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Abstract: A general approach to (4S,5S)-4-benzyloxy-5-hydroxy-N-(4-methoxybenzyl) 
amides 10 based on a diastereoselective reduction of (5S,6RS)-6-alkyl-5-benzyloxy-6-
hydroxy-2-piperidinones 6 and their tautomeric ring-opened keto amides 7 is described. 
The reduction with L-Selectride at -20 °C to room temperature afforded the products 10 in 
excellent yields and moderate to high syn-diastereoselectivities.  

Keywords: L-Selectride; 3-hydroxyglutarimide; (4S,5S)-dihydroxyamide  
 

1. Introduction  

The (4,5)-dihydroxycarboxylate moiety is a critical framework shared by many bioactive 
compounds, such as Microcarpalide (1), which is a 10-membered lactone that was isolated from the 
fermentation broth of an unidentified endophytic fungus by Hemscheidt and co-workers in 2001 [1], 
and Kalanchosine dimalate (KMC, 2) [2], which is an anti-inflammatory salt from the fresh juice of the 
aerial parts of Kalanchoe brasiliensis, as well as natural gastroprotective 3,4-dihydroisocoumarins, 
such as amicoumacin C (3) [3,4] and AI-77B (4) [5,6]. Both the stereochemical variation at C-4, C-5 
and the interesting biological activities exhibited by these compounds make them attractive synthetic 
targets [1,5-7]. A number of methods have been developed for the synthesis of these compounds [8-
13], but few methods for the construction of the (4,5)-dihydroxycarboxylate moiety [14-18]. 
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Generally,   chiral pool starting materials or Sharpless asymmetric dihydroxylation was used in the 
construction of the (4,5)-dihydroxycarboxylate moiety.  

Figure 1. (4,5)-Dihydroxycarboxylate derivatives. 
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Previously, we have shown that the protected (S)-3-hydroxyglutarimide 5 may serve as a versatile 
building block for the asymmetric synthesis of a variety of 2,6-disubstituted 3-hydroxypiperidines  
[19-23]. A flexible regio- and diastereoselective reductive alkylation method was developed for the 
conversion of 5 to trans-6-alkyl-5-benzyloxy-2-piperidinone derivatives 8 [20]. Recently, we also 
developed a chemo- and diastereoselective transformation of the N,O-acetals 6 and their chain 
tautomers 7, readily derived from protected 3-hydroxyglutarimide 5, into cyclic products (5S,6S/R)-6-
alkyl-5-benzyloxy-2-piperidinones 9/8, and anti-10/syn-10 with a combination of boron trifluoride 
etherate/zinc borohydride in modest chemo- and diastereoselectivities (Scheme 1) [24]. Moreover, the 
reduction with zinc borohydride in the absence of BF3•OEt2 leading exclusively to the formation of the 
ring-opening products anti-10 in excellent anti-diastereoselectivities was exploited. In addition, we 
reported the application of this new variation to the asymmetric synthesis of (+)-azimic acid [25].  

Scheme 1. The synthesis of 6-alkyl-5-benzyloxy-2-piperidinones.  
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In the continuation of our interest in the amino acid chiral template-assisted synthesis of natural and 
unnatural bioactive compounds, as a part of our research program aimed at developing enantioselective 
syntheses of naturally occurring bioactive compounds, such as Microcarpalide (1), we decided to 
explore the construction of the (4,5)-dihydroxycarboxylate moiety in order to develop a simple and 
feasible approach to syn-10, a key intermediate (R = CH=CH2) for the synthesis of 1. Herein we report 
a diastereoselective reduction of 6 and 7 employing L-Selectride as the reductive agent to obtain syn-
10 (Scheme 2).  

2. Results and Discussion  

The requisite 6-alkyl-5-benzyloxy-6-hydroxy-2-piperidinones 6, together with their ring-opened 
keto amide tautomers 7, were prepared via the addition of Grignard reagents to (S)-3-benzyloxy-
glutarimide 5 under our recently improved conditions [23]. Treatment of the tautomeric mixture of 6a 
and 7a with 1.2 molar equiv of L-Selectride in THF (−20 °C - rt) yielded syn-10a and anti-10a in a 
ratio of 86:14 (combined yield: 93%). To explore the generality of the process, a series of hemi-
azaketals 6 and their opened keto amide tautomers 7 were investigated using L-Selectride as reductive 
agent [26-29], and the results are reported in Table 1.  

Scheme 2. The diastereoselective reduction by L-Selectride.  
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Table 1. Results of reduction according to the procedure shown in Scheme 2.  

Entry                  R                              Yield [%] a             syn/anti ratio 
1 CH3 (10a)              93 6:1 b 
2 C2H5 (10b)            97 7:1 c 
3 n-C4H9 (10c)         97 7:1 c 
4 n-C5H11 (10d)        95 23:2 c 
5 n-C8H17 (10e)        98 23:2 b 
6 n-C12H25 (10f)       85 9:1 b 
7 n-C16H33 (10g)       83 7:1 b 
8  i-Bu (10h)            92 3:1 c 
9 Ph (10i)                 81 3:1 b 

10 Bn (10j)                 92 11:2 c 
11 PhCH2CH2 (10k)   82   7:2 c 

a Isolated yield of 10 starting from 6 and 7. b Ratio determined by 1H-
NMR analysis. c Ratio based on HPLC analysis.  

             
As can be seen from Table 1, high yields and modest to high syn-selectivities were obtained for all 

hemi-azaketals tested. It is interesting to note that modest syn-selectivities were obtained in the case 
where 6 and 7 bearing i-Bu or Ph (Table 1, entries 8 and 9) as well as PhCH2CH2 (Table 1, entry 11). 
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The stereochemistry of the major diastereomer 10 was assigned to syn-conformer according to the 
observed vicinal coupling constants [24] (J4,5 = 5.1 Hz for syn-10a and J4,5 = 4.5 Hz for anti-10a; J4,5 = 
5.2 Hz for syn-10b and J4,5 = 4.3 Hz for anti-10b; J4,5 = 5.1 Hz for syn-10c and J4,5 = 4.2 Hz for anti-
10c; J4,5 = 5.1 Hz for syn-10e and J4,5 = 4.4 Hz for anti-10e; J4,5 = 5.1 Hz for syn-10g and J4,5 = 4.5 Hz 
for anti-10g; J4,5 = 6.1 Hz for syn-10i and J4,5 = 5.1 Hz for anti-10i). In addition, the stereochemistry of 
diastereomers syn-10 was confirmed by converting syn-10 to (5S,6R)-6-alkyl-5-benzyloxy-2-piperidin-
ones 8. For example, syn-10a can be converted to anti-8a in 78% yield by mesylation (MsCl, Et3N, 
CH2Cl2, −20 °C, 1 h) and t-BuOK-promoted cyclization (HMPA, THF, rt, 24 h) (Scheme 3).  

Scheme 3. The synthesis of (5S,6R )-6-methyl-5-benzyloxy-2-piperidinones. 
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Figure 2. A plausible Cram chelation-controlled pathway for the syn-diastereoselective 
formation of syn-10. 
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The fact that starting from the tautomeric mixture of 6 and 7 syn-diastereomer 10 was obtained in 
modest to high diastereoselectivity is in accordance with a Cram model-based mechanism [30-34]. It 
was envisioned that the hydride to approach C-5 carbon from the same side of the chelate C-4 
benzyloxy substituent led to the formation of syn-isomer because of the chelation between lithium ion 
and oxygen atom of the C-4 oxygen as well as C-5 carbonyl oxygen (Figure 2), which not only 
switches the equilibrium towards 7, but also allows the reduction to undergo with a Cram chelation-
controlled manner.  

3. Conclusions  

In summary, a simple and efficient route to protected (4S,5S)-dihydroxy amides via the reduction of 
the tautomeric mixture of 6 and 7 with L-Selectride has been developed. This strategy offers a concise 
platform for the construction of (4S,5S)-dihydroxycarboxylate moieties under mild conditions. As 
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such, this method is complementary, in part, to our previously established anti-diastereoselective 
method.  

4. Experimental  

4.1. General methods  

Melting points were determined on a Yanaco MP-500 micro melting point apparatus and are 
uncorrected. Infrared spectra were measured with a Nicolet Avatar 360 FT-IR spectrometer using film 
KBr pellet technique. 1H-NMR spectra were recorded in CDCl3 on a Bruker 400 or a Varian unity 
+500 spectrometer with tetramethylsilane as an internal standard. Chemical shifts are expressed in δ 
(ppm) units downfield from TMS. Mass spectra were recorded with Bruker Dalton Esquire 3000 plus 
LC-MS apparatus. Optical rotations were measured with a Perkin-Elmer 341 automatic polarimeter. 
Elemental analysis was carried out on a Perkin-Elmer 240B instrument. Flash column chromatography 
was carried out with silica gel (300-400 mesh). THF was distilled over sodium and CH2Cl2 was 
distilled over P2O5 under N2.  

4.2. General procedure for preparation of syn-10  

To a cooled (−20 °C) solution of tautomeric mixture 6/7 [20] (1.0 mol equiv) in THF (0.1 M) was 
added dropwise a solution of L-Selectride (1.2 mol equiv) under argon atmosphere and the mixture was 
stirred at −20 ~ −10 °C for 1 h. Then, the mixture was allowed to slowly warm to room temperature 
and was stirred at room temperature overnight. The reaction was quenched with a saturated aqueous 
NH4Cl. After extraction with CH2Cl2, the combined organic layers were washed with brine, dried over 
anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by 
flash chromatography on silica gel (eluent: EtOAc/Petroleum ether = 1:2), some pure syn-10 and the 
mixture of syn-10 and anti-10 were obtained.  

 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)hexanoyl amide (syn-10a): White solid, mp: 74-
75 °C; [α]25

D: +4.75 (c 1.0, CHCl3); IR (film) νmax: 3407, 3305, 1649, 1513, 1248 cm-1; 1H-NMR 
(400 MHz, CDCl3): δ 7.33-7.25 (m, 5H, Ar-H), 7.15 (d, J = 8.6 Hz, 2H, Ar-H), 6.83 (d, J = 8.6 Hz, 
2H, Ar-H), 5.60 (s, 1H, NH), 4.59 (d, J = 11.5 Hz, 1H, OCH2), 4.53 (d, J = 11.5 Hz, 1H, OCH2), 4.32 
(dd, J = 14.5, 5.6 Hz, 1H, NCH2), 4.27 (dd, J = 14.5, 5.6 Hz, 1H, NCH2), 3.78 (s, 3H, OCH3), 3.70 (m, 
1H, H-4), 3.35 (dd, J = 6.4, 5.1 Hz, 1H, H-5), 2.59 (d, J = 2.8 Hz, 1H, OH), 2.25 (t, J = 7.4 Hz, 2H, H-
2), 2.04 (ddd, J = 14.0, 7.4, 4.9 Hz, 1H, H-6), 1.82 (ddd, J = 14.0, 7.4, 6.8 Hz, 1H, H-3), 1.17 (t,  
J = 6.4 Hz, 3H, CH3); 13C-NMR (100 MHz, CDCl3): δ 172.4 (C=O), 158.9, 138.2, 130.3, 129.1 (2×C), 
128.4 (2×C), 127.9 (2×C), 127.8, 114.0 (2×C), 82.1 (C-5), 71.9 (C-4), 68.6 (OCH2), 55.2 (OCH3), 43.0 
(NCH2), 31.6, 25.6, 18.9; MS (ESI): 358 [M+H]+, 380 [M+Na]+; Anal calcd for C21H27NO4: C, 70.56; 
H, 7.61; N, 3.92. Found C, 70.31; H, 7.76; N, 4.25.  

 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)heptanoyl amide (syn-10b): White solid, mp: 122-
124 °C; [α]25

D: +1.86 (c 1.2, CHCl3); IR (film) νmax: 3407, 3306, 1649, 1513, 1248 cm-1; 1H-NMR 
(400 MHz, CDCl3): δ 7.32-7.25 (m, 5H, Ar-H), 7.15 (d, J = 8.7 Hz, 2H, Ar-H), 6.83 (d, J = 8.7 Hz, 
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2H, Ar-H), 5.57 (s, 1H, NH), 4.59 (d, J = 11.5 Hz, 1H, OCH2), 4.53 (d, J = 11.5 Hz, 1H, OCH2), 4.32 
(dd, J = 14.4, 5.5 Hz, 1H, NCH2), 4.28 (dd, J = 14.5, 5.5 Hz, 1H, NCH2), 3.78 (s, 3H, OCH3), 3.43 (m, 
1H, H-4), 3.36 (ddd, J = 5.6, 5.6, 5.2 Hz, 1H, H-5), 2.42 (s, 1H, OH), 2.26 (t, J = 7.4 Hz, 2H, H-3), 
2.03 (ddd, J = 13.8, 7.1, 5.2 Hz, 1H, H-2), 1.87 (ddd, J = 13.8, 7.5, 7.2 Hz, 1H, H-2), 1.55 (ddd,  
J = 13.8, 7.5, 4.1 Hz, 1H, H-6), 1.46 (ddd, J = 13.8, 7.2, 5.2 Hz, 1H, H-6), 0.95 (t, J = 7.5 Hz, 3H, 
CH3); 13C-NMR (100 MHz, CDCl3): δ 172.4 (C=O), 158.9, 138.2, 130.4, 129.1 (2×C), 128.4 (2×C), 
127.8 (2×C), 127.7, 114.0 (2×C), 80.8 (C-5), 74.0 (C-4), 72.5 (OCH2), 55.2 (OCH3), 43.0 (NCH2), 
31.8, 26.2, 25.9, 10.2; MS (ESI): 371 [M+H]+, 394 [M+Na]+, 410 [M+K]+; Anal calcd for C22H29NO4: 

C, 71.13; H, 7.87; N, 3.77. Found C, 71.03; H, 7.55; N, 3.71.  
 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)nonanoyl amide (syn-10c): Waxy solid; [α]25

D: 
+1.90 (c 1.5, CHCl3); IR (film) νmax: 3407, 3305, 1650, 1513, 1248 cm-1; 1H-NMR (500 MHz, CDCl3): 
δ 7.35-7.25 (m, 5H, Ar-H), 7.16 (d, J = 8.7 Hz, 2H, Ar-H), 6.84 (d, J = 8.7 Hz, 2H, Ar-H), 5.55 (s, 1H, 
NH), 4.60 (d, J = 11.5 Hz, 1H, OCH2), 4.53 (d, J = 11.5 Hz, 1H, OCH2), 4.33 (dd, J = 14.4, 5.6 Hz, 
1H, NCH2), 4.28 (dd, J = 14.4, 5.6 Hz, 1H, NCH2), 3.78 (s, 3H, OCH3), 3.52 (m, 1H, H-4), 3.36 (ddd, 
J = 6.2, 5.1, 5.1 Hz, 1H, H-5), 2.33 (s, 1H, OH), 2.26 (t, J = 7.4 Hz, 2H, H-2), 2.05 (ddd, J = 14.0, 7.4, 
5.2 Hz, 1H, H-3), 1.87 (ddd, J = 14.0, 7.6, 7.4 Hz, 1H, H-3), 1.52-1.40 (m, 3H), 1.36-1.25 (m, 3H), 
0.89 (t, J = 7.1 Hz, 3H, CH3); 13C-NMR (125 MHz, CDCl3): δ 172.4 (C=O), 159.0, 138.2, 130.3, 129.2 
(2×C), 128.4 (2×C), 127.9 (2×C), 127.8, 114.0 (2×C), 81.1 (C-5), 72.6 (C-4), 72.5 (OCH2), 55.3 
(OCH3), 43.1 (NCH2), 33.1, 31.8, 27.9, 23.9, 22.7, 14.0; MS (ESI): 400 [M+H]+, 422 [M+Na]+, 438 
[M+K]+; Anal calcd for C24H33NO4: C, 72.15; H, 8.33; N, 3.51. Found C, 72.34; H, 8.36; N, 3.66.  
 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)decanoyl amide (syn-10d): Waxy solid; 
[α]25

D: -1.76 (c 2.3, CHCl3); IR (film) νmax: 3411, 3304, 2931, 1646, 1513, 1248 cm-1; 1H-NMR (400 
MHz, CDCl3): δ 7.32-7.26 (m, 5H, Ar-H), 7.15 (d, J = 8.5 Hz, 2H, Ar-H), 6.82 (d, J = 8.5 Hz, 2H, Ar-
H), 5.85 (s, 1H, NH), 4.59 (d, J = 11.5 Hz, 1H, OCH2), 4.52 (d, J = 11.5 Hz, 1H, OCH2), 4.32 (dd,  
J = 14.5, 5.6 Hz, 1H, NCH2), 4.28 (dd, J = 14.5, 5.6 Hz, 1H, NCH2), 3.78 (s, 3H, OCH3), 3.52 (m, 1H, 
H-4), 3.34 (ddd, J = 5.4, 5.4, 5.2 Hz, 1H, H-5), 2.38 (d, J = 4.3 Hz, 1H, OH), 2.25 (t, J = 7.3 Hz, 2H, 
H-2), 2.04 (ddd, J = 14.0, 7.7, 7.3 Hz, 1H, H-3), 1.87 (ddd, J = 14.0, 7.3, 7.1 Hz, 1H, H-3), 1.50-1.40 
(m, 3H), 1.35-1.20 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H, CH3); 13C-NMR (100 MHz, CDCl3): δ 172.4 
(C=O), 159.0, 138.2, 130.4, 129.1 (2×C), 128.4 (2×C), 127.9 (2×C), 127.8, 114.0 (2×C), 81.1 (C-5), 
72.6 (C-4), 72.5 (OCH2), 55.2 (OCH3), 43.0 (NCH2), 33.3, 31.8, 26.0, 25.4 (2×C), 22.6, 14.0; MS 
(ESI): 414 [M+H]+, 436 [M+Na]+; Anal calcd for C25H35NO4: C, 72.61; H, 8.53; N, 3.39. Found C, 
72.33; H, 8.52; N, 3.42.  
 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)tridecanoyl amide (syn-10e): Waxy solid; 
[α]25

D: -2.21 (c 2.3, CHCl3); IR (film) νmax: 3406, 3304, 2926, 2854, 1646, 1513, 1249 cm-1; 1H-NMR 
(400 MHz, CDCl3): δ 7.34-7.25 (m, 5H, Ar-H), 7.15 (m, 2H, Ar-H), 6.84 (m, 2H, Ar-H), 5.75 (s, 1H, 
NH), 4.60 (d, J = 11.5 Hz, 1H, OCH2), 4.53 (d, J = 11.5 Hz, 1H, OCH2), 4.33 (dd, J = 14.4, 5.6 Hz, 
1H, NCH2), 4.29 (dd, J = 14.4, 5.6 Hz, 1H, NCH2), 3.78 (s, 3H, OCH3), 3.51 (m, 1H, H-4), 3.36 (ddd, 
J = 5.6, 5.6, 5.1 Hz, 1H, H-5), 2.32-2.23 (m, 2H), 2.26 (s, 1H, OH), 2.05 (m, 1H), 1.88 (ddd,  
J = 14.2, 6.7, 6.7 Hz, 1H), 1.52-1.40 (m, 3H), 1.34-1.20 (m, 11H), 0.88 (t, J = 6.9 Hz, 3H, CH3); 13C-
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NMR (100 MHz, CDCl3): δ 172.4 (C=O), 159.0, 138.3, 130.4, 129.2 (2×C), 128.4 (2×C), 127.9 (2×C), 
127.8, 114.0 (2×C), 81.2 (C-5), 72.7 (C-4), 72.6 (OCH2), 55.3 (OCH3), 43.1 (NCH2), 33.4, 31.8 (2×C), 
29.7, 29.5, 29.3, 26.0, 25.8, 22.6, 14.1; MS (ESI): 456 [M+H]+; Anal calcd for C28H41NO4: C, 73.85; 
H, 9.01; N, 3.08. Found C, 73.59; H, 8.98; N, 3.06.  
 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)heptadecanoyl amide (syn-10f): White solid, mp: 
68-70 °C; [α]25

D: -2.63 (c 1.1, CHCl3); IR (film) νmax: 3423, 3305, 2924, 2853, 1643, 1513, 1248 cm-1; 
1H-NMR (400 MHz, CDCl3): δ 7.35-7.23 (m, 5H, Ar-H), 7.16 (d, J = 8.2 Hz, 2H, Ar-H), 6.85 (d,  
J = 8.2 Hz, 2H, Ar-H), 5.70 (s, 1H, NH), 4.61 (d, J = 11.5 Hz, 1H, OCH2), 4.54 (d, J = 11.5 Hz, 1H, 
OCH2), 4.34 (dd, J = 14.5, 5.5 Hz, 1H, NCH2), 4.30 (dd, J = 14.5, 5.5 Hz, 1H, NCH2), 3.79 (s, 3H, 
OCH3), 3.52 (m, 1H, H-4), 3.36 (ddd, J = 5.3, 5.3, 5.1 Hz, 1H, H-5), 2.30-2.23 (m, 2H), 2.26 (s, 1H, 
OH), 2.05 (ddd, J = 14.0, 7.3, 7.3 Hz, 1H, H-2), 1.88 (ddd, J = 14.0, 7.0, 7.0 Hz, 1H, H-2), 1.52-1.40 
(m, 3H), 1.35-1.20 (m, 19H), 0.88 (t, J = 6.6 Hz, 3H, CH3); 13C-NMR (100 MHz, CDCl3): δ 172.4 
(C=O), 159.1, 138.3, 130.4, 129.2 (2×C), 128.5 (2×C), 127.9 (2×C), 127.8, 114.1 (2×C), 81.2 (C-5), 
72.7 (C-4), 72.6 (OCH2), 55.3 (OCH3), 43.1 (NCH2), 33.5, 31.9, 31.8, 29.7 (6×C), 29.4, 26.0, 25.8, 
22.7, 14.1; MS (ESI): 512 [M+H]+, 534 [M+Na]+; Anal calcd for C32H49NO4: C, 75.11; H, 9.65; N, 
2.74. Found C, 75.39; H, 9.91; N, 2.86.  
 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)heneicosanoyl amide (syn-10g): White solid, mp: 
62-64 °C; [α]25

D: -1.93 (c 1.1, CHCl3); IR (film) νmax: 3419, 3302, 2923, 2852, 1655, 1513, 1249 cm-1; 
1H-NMR (400 MHz, CDCl3): δ 7.33-7.27 (m, 5H, Ar-H), 7.17 (d, J = 8.6 Hz, 2H, Ar-H), 6.85 (d,  
J = 8.6 Hz, 2H, Ar-H), 5.65 (s, 1H, NH), 4.60 (d, J = 11.5 Hz, 1H, OCH2), 4.54 (d, J = 11.5 Hz, 1H, 
OCH2), 4.33 (dd, J = 14.4, 5.5 Hz, 1H, NCH2), 4.30 (dd, J = 14.4, 5.5 Hz, 1H, NCH2), 3.80 (s, 3H, 
OCH3), 3.52 (m, 1H, H-4), 3.35 (m, 1H, H-5), 2.30-2.22 (br s, 1H, OH), 2.26 (t, J = 7.4 Hz, 2H, H-2), 
2.05 (ddd, J = 14.1, 7.4, 7.4 Hz, 1H, H-3), 1.88 (ddd, J = 14.1, 7.4, 6.8 Hz, 1H, H-3), 1.52-1.40 (m, 
3H), 1.35-1.20 (m, 27H), 0.88 (t, J = 6.8 Hz, 3H, CH3); 13C-NMR (100 MHz, CDCl3): δ 172.4 (C=O), 
159.1, 138.3, 130.4, 129.2 (2×C), 128.5 (2×C), 127.9 (2×C), 127.8, 114.1 (2×C), 81.2 (C-5), 72.8 (C-
4), 72.6 (OCH2), 55.3 (OCH3), 43.1 (NCH2), 33.5, 31.9, 31.8, 29.7 (8×C), 29.6 (2×C), 29.4, 26.0, 25.8, 
22.7, 14.1; MS (ESI): 568 [M+H]+; Anal calcd for C36H57NO4: C, 76.15; H, 10.12; N, 2.47. Found C, 
76.51; H, 9.74; N, 2.46.  
 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)-7-methyloctanoyl amide (syn-10h): Waxy solid; 
[α]25

D: -7.34 (c 2.9, CHCl3); IR (film) νmax: 3410, 3303, 1644, 1513, 1248 cm-1; 1H-NMR (400 MHz, 
CDCl3): δ 7.35-7.23 (m, 5H, Ar-H), 7.15 (d, J = 8.5 Hz, 2H, Ar-H), 6.85 (d, J = 8.5 Hz, 2H, Ar-H), 
5.85 (s, 1H, NH), 4.59 (d, J = 11.5 Hz, 1H, OCH2), 4.53 (d, J = 11.5 Hz, 1H, OCH2), 4.33 (dd,  
J = 14.4, 5.8 Hz, 1H, NCH2), 4.27 (dd, J = 14.4, 5.8 Hz, 1H, NCH2), 3.78 (s, 3H, OCH3), 3.65-3.57 (m, 
1H, H-4), 3.32 (m, 1H, H-5), 2.37 (d, J = 4.9 Hz, 1H, OH), 2.25 (t, J = 7.2 Hz, 2H, H-2), 2.08-1.98 (m, 
1H), 1.93-1.75 (m, 2H), 1.48-1.38 (m, 1H), 1.27-1.18 (m, 1H), 0.92 (d, J = 6.7 Hz, 3H, CH3), 0.88 (d,  
J = 6.7 Hz, 3H, CH3); 13C-NMR (100 MHz, CDCl3): δ 172.4 (C=O), 158.9, 138.2, 130.3, 129.1 (2×C), 
128.4 (2×C), 127.9 (2×C), 127.8, 114.0 (2×C), 81.6 (C-5), 72.6 (C-4), 70.6 (OCH2), 55.2 (OCH3), 43.0 
(NCH2), 42.3, 31.8, 25.9, 24.5, 23.6, 21.7; MS (ESI): 400 [M+H]+, 422 [M+Na]+, 438 [M+K]+; Anal 
calcd for C24H33NO4: C, 72.15; H, 8.33; N, 3.51. Found C, 72.19; H, 8.16; N, 3.29.  
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(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)-5-phenylpentanoyl amide (syn-10i): White solid, 
mp: 45-47 °C; [α]25

D: +14.09 (c 2.7, CHCl3); IR (film) νmax: 3411, 3307, 1655, 1512, 1249 cm-1; 1H- 
NMR (400 MHz, CDCl3): δ 7.36-7.23 (m, 10H, Ar-H), 7.15 (d, J = 8.6 Hz, 2H, Ar-H), 6.86 (d,  
J = 8.6 Hz, 2H, Ar-H), 5.52 (s, 1H, NH), 4.83 (d, J = 6.1 Hz, 1H, H-5), 4.51 (d, J = 11.5 Hz, 1H, 
OCH2), 4.46 (d, J = 11.5 Hz, 1H, OCH2), 4.28 (dd, J = 14.4, 5.6 Hz, 1H, NCH2), 4.22 (dd, J = 14.4, 
5.6 Hz, 1H, NCH2), 3.77 (s, 3H, OCH3), 3.63 (ddd, J = 6.3, 6.1, 5.2 Hz, 1H, H-4), 3.06 (d, J = 4.0 Hz, 
1H, OH), 2.13 (t, J = 7.6 Hz, 2H, H-2), 1.90 (m, 1H, H-3), 1.78 (m, 1H, H-3); 13C-NMR (100 MHz, 
CDCl3): δ 172.3 (C=O), 159.0, 141.1, 138.0, 130.4, 129.2 (2×C), 128.5 (2×C), 128.3 (2×C), 128.1 
(2×C), 127.9 (2×C), 126.8 (2×C), 114.1 (2×C), 82.6 (C-5), 75.8 (C-4), 72.0 (OCH2), 55.3 (OCH3), 
43.1 (NCH2), 32.0, 26.5; MS (ESI): 420 [M+H]+, 442 [M+Na]+, 458 [M+K]+; Anal calcd for 
C26H29NO4: C, 74.44; H, 6.97; N, 3.34. Found C, 74.49; H, 6.82; N, 3.59.  
 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)-6-phenylhexanoyl amide (syn-10j): Waxy solid; 
[α]25

D: +2.01 (c 2.6, CHCl3); IR (film) νmax: 3403, 3305, 1644, 1513, 1248, 1030 cm-1; 1H-NMR (400 
MHz, CDCl3): δ 7.35-7.23 (m, 8H, Ar-H), 7.17-7.12 (m, 4H, Ar-H), 6.83 (d, J = 8.7 Hz, 2H, Ar-H), 
5.55 (s, 1H, NH), 4.61 (d, J = 11.5 Hz, 1H, OCH2), 4.54 (d, J = 11.5 Hz, 1H, OCH2), 4.30 (dd,  
J = 14.5, 5.6 Hz, 1H, NCH2), 4.25 (dd, J = 14.5, 5.6 Hz, 1H, NCH2), 3.82-3.75 (m, 1H, H-4), 3.75 (s, 
3H, OCH3), 3.39 (ddd, J = 5.8, 5.8, 5.1 Hz, 1H, H-5), 2.85 (dd, J = 13.8, 4.8 Hz, 1H, H-6), 2.75 (dd, J 
= 13.8, 8.3 Hz, 1H, H-6), 2.45 (d, J = 5.8 Hz, 1H, OH), 2.23 (t, J = 7.3 Hz, 2H, H-2), 2.07 (ddd,  
J = 14.0, 7.3, 5.6 Hz, 1H, H-3), 1.93 (ddd, J = 14.0, 7.3, 7.0 Hz, 1H, H-3); 13C-NMR (100 MHz, 
CDCl3): δ 172.4 (C=O), 158.9, 138.6, 138.2, 130.3, 129.3 (2×C), 129.1 (2×C), 128.4 (4×C), 128.0 
(2×C), 127.8, 126.3, 114.0 (2×C), 79.8 (C-5), 73.6 (C-4), 72.2 (OCH2), 55.2 (OCH3), 43.0 (NCH2), 
39.7, 31.9, 25.7; MS (ESI): 434 [M+H]+, 456 [M+Na]+, 472 [M+K]+; Anal calcd for C27H31NO4: C, 
74.80; H, 7.21; N, 3.23. Found C, 74.83; H, 7.55; N, 3.28.  
 
(4S,5S)-4-Benzyloxy-5-hydroxy-N-(4-methoxybenzyl)-7-phenylheptanoyl amide (syn-10k): Waxy solid. 
[α]25

D: -7.35 (c 1.9, CHCl3); IR (film) νmax: 3411, 3306 2932, 1645, 1513, 1248, 1030 cm-1; 1H-NMR 
(400 MHz, CDCl3): δ 7.40-7.20 (m, 10H, Ar-H), ,7.15 (d, J = 8.6 Hz, 2H, Ar-H), 6.85 (d, J = 8.6 Hz, 
;2H, Ar-H), 5.63 (s, 1H, NH), 4.50 (d, J = 11.5 Hz, 1H, OCH2), 4.47 (d, J = 11.5 Hz, 1H, OCH2), 4.33 
(dd, J = 14.5, 5.6 Hz, 1H, NCH2), 4.25 (dd, J = 14.5, 5.6 Hz, 1H, NCH2), 3.78 (s, 3H, OCH3), 3.71 (m, 
1H, H-4), 3.37 (m, 1H, H-5), 2.90 (m, 2H), 2.67 (ddd, J = 13.8, 9.5, 7.0 Hz, 1H, H-3), 2.38 (d,  
J = 7.6 Hz, 2H, H-2), 2.52 (d, J = 5.6 Hz, 1H, OH), 2.08 (ddd, J = 13.8, 7.6, 5.2 Hz, 1H, H-3), 1.93-
1.78 (m, 2H); 13C-NMR (100 MHz, CDCl3): δ 172.9 (C=O), 159.0, 142.1, 138.0, 130.2, 129.4, 129.2 
(2×C), 128.5, 128.1 (4×C), 128.0 (2×C), 127.8, 125.5, 114.0 (2×C), 81.2 (C-5), 72.5 (C-4), 70.3 
(OCH2), 55.1 (OCH3), 43.1 (NCH2), 34.9, 32.1, 31.7, 23.3; MS (ESI): 448 [M+H]+, 470 [M+Na]+; 
Anal calcd for C28H33NO4: C, 75.14; H, 7.43; N, 3.13. Found C, 75.23; H, 7.75; N, 3.39.  
 
4.3. The synthesis of (5S,6R)-2-Piperidinone 8a via the cyclization of 10a 

To a cooled (−20 °C) solution of a mixture of 10a (182 mg, 0.51 mmol) and Et3N (0.14 mL,  
1.00 mmol) in CH2Cl2 (5 mL) was added dropwise MsCl (0.047 mL, 0.61 mmol) under a nitrogen 
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atmosphere. The mixture was stirred at −20 ~ −10 °C for 1 h. Water was added and the aqueous layer 
was separated and extracted with CH2Cl2. The combined organic layers were washed with brine, dried 
over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified 
by flash chromatography on silica gel (eluent: EtOAc/P.E. = 1:2) to yield the mesylate 11 (202 mg), 
which is unstable and was used immediately in the next step. To a solution of mesylate 11 (202 mg, 
0.43 mmol) in THF (3 mL) and HMPA (0.15 mL, 0.86 mmol) was added dropwise a solution of 
potassium tert-butoxide (58 mg, 0.52 mmol) in THF (2 mL) at 0 °C under nitrogen atmosphere. The 
mixture was allowed slowly warming to room temperature and was stirred for 24 h. The reaction was 
quenched with saturated NH4Cl at 0 °C. The aqueous layer was separated and extracted with CH2Cl2. 
The combined organic layers were washed with brine, dried over anhydrous Na2SO4, filtered, and 
concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel 
(eluent EtOAc/P.E. = 1:2) to yield (5S,6R)-8a (135 mg, 78% yield). For the data of (5S,6R)-8a see [20].  
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