A General and Simple Diastereoselective Reduction by L-Selectride: Efficient Synthesis of Protected (4S,5S)-Dihydroxy Amides

Bo Yin, Dong-Nai Ye, Kai-Hui Yu and Liang-Xian Liu *
Department of Chemistry and Biology, Ganan Normal University, Ganzhou, Jiangxi 341000, China
* Author to whom correspondence should be addressed; E-Mail: 1xliu@xmu.edu.cn; Tel: +86-7978397630; Fax: +86-797-8393670.

Received: 18 December 2009; in revised form: 24 March 2010 / Accepted: 12 April 2010 /
Published: 16 April 2010

Abstract

A general approach to (4S,5S)-4-benzyloxy-5-hydroxy- N-(4-methoxybenzyl) amides $\mathbf{1 0}$ based on a diastereoselective reduction of ($5 S, 6 R S$)-6-alkyl-5-benzyloxy-6-hydroxy-2-piperidinones 6 and their tautomeric ring-opened keto amides 7 is described. The reduction with L-Selectride at $-20^{\circ} \mathrm{C}$ to room temperature afforded the products $\mathbf{1 0}$ in excellent yields and moderate to high syn-diastereoselectivities.

Keywords: L-Selectride; 3-hydroxyglutarimide; (4S,5S)-dihydroxyamide

1. Introduction

The (4,5)-dihydroxycarboxylate moiety is a critical framework shared by many bioactive compounds, such as Microcarpalide (1), which is a 10 -membered lactone that was isolated from the fermentation broth of an unidentified endophytic fungus by Hemscheidt and co-workers in 2001 [1], and Kalanchosine dimalate (KMC, 2) [2], which is an anti-inflammatory salt from the fresh juice of the aerial parts of Kalanchoe brasiliensis, as well as natural gastroprotective 3,4-dihydroisocoumarins, such as amicoumacin C (3) [3,4] and AI-77B (4) [5,6]. Both the stereochemical variation at C-4, C-5 and the interesting biological activities exhibited by these compounds make them attractive synthetic targets [1,5-7]. A number of methods have been developed for the synthesis of these compounds [813], but few methods for the construction of the (4,5)-dihydroxycarboxylate moiety [14-18].

Generally, chiral pool starting materials or Sharpless asymmetric dihydroxylation was used in the construction of the $(4,5)$-dihydroxycarboxylate moiety.

Figure 1. (4,5)-Dihydroxycarboxylate derivatives.

(-)-Microcarpalide (1)

Amicoumacin (3)

AI-77B (4)

Previously, we have shown that the protected (S)-3-hydroxyglutarimide 5 may serve as a versatile building block for the asymmetric synthesis of a variety of 2,6-disubstituted 3-hydroxypiperidines [19-23]. A flexible regio- and diastereoselective reductive alkylation method was developed for the conversion of 5 to trans-6-alkyl-5-benzyloxy-2-piperidinone derivatives 8 [20]. Recently, we also developed a chemo- and diastereoselective transformation of the N, O-acetals $\mathbf{6}$ and their chain tautomers 7, readily derived from protected 3-hydroxyglutarimide 5 , into cyclic products ($5 S, 6 S / R$)-6-alkyl-5-benzyloxy-2-piperidinones $\mathbf{9 / 8}$, and anti-10/syn-10 with a combination of boron trifluoride etherate/zinc borohydride in modest chemo- and diastereoselectivities (Scheme 1) [24]. Moreover, the reduction with zinc borohydride in the absence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ leading exclusively to the formation of the ring-opening products anti-10 in excellent anti-diastereoselectivities was exploited. In addition, we reported the application of this new variation to the asymmetric synthesis of (+)-azimic acid [25].

Scheme 1. The synthesis of 6-alkyl-5-benzyloxy-2-piperidinones.

In the continuation of our interest in the amino acid chiral template-assisted synthesis of natural and unnatural bioactive compounds, as a part of our research program aimed at developing enantioselective syntheses of naturally occurring bioactive compounds, such as Microcarpalide (1), we decided to explore the construction of the $(4,5)$-dihydroxycarboxylate moiety in order to develop a simple and feasible approach to syn-10, a key intermediate ($\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$) for the synthesis of $\mathbf{1}$. Herein we report a diastereoselective reduction of $\mathbf{6}$ and $\mathbf{7}$ employing L-Selectride as the reductive agent to obtain syn10 (Scheme 2).

2. Results and Discussion

The requisite 6-alkyl-5-benzyloxy-6-hydroxy-2-piperidinones 6, together with their ring-opened keto amide tautomers 7, were prepared via the addition of Grignard reagents to (S)-3-benzyloxyglutarimide 5 under our recently improved conditions [23]. Treatment of the tautomeric mixture of $\mathbf{6 a}$ and 7a with 1.2 molar equiv of L-Selectride in THF $\left(-20^{\circ} \mathrm{C}-\mathrm{rt}\right)$ yielded $\operatorname{syn}-\mathbf{1 0 a}$ and anti-10a in a ratio of $86: 14$ (combined yield: 93%). To explore the generality of the process, a series of hemiazaketals $\mathbf{6}$ and their opened keto amide tautomers 7 were investigated using L-Selectride as reductive agent [26-29], and the results are reported in Table 1.

Scheme 2. The diastereoselective reduction by L-Selectride.

Table 1. Results of reduction according to the procedure shown in Scheme 2.

Entry	R	Yield [\%] $^{\boldsymbol{a}}$	syn/anti ratio
1	$\mathrm{CH}_{3}(\mathbf{1 0 a})$	93	$6: 1^{b}$
2	$\mathrm{C}_{2} \mathrm{H}_{5}(\mathbf{1 0 b})$	97	$7: 1^{c}$
3	$n-\mathrm{C}_{4} \mathrm{H}_{9}(\mathbf{1 0 c})$	97	$7: 1^{c}$
4	$n-\mathrm{C}_{5} \mathrm{H}_{11}(\mathbf{1 0 d})$	95	$23: 2^{c}$
5	$n-\mathrm{C}_{8} \mathrm{H}_{17}(\mathbf{1 0 e})$	98	$23: 2^{b}$
6	$n-\mathrm{C}_{12} \mathrm{H}_{25}(\mathbf{1 0 f})$	85	$9: 1^{b}$
7	$n-\mathrm{C}_{16} \mathrm{H}_{33}(\mathbf{1 0 g})$	83	$7: 1^{b}$
8	$i-\mathrm{Bu}(\mathbf{1 0 h})$	92	$3: 1^{c}$
9	$\mathrm{Ph}(\mathbf{1 0 0})$	81	$3: 1^{b}$
10	$\mathrm{Bn}(\mathbf{1 0 j})$	92	$11: 2^{c}$
11	$\mathrm{PhCH} \mathrm{CH}_{2}(\mathbf{1 0 k})$	82	$7: 2^{c}$

${ }^{a}$ Isolated yield of $\mathbf{1 0}$ starting from $\mathbf{6}$ and 7. ${ }^{b}$ Ratio determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{c}$ Ratio based on HPLC analysis.

As can be seen from Table 1, high yields and modest to high syn-selectivities were obtained for all hemi-azaketals tested. It is interesting to note that modest $s y n$-selectivities were obtained in the case where 6 and 7 bearing i - Bu or Ph (Table 1, entries 8 and 9) as well as $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$ (Table 1, entry 11).

The stereochemistry of the major diastereomer $\mathbf{1 0}$ was assigned to syn-conformer according to the observed vicinal coupling constants [24] ($J_{4,5}=5.1 \mathrm{~Hz}$ for syn-10a and $J_{4,5}=4.5 \mathrm{~Hz}$ for anti-10a; $J_{4,5}=$ 5.2 Hz for syn-10b and $J_{4,5}=4.3 \mathrm{~Hz}$ for anti-10b; $J_{4,5}=5.1 \mathrm{~Hz}$ for $s y n-\mathbf{1 0 c}$ and $J_{4,5}=4.2 \mathrm{~Hz}$ for anti$\mathbf{1 0 c} ; J_{4,5}=5.1 \mathrm{~Hz}$ for $s y n-\mathbf{1 0 e}$ and $J_{4,5}=4.4 \mathrm{~Hz}$ for anti-10e; $J_{4,5}=5.1 \mathrm{~Hz}$ for $\operatorname{syn}-\mathbf{1 0 g}$ and $J_{4,5}=4.5 \mathrm{~Hz}$ for anti-10g; $J_{4,5}=6.1 \mathrm{~Hz}$ for $\operatorname{syn}-\mathbf{1 0 i}$ and $J_{4,5}=5.1 \mathrm{~Hz}$ for anti-10i). In addition, the stereochemistry of diastereomers syn-10 was confirmed by converting syn-10 to ($5 S, 6 R$)-6-alkyl-5-benzyloxy-2-piperidinones 8. For example, syn-10a can be converted to anti-8a in 78% yield by mesylation $\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 1 \mathrm{~h}$) and t-BuOK-promoted cyclization (HMPA, THF, rt, 24 h) (Scheme 3).

Scheme 3. The synthesis of (5S,6R)-6-methyl-5-benzyloxy-2-piperidinones.

Figure 2. A plausible Cram chelation-controlled pathway for the syn-diastereoselective formation of syn-10.

The fact that starting from the tautomeric mixture of $\mathbf{6}$ and $\mathbf{7 s y n}$-diastereomer $\mathbf{1 0}$ was obtained in modest to high diastereoselectivity is in accordance with a Cram model-based mechanism [30-34]. It was envisioned that the hydride to approach C-5 carbon from the same side of the chelate C-4 benzyloxy substituent led to the formation of syn-isomer because of the chelation between lithium ion and oxygen atom of the C-4 oxygen as well as C-5 carbonyl oxygen (Figure 2), which not only switches the equilibrium towards 7, but also allows the reduction to undergo with a Cram chelationcontrolled manner.

3. Conclusions

In summary, a simple and efficient route to protected (4S,5S)-dihydroxy amides via the reduction of the tautomeric mixture of $\mathbf{6}$ and 7 with L-Selectride has been developed. This strategy offers a concise platform for the construction of $(4 S, 5 S)$-dihydroxycarboxylate moieties under mild conditions. As
such, this method is complementary, in part, to our previously established anti-diastereoselective method.

4. Experimental

4.1. General methods

Melting points were determined on a Yanaco MP-500 micro melting point apparatus and are uncorrected. Infrared spectra were measured with a Nicolet Avatar 360 FT-IR spectrometer using film KBr pellet technique. ${ }^{1} \mathrm{H}$-NMR spectra were recorded in CDCl_{3} on a Bruker 400 or a Varian unity +500 spectrometer with tetramethylsilane as an internal standard. Chemical shifts are expressed in δ (ppm) units downfield from TMS. Mass spectra were recorded with Bruker Dalton Esquire 3000 plus LC-MS apparatus. Optical rotations were measured with a Perkin-Elmer 341 automatic polarimeter. Elemental analysis was carried out on a Perkin-Elmer 240B instrument. Flash column chromatography was carried out with silica gel (300-400 mesh). THF was distilled over sodium and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ under N_{2}.

4.2. General procedure for preparation of syn-10

To a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of tautomeric mixture $\mathbf{6} / 7$ [20] (1.0 mol equiv) in THF (0.1 M) was added dropwise a solution of L-Selectride (1.2 mol equiv) under argon atmosphere and the mixture was stirred at $-20 \sim-10{ }^{\circ} \mathrm{C}$ for 1 h . Then, the mixture was allowed to slowly warm to room temperature and was stirred at room temperature overnight. The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/Petroleum ether = 1:2), some pure syn-10 and the mixture of syn-10 and anti-10 were obtained.
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)hexanoyl amide (syn-10a): White solid, mp : 74$75{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}:+4.75$ (c 1.0, CHCl_{3}); IR (film) vmax: $3407,3305,1649,1513,1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.59\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.53\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.32$ (dd, $\left.J=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.27\left(\mathrm{dd}, J=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4), 3.35$ (dd, $J=6.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.59(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 2), 2.04 (ddd, $J=14.0,7.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 1.82 (ddd, $J=14.0,7.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.17 (t, $\left.J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4(\mathrm{C}=\mathrm{O}), 158.9,138.2,130.3,129.1(2 \times \mathrm{C})$, $128.4(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C}), 127.8,114.0(2 \times \mathrm{C}), 82.1(\mathrm{C}-5), 71.9(\mathrm{C}-4), 68.6\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 43.0$ $\left(\mathrm{NCH}_{2}\right), 31.6,25.6,18.9$; MS (ESI): $358[\mathrm{M}+\mathrm{H}]^{+}, 380[\mathrm{M}+\mathrm{Na}]^{+}$; Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, 70.56; H, 7.61; N, 3.92. Found C, 70.31; H, 7.76; N, 4.25.
(4S, 5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)heptanoyl amide (syn-10b): White solid, mp: 122$124{ }^{\circ} \mathrm{C} ;[\alpha]^{25}$ D: +1.86 (c 1.2, CHCl_{3}); IR (film) $v_{\text {max }}: 3407,3306,1649,1513,1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}$,
$2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.59\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.53\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.32$ (dd, $\left.J=14.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.28\left(\mathrm{dd}, J=14.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.43(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4), 3.36$ (ddd, $J=5.6,5.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3)$, 2.03 (ddd, $J=13.8,7.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 1.87 (ddd, $J=13.8,7.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 1.55 (ddd, $J=13.8,7.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 1.46(\mathrm{ddd}, J=13.8,7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4(\mathrm{C}=\mathrm{O}), 158.9,138.2,130.4,129.1(2 \times \mathrm{C}), 128.4(2 \times \mathrm{C})$, $127.8(2 \times \mathrm{C}), 127.7,114.0(2 \times \mathrm{C}), 80.8(\mathrm{C}-5), 74.0(\mathrm{C}-4), 72.5\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 43.0\left(\mathrm{NCH}_{2}\right)$, 31.8, 26.2, 25.9, 10.2; MS (ESI): $371[\mathrm{M}+\mathrm{H}]^{+}, 394[\mathrm{M}+\mathrm{Na}]^{+}, 410[\mathrm{M}+\mathrm{K}]^{+}$; Anal calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{4}$: C, 71.13; H, 7.87; N, 3.77. Found C, 71.03; H, 7.55; N, 3.71.
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)nonanoyl amide (syn-10c): Waxy solid; $[\alpha]^{25}{ }_{\mathrm{D}}$: +1.90 (c 1.5, CHCl_{3}); IR (film) $v_{\text {max }}: 3407,3305,1650,1513,1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 4.60\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.53\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.33(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}_{2}$), $4.28\left(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.36$ (ddd, $J=6.2,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 2.05$ (ddd, $J=14.0,7.4$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.87 (ddd, $J=14.0,7.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $1.52-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 3 \mathrm{H})$, $0.89\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4(\mathrm{C}=\mathrm{O}), 159.0,138.2,130.3,129.2$ $(2 \times \mathrm{C}), 128.4(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C}), 127.8,114.0(2 \times \mathrm{C}), 81.1(\mathrm{C}-5), 72.6(\mathrm{C}-4), 72.5\left(\mathrm{OCH}_{2}\right), 55.3$ $\left(\mathrm{OCH}_{3}\right), 43.1\left(\mathrm{NCH}_{2}\right), 33.1,31.8,27.9,23.9,22.7,14.0 ; \mathrm{MS}(\mathrm{ESI}): 400[\mathrm{M}+\mathrm{H}]^{+}, 422[\mathrm{M}+\mathrm{Na}]^{+}, 438$ $[\mathrm{M}+\mathrm{K}]^{+}$; Anal calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{4}: \mathrm{C}, 72.15 ; \mathrm{H}, 8.33$; N, 3.51. Found C, $72.34 ; \mathrm{H}, 8.36$; N, 3.66.
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)decanoyl amide (syn-10d): Waxy solid; $[\alpha]^{25}{ }_{\mathrm{D}}:-1.76\left(c 2.3, \mathrm{CHCl}_{3}\right)$; IR (film) $v_{\max }: 3411,3304,2931,1646,1513,1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-$ H), $5.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.59\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.52\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.32(\mathrm{dd}$, $\left.J=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.28\left(\mathrm{dd}, J=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52(\mathrm{~m}, 1 \mathrm{H}$, H-4), 3.34 (ddd, $J=5.4,5.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.38(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, H-2), 2.04 (ddd, $J=14.0,7.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.87 (ddd, $J=14.0,7.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $1.50-1.40$ $(\mathrm{m}, 3 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.88\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4$ $(\mathrm{C}=\mathrm{O}), 159.0,138.2,130.4,129.1(2 \times \mathrm{C}), 128.4(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C}), 127.8,114.0(2 \times \mathrm{C}), 81.1(\mathrm{C}-5)$, $72.6(\mathrm{C}-4), 72.5\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 43.0\left(\mathrm{NCH}_{2}\right), 33.3,31.8,26.0,25.4(2 \times \mathrm{C}), 22.6,14.0$; MS (ESI): $414[\mathrm{M}+\mathrm{H}]^{+}, 436[\mathrm{M}+\mathrm{Na}]^{+}$; Anal calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4}: \mathrm{C}, 72.61 ; \mathrm{H}, 8.53$; N, 3.39. Found C, 72.33; H, 8.52; N, 3.42.
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)tridecanoyl amide (syn-10e): Waxy solid; $[\alpha]^{25}{ }_{\mathrm{D}}:-2.21$ (c 2.3, CHCl_{3}); IR (film) $v_{\text {max }}: 3406,3304,2926,2854,1646,1513,1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 4.60\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.53\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.33(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}_{2}$), $4.29\left(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.36$ (ddd, $J=5.6,5.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.32-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.88$ (ddd, $J=14.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 11 \mathrm{H}), 0.88\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4(\mathrm{C}=\mathrm{O}), 159.0,138.3,130.4,129.2(2 \times \mathrm{C}), 128.4(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C})$, $127.8,114.0(2 \times \mathrm{C}), 81.2(\mathrm{C}-5), 72.7(\mathrm{C}-4), 72.6\left(\mathrm{OCH}_{2}\right), 55.3\left(\mathrm{OCH}_{3}\right), 43.1\left(\mathrm{NCH}_{2}\right), 33.4,31.8(2 \times \mathrm{C})$, 29.7, 29.5, 29.3, 26.0, 25.8, 22.6, 14.1; MS (ESI): $456[\mathrm{M}+\mathrm{H}]^{+}$; Anal calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NO}_{4}$: C, 73.85; H, 9.01; N, 3.08. Found C, 73.59; H, 8.98; N, 3.06.
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)heptadecanoyl amide (syn-10f): White solid, mp: $68-70{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}:-2.63\left(c 1.1, \mathrm{CHCl}_{3}\right.$); IR (film) $v_{\max }: 3423,3305,2924,2853,1643,1513,1248 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.85(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.61\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.34\left(\mathrm{dd}, J=14.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.30\left(\mathrm{dd}, J=14.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.36(\mathrm{ddd}, J=5.3,5.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.30-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}$, OH), 2.05 (ddd, $J=14.0,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $1.88(\mathrm{ddd}, J=14.0,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 1.52-1.40 $(\mathrm{m}, 3 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 19 \mathrm{H}), 0.88\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4$ $(\mathrm{C}=\mathrm{O}), 159.1,138.3,130.4,129.2(2 \times \mathrm{C}), 128.5(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C}), 127.8,114.1(2 \times \mathrm{C}), 81.2(\mathrm{C}-5)$, $72.7(\mathrm{C}-4), 72.6\left(\mathrm{OCH}_{2}\right), 55.3\left(\mathrm{OCH}_{3}\right), 43.1\left(\mathrm{NCH}_{2}\right), 33.5,31.9,31.8,29.7(6 \times \mathrm{C}), 29.4,26.0,25.8$, 22.7, 14.1; MS (ESI): $512[\mathrm{M}+\mathrm{H}]^{+}, 534[\mathrm{M}+\mathrm{Na}]^{+}$; Anal calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{4}$: C, 75.11; H, 9.65; N, 2.74. Found C, 75.39 ; H, 9.91 ; N, 2.86 .
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)heneicosanoyl amide (syn-10g): White solid, mp : $62-64{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}:-1.93\left(c 1.1, \mathrm{CHCl}_{3}\right.$); IR (film) $v_{\text {max }}: 3419,3302,2923,2852,1655,1513,1249 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.85(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.60\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.33\left(\mathrm{dd}, J=14.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.30\left(\mathrm{dd}, J=14.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.30-2.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2)$, 2.05 (ddd, $J=14.1,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.88$ (ddd, $J=14.1,7.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.52-1.40(\mathrm{~m}$, $3 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 27 \mathrm{H}), 0.88\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4(\mathrm{C}=\mathrm{O})$, $159.1,138.3,130.4,129.2(2 \times \mathrm{C}), 128.5(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C}), 127.8,114.1(2 \times \mathrm{C}), 81.2(\mathrm{C}-5), 72.8(\mathrm{C}-$ 4), $72.6\left(\mathrm{OCH}_{2}\right), 55.3\left(\mathrm{OCH}_{3}\right), 43.1\left(\mathrm{NCH}_{2}\right), 33.5,31.9,31.8,29.7(8 \times \mathrm{C}), 29.6(2 \times \mathrm{C}), 29.4,26.0,25.8$, 22.7, 14.1; MS (ESI): $568[\mathrm{M}+\mathrm{H}]^{+}$; Anal calcd for $\mathrm{C}_{36} \mathrm{H}_{57} \mathrm{NO}_{4}: \mathrm{C}, 76.15 ; \mathrm{H}, 10.12 ; \mathrm{N}, 2.47$. Found C, 76.51; H, 9.74; N, 2.46.
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)-7-methyloctanoyl amide (syn-10h): Waxy solid; $[\alpha]^{25}{ }_{\mathrm{D}}:-7.34\left(c 2.9, \mathrm{CHCl}_{3}\right)$; IR (film) $v_{\text {max }}: 3410,3303,1644,1513,1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $5.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.59\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.53\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.33(\mathrm{dd}$, $\left.J=14.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.27\left(\mathrm{dd}, J=14.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65-3.57(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4), 3.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.37(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 2.08-1.98(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.92\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4(\mathrm{C}=\mathrm{O}), 158.9,138.2,130.3,129.1(2 \times \mathrm{C})$, $128.4(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C}), 127.8,114.0(2 \times \mathrm{C}), 81.6(\mathrm{C}-5), 72.6(\mathrm{C}-4), 70.6\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 43.0$ $\left(\mathrm{NCH}_{2}\right), 42.3,31.8,25.9,24.5,23.6,21.7$; MS (ESI): $400[\mathrm{M}+\mathrm{H}]^{+}, 422[\mathrm{M}+\mathrm{Na}]^{+}, 438[\mathrm{M}+\mathrm{K}]^{+}$; Anal calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{4}$: C, 72.15; H, 8.33; N, 3.51. Found C, 72.19; H, 8.16; N, 3.29.
(4S, 5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)-5-phenylpentanoyl amide (syn-10i): White solid, mp: $45-47{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}$: $+14.09\left(c 2.7, \mathrm{CHCl}_{3}\right.$); IR (film) $v_{\text {max }}: 3411,3307,1655,1512,1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.23(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.86(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.83(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, OCH_{2}), $4.46\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.28\left(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.22(\mathrm{dd}, J=14.4$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63(\mathrm{ddd}, J=6.3,6.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.06(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 2.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 172.3(\mathrm{C}=\mathrm{O}), 159.0,141.1,138.0,130.4,129.2(2 \times \mathrm{C}), 128.5(2 \times \mathrm{C}), 128.3(2 \times \mathrm{C}), 128.1$ $(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C}), 126.8(2 \times \mathrm{C}), 114.1(2 \times \mathrm{C}), 82.6(\mathrm{C}-5), 75.8(\mathrm{C}-4), 72.0\left(\mathrm{OCH}_{2}\right), 55.3\left(\mathrm{OCH}_{3}\right)$, $43.1\left(\mathrm{NCH}_{2}\right), 32.0,26.5$; MS (ESI): $420[\mathrm{M}+\mathrm{H}]^{+}, 442[\mathrm{M}+\mathrm{Na}]^{+}, 458[\mathrm{M}+\mathrm{K}]^{+}$; Anal calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{4}: \mathrm{C}, 74.44 ; \mathrm{H}, 6.97$; N, 3.34. Found C, $74.49 ; \mathrm{H}, 6.82 ; \mathrm{N}, 3.59$.
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)-6-phenylhexanoyl amide (syn-10j): Waxy solid; $[\alpha]^{25}{ }_{\mathrm{D}}:+2.01$ (c 2.6, CHCl_{3}); IR (film) $v_{\text {max }}: 3403,3305,1644,1513,1248,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.23(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17-7.12(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.61\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.54\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.30(\mathrm{dd}$, $\left.J=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.25\left(\mathrm{dd}, J=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.75(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.39 (ddd, $J=5.8,5.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 2.85 (dd, $J=13.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.75 (dd, J $=13.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.45(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 2.07$ (ddd, $J=14.0,7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.93$ (ddd, $J=14.0,7.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 172.4(\mathrm{C}=\mathrm{O}), 158.9,138.6,138.2,130.3,129.3(2 \times \mathrm{C}), 129.1(2 \times \mathrm{C}), 128.4(4 \times \mathrm{C}), 128.0$ $(2 \times \mathrm{C}), 127.8,126.3,114.0(2 \times \mathrm{C}), 79.8(\mathrm{C}-5), 73.6(\mathrm{C}-4), 72.2\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 43.0\left(\mathrm{NCH}_{2}\right)$, 39.7, 31.9, 25.7; MS (ESI): $434[\mathrm{M}+\mathrm{H}]^{+}, 456[\mathrm{M}+\mathrm{Na}]^{+}, 472[\mathrm{M}+\mathrm{K}]^{+}$; Anal calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{4}$: C, 74.80 ; H, 7.21 ; N, 3.23. Found C, 74.83; H, 7.55; N, 3.28.
(4S, 5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)-7-phenylheptanoyl amide (syn-10k): Waxy solid. $[\alpha]^{25}{ }_{\mathrm{D}}$ - -7.35 (c 1.9, CHCl_{3}); IR (film) $v_{\text {max }}: 3411,3306$ 2932, 1645, 1513, 1248, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.20(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}),, 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, ;2H, Ar-H), $5.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.50\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.47\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.33$ (dd, $\left.J=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.25\left(\mathrm{dd}, J=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4), 3.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.67$ (ddd, $J=13.8,9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.38(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 2.52(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.08$ (ddd, $J=13.8,7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.93-$ $1.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.9(\mathrm{C}=\mathrm{O}), 159.0,142.1,138.0,130.2,129.4,129.2$ $(2 \times \mathrm{C}), 128.5,128.1(4 \times \mathrm{C}), 128.0(2 \times \mathrm{C}), 127.8,125.5,114.0(2 \times \mathrm{C}), 81.2(\mathrm{C}-5), 72.5(\mathrm{C}-4), 70.3$ $\left(\mathrm{OCH}_{2}\right), 55.1\left(\mathrm{OCH}_{3}\right), 43.1\left(\mathrm{NCH}_{2}\right), 34.9,32.1,31.7,23.3$; MS (ESI): $448[\mathrm{M}+\mathrm{H}]^{+}, 470[\mathrm{M}+\mathrm{Na}]^{+}$; Anal calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{4}$: C, 75.14; H, 7.43; N, 3.13. Found C, 75.23; H, 7.75; N, 3.39.

4.3. The synthesis of (5S,6R)-2-Piperidinone 8a via the cyclization of 10a

To a cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ solution of a mixture of $\mathbf{1 0 a}(182 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}$, $1.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise $\mathrm{MsCl}(0.047 \mathrm{~mL}, 0.61 \mathrm{mmol})$ under a nitrogen
atmosphere. The mixture was stirred at $-20 \sim-10^{\circ} \mathrm{C}$ for 1 h . Water was added and the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/P.E. = 1:2) to yield the mesylate $\mathbf{1 1}(202 \mathrm{mg})$, which is unstable and was used immediately in the next step. To a solution of mesylate $\mathbf{1 1}(202 \mathrm{mg}$, $0.43 \mathrm{mmol})$ in THF (3 mL) and HMPA ($0.15 \mathrm{~mL}, 0.86 \mathrm{mmol}$) was added dropwise a solution of potassium tert-butoxide ($58 \mathrm{mg}, 0.52 \mathrm{mmol}$) in THF (2 mL) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was allowed slowly warming to room temperature and was stirred for 24 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent EtOAc/P.E. = 1:2) to yield $(5 S, 6 R)-\mathbf{8 a}(135 \mathrm{mg}, 78 \%$ yield $)$. For the data of $(5 S, 6 R)-\mathbf{8 a}$ see [20].

Acknowledgements

The authors are grateful to the NSF of China (No: 20772099) and Natural Science Foundation of Jiangxi Province (No: 2009GZH0013) for financial support.

References and Notes

1. Ratnayake, A.S.; Yoshida, W.Y.; Moonberry, S.L.; Hemscheidt, T. The structure of Microcarpalide, a Microfilament disrupting agent from an endophytic fungus. Org. Lett. 2001, 3, 3479-3481.
2. Costa, S.S.; Souza, M.L.M.; Ibrahim, T.; Melo, G.O.; Almeida, A.P.; Guette, C.; Férézou, J.P.; Koatz, V.L.G. Kalanchosine dimalate, an anti-inflammatory salt from Kalanchoe brasiliensis. J .Nat. Prod. 2006, 69, 815-818.
3. Mcinerney, B.V. Biologically active metabolites from xenorhabdus spp. Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J. Nat. Prod. 1991, 54, 785-795.
4. Enomoto, M.; Kuwahara, S.; Concise synthesis of PM-94128 and Y-05460M-A. J. Org. Chem. 2009, 74, 7566-7599.
5. Shimojima, Y.; Hayashi, H.; Ooka, T.; Shibukawa, M.; Iitaka, Y. Studies on AI-77s, microbial products with gastroprotective activity. Structures and the chemical nature of AI-77s. Tetrahedron 1984, 40, 2519-2527.
6. Shimojima, Y.; Shirai, T.; Baba, T.; Hayashi, H. 1H-2-Benzopyran-1-one derivatives, microbial products with pharmacological activity. Conversion into orally active derivatives with antiinflammatory and antiulcer activities. J. Med. Chem. 1985, 28, 3-9.
7. Shimojima, Y.; Hayashi, H. 1H-2-Benzopyran-1-one derivatives, microbial products with pharmacological activity. Relationship between structure and activity in [[1(S)-(3(S), 4-dihydro-8-hydroxy-1-oxo-1H-2-benzopyran-3-yl)-3-methylbutylamino]-4(S),5(S)-dihydroxy-6-oxo-3(S)ammoniohexanoate. J. Med. Chem. 1983, 26, 1370-1374.
8. Murga, J.; Falomir, E.; Garcoa-Fortanet, J.; Carda, M.; Marco, J.A. Stereoselective synthesis of Microcarpalide. Org. Lett. 2002, 4, 3447-3449.
9. Gurjar, M.K.; Nagaprasad, R.; Ramana, C.V. Total synthesis of microcarpalide. Tetrahedron Lett. 2003, 44, 2873-2875.
10. Banwell, M.G.; Loong, D.T.J. Stereoselective total synthesis of the nonenolide (+)microcarpalide. Heterocycles 2004, 62, 713-734.
11. Gurjar, M.K.; Nagaprasad, R.; Ramana, C.V.; Karmakar, S.; Moha patra, D.K. Ring-closing metathesis mediated total synthesis of microcarpalide and herbarumin III. ARKIVOC 2005 (iii), 237-257.
12. García-Fortanet, J.; Murga, J.; Falomir, E.; Carda, M.; Marco, J.A. Stereoselective total synthesis and absolute configuration of the natural decanolides (-)-Microcarpalide and (+)-Lethaloxin. Identity of (+)-Lethaloxin and (+)-Pinolidoxin. J.Org. Chem. 2005, 70, 9822-9827.
13. Ghosh, S.; Rao, R.V.; Shashidhar, J. Total synthesis of (-)-microcarpalide from D-mannitol. Tetrahedron Lett. 2005, 46, 5479-5481.
14. Ishigami, K.; Kitahara, T. Synthesis of microcarpalide, a microfilament disrupting agent. Heterocycles 2004, 63, 785-790.
15. Ishigami, K.; Watanabe, H.; Kitahara, T. Stereoselective synthesis of microcarpalide. Tetrahedron 2005, 61, 7546-7553.
16. Davoli, P.; Fava, R.; Morandi, S.; Spaggiari, A.; Prati, F. Enantioselective total synthesis of (-)microcarpalide. Tetrahedron 2005, 61, 4427-4436.
17. Chavan, S.P.; Praveen, C. Stereoselective synthesis of (-)-microcarpalide. Tetrahedron Lett. 2005, 46, 1939-1941.
18. Kumar, P.; Naidu, S.V. Total synthesis of microcarpalide. J. Org. Chem. 2005, 70, 4207-4210.
19. Huang, P.-Q.; Liu, L.-X.; Wei, B.-G.; Ruan, Y.-P. Asymmetric synthesis of (+)-L-733,060 and (+)-CP-99,994 based on a new chiral 3-piperidinol synthon. Org. Lett. 2003, 5, 1927-1930.
20. Liu, L.-X.; Ruan, Y.-P.; Guo, Z.-Q.; Huang, P.-Q. A general approach to ($5 S, 6 R$)-6-alkyl-5-benzyloxy-2-piperidinones: application to the asymmetric syntheses of neurokinin substance P peceptor antagonist (-)-L-733,061 and (-)-deoxocassine. J. Org. Chem. 2004, 69, 6001-6009.
21. Liu, L.-X.; Huang, P.-Q. $\mathrm{S}_{\mathrm{N}} 2$ reaction of 2-substituted 3-piperidinol mesylate with retention of conguration: application to the asymmetric synthesis of $(2 R, 3 S)-C P-99,994$. Tetrahedron: Asymmetry 2006, 17, 3265-3272.
22. Liu, L.-X.; Pen, Q.-L.; Huang, P.-Q. A new approach for the asymmetric syntheses of ($2 S, 3 S$)-3hydroxypipercolic acid. Tetrahedron Asymmetry 2008, 19, 1200-1203.
23. Yu, D.-S.; Xu, W.-X.; Liu, L.-X.; Huang, P.-Q. First asymmetric synthesis of piperidine alkaloid (-)-morusimic acid. Synlett 2008, 1189-1192.
24. Liu, L.-X.; Xiao, K.J.; Huang, P.-Q. Chemo- and diastereoselective control for a flexible approach to (5S,6S)-6-alkyl-5-benzyloxy-2-piperidinones. Tetrahedron 2009, 65, 3834-3841.
25. Xiao, K.J.; Liu, L.-X.; Huang, P.-Q. An enantioselective of synthesis of (+)-azimic acid. Tetrahedron Asymmetry 2009, 20, 1181-1184.
26. García Ruano, J.L.; Fernández-Ibáñez, M.A.; Maestro, M.C.; Rodríguez-Fernández, M.M. Remote stereocontrol by sulfinyl groups: reduction of δ-ketosulfoxides. J. Org. Chem. 2005, 70, 1796-1801.
27. Bahia, P.S.; Snaith, J.S. Synthesis of 3-substituted 4-piperidinones via a one-pot Tandem oxidation-cyclization-oxidation process: stereodivergent reduction to 3,4 -disubstituted piperidines. J. Org. Chem. 2004, 69, 3226-3229.
28. Colyer, J.T.; Andersen, N.G.; Tedrow, J.S.; Soukup, T.S.; Faul, M.M. Reversal of diastereofacial selectivity in hydride reductions of N-tert-butanesulfinyl imines. J. Org. Chem. 2006, 71, 6859-6862.
29. Ripoche, I.; Bennis, K.; Canet, J.-L.; Gelas, J.; Troin, Y. Diastereoselective elaboration of 2,3,4substituted piperidines using diene iron tricarbonyl complexes. Total synthesis of (\pm)-dienomycin C and (\pm)-4-epi-dienomycin C. Tetrahedron Lett. 1996, 37, 3991-3992.
30. Mohanta, P.K.; Davis, T.A.; Gooch, J.R.; Flowers,II, R.A. Chelation-controlled diastereoselective reduction of α-fluoroketones. J. Am. Chem. Soc. 2005, 127, 11896-11897.
31. Andrés, J.M.; Barrio, R.; .Martínez, M.A.; Pedrosa, R.; Pérez-Encabo, A. Synthesis of enantiopure syn- β-amino alcohols. A simple case of chelation-controlled additions of diethylzinc to α-(dibenzylamino) aldehydes. J. Org. Chem. 1996, 61, 4210-4213.
32. Marco, J.A.; Carda, M.; González, F.; Rodríguez, S.; Castillo, E.; Murga, J. J. Org. Chem. 1998, 63, 698-707.
33. Cram, D.J.; Abd Elhafez, F.A. Studies in stereochemistry. X. The rule of "steric control of asymmetric induction" in the syntheses of acyclic systems. J. Am. Chem. Soc. 1952, 74, 5828-5835.
34. Cram, D.J.; Kopecky, K.R. Studies in stereochemistry. XXX. models for steric control of asymmetric. J. Am. Chem. Soc. 1959, 81, 2748-2755.

Sample Availability: Samples of the compounds 10a-10k are available from the authors.
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

