indole 

114. We have also noted that the intermediates in the two indole syntheses used for making 114 (i.e. 

the enolate ester of 117 in the Reissert synthesis, and 120 in the Batcho-Leimgruber synthesis) can 

presumably be oxidized directly to 8 (Schemes 8 and 9). 

Another alternative to the procedure of Tanoue and coworkers [245], which does use 6-

bromoindole (114) as a starting material, might possibly be found in a recent one-pot synthesis of 

indigo from indole (107) which uses an organic hydroperoxide and catalysis by a molybdenum 

complex [270]. In this procedure, yields of up to 81% of indigo (19) have been reported when 

performing the oxidation with cumene hydroperoxide in t-butanol and molybdenum hexacarbonyl as a 

catalyst (Scheme 43). To our knowledge, this procedure has not yet been applied to the synthesis of 

substituted indigos such as Tyrian purple (1). 

Scheme 43. One pot conversion of indole (107) to indigo (119). 
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5. Recent Convenient Low-Cost Synthesis of Tyrian Purple 

Wolk and Frimer [271], have recently reported a five step synthesis of Tyrian purple (1), starting 

from p-dibromobenzene (40; Scheme 48). The reactions are simple, low cost, safe, high yield 

procedures. The first step involves the Friedel-Crafts acetylation of p-dibromobenzene (40) producing 

2′,4′-dibromoacetophenone (82) as reported by Troyanov and Dibinskaya [178]. In the second step, 

oxidation of 2′,4′-dibromoacetophenone (82) to 2,4-dibromobenzoic acid (67), is quite straightforward. 

The alkaline permanganate oxidation is a standard procedure and the workup is simplified by 

decomposing the precipitate of manganese dioxide [272].  

Scheme 48. Wolk-Frimer synthetic scheme for the preparation of dibromoindigo (1). 
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This is followed in the third step by an Ullmann condensation of 2,4-dibromobenzoic acid (67) with 

glycine (86) to give the bromocarboxyphenylglycine 46, which is the novel, key reaction in this 

synthesis. The condensation of 67 was done in an aqueous system using two equivalents of potassium 

carbonate and a mixture of copper powder and cuprous iodide as catalysts [273–275]. Under these 

conditions the reaction was vigorous at 50–60 ºC and led to crude yields of 46 of up to 89%. The 

fourth step involves the Claisen condensation of 46 to give the bromodiacetylindoxyl 48 in a 70% 

yield. In the final step hydrolysis and oxidation of diacetylindoxyl 48 gives high yields of Tyrian 

purple (1).  

The overall yield of Tyrian purple in this five step synthesis was about 25% based on the starting p-

dibromobenzene (40), and has yet to be fully optimized. Although this yield is significantly lower than 

that achieved by Voss and Gerlach for their synthesis starting from the same compound [37], Wolk-

Frimer procedure has the advantage of not requiring special techniques such as low temperatures or 

strictly anhydrous conditions, and is, therefore, amenable for student labs and industrial production of 

larger quantities. 
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