

Article

Synthesis of *syn*-γ-Amino-β-hydroxyphosphonates by Reduction of β-Ketophosphonates Derived from L-Proline and L-Serine

Mario Ordóñez *, Selene Lagunas-Rivera, Emanuel Hernández-Núñez and Victoria Labastida-Galván

Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca, Mor., México

* Author to whom correspondence should be addressed; E-Mail: palacios@ciq.uaem.mx; Tel.: +527773297997; Fax: +527773297997.

Received: 14 January 2010; in revised form: 5 February 2010 / Accepted: 2 March 2010 / Published: 4 March 2010

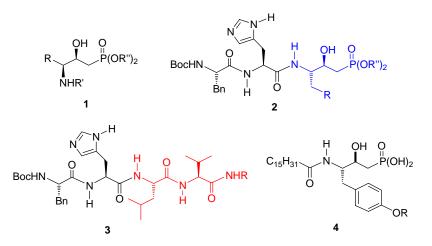
Abstract: The reduction of γ -*N*-benzylamino- β -ketophosphonates **6** and **10**, readily available from L-proline and L-serine, respectively, can be carried out in high diastereoselectivity with catecholborane (CB) in THF at -78 °C to produce the *syn-\gamma-N*-benzylamino- β -hydroxyphosphonates **11** and **13** as a single detectable diastereoisomer, under non-chelation or Felkin-Anh model control.

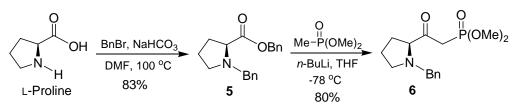
Keywords: β -ketophosphonates; diastereoselective reduction; γ -amino- β -hydroxy-phosphonates

1. Introduction

Aminoalkylphosphonic acids are structurally analogous to the amino acids, obtained by isosteric substitution of the planar and less bulky carboxylic acid (CO₂H) group by a tetrahedral phosphonic acid (PO₃H₂) functionality. Several aminophosphonic, aminophosphinic and aminophosphonous acids have been isolated from various natural sources, either as free amino acids or as constituents of more complex molecules [1–4]. In this context, γ -amino- β -hydroxyphosphonates such as 1 (Figure 1) have resulted in unique phosphate mimics with resistance to phosphatase hydrolysis [5,6]. The γ -amino- β -hydroxyphosphonates 1 have been also used in the synthesis of complex molecules 2 (Figure 1) as Leu¹⁰-Val¹¹ replacement (LVRs) **3** (Figure 1), which act as rennin [7], and D-Ala-D-Ala ligase

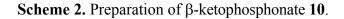
inhibitors [8]. The γ -*N*-acylamino- β -hydroxyphosphonic acids **4** (Figure 1) have been used as autotoxin (ATX) inhibitors [9]. Additionally, the γ -amino- β -hydroxyphosphonic acids have been also used as potent sphingosine-1-phosphate (S1P) receptors [10], and as polysaccharide fragments [11,12].

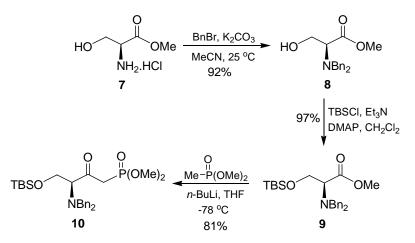



Figure 1. Structures of compounds 1–4.

In view of the different biological and chemical applications of the γ -amino- β -hydroxyphosphonate phosphonic acid derivatives, in the last years the development of suitable synthetic methodologies for their preparation in diastereoisomerically pure form has been a topic of great interest in several research groups [13–29]. In this context, several protocols for efficient diastereoselective synthesis of γ -amino- β -hydroxyphosphonic acids and derivatives have emerged, including ring opening of epoxides [30–33], type aldol reactions of α -aminoaldehydes with dialkyl methylphosphonates [7,8,34–41], catalytic asymmetric aminohydroxylation of β , γ -unsaturated phosphonates [42–44], and diastereoselective reduction of γ -amino- β -ketophosphonates [45–47].

Recently, we reported the synthesis of phosphostatine and phosphoepistatine [48,49] *via* a high diastereoselective reduction of γ -amino- β -ketophosphonates readily obtained from L-amino acids [50–52]. In order to establish a general methodology for the synthesis of *syn*- γ -amino- β -hydroxyphosphonates derived from L-amino acids, in this paper we would like to report the synthesis of γ -amino- β -ketophosphonates **6** and **10** derived from L-proline and L-serine, respectively, and their highly diastereoselective reduction.


2. Results and Discussion


In our initial study, the synthesis of (*S*)-*N*-benzyl-*O*-benzylpyrrolidine-2-carboxylate (**5**) was carried out by treatment of L-proline with benzyl bromide and K_2CO_3 in refluxing ethanol [50], however under this conditions a disappointing poor yield was obtained. For that reason, we decided to examine the methodology developed by Overman and co-workers [53] as a potentially more efficient and practical route to compound **5**. Thus, treatment of L-proline with benzyl bromide and NaHCO₃ in *N*,*N*dimethylformamide (DMF) at 100 °C provided the corresponding *N*-benzyl *O*-benzyl proline **5** in 83% yield. Nevertheless, with the *O*-benzyl ester **5** in our hands, we focused our attention on the transformation to β -ketophosphonate **6**. Thus, reaction of **5** with three equivalents of the lithium salt of dimethyl methylphosphonate at -78 °C in THF afforded the corresponding *N*-benzylamino- β -ketophosphonate **6** in 80% yield (Scheme 1).

Scheme 1. Preparation of β -ketophosphonate 6.

On the other hand, the reaction of hydrochloride salt of methyl ester of L-serine 7 readily obtained from commercial source or by treatment of L-serine with thionyl chloride in refluxing methanol, with benzyl bromide in the presence of K₂CO₃ in acetonitrile at room temperature gave the *N*,*N*-dibenzyl ester **8** in 92% yield. Subsequent treatment with *tert*-butyldimethylsilyl chloride (TBSCl) in the presence of triethylamine and catalytic amounts of 4-*N*,*N*-dimethylaminopyridine (DMAP) in dichloromethane produced the full protected L-serine **9** in 97% yield [54]. *O*-protection in **8** with TBSCl and imidazole in DMF proceed in poor yield. Finally, reaction of **9** with the lithium salt of dimethyl methylphosphonate at -78 °C in THF provided the corresponding γ -*N*,*N*-dibenzylamino- β ketophosphonate **10** in 81% yield (Scheme 2).

Having efficiently prepared the β -ketophosphonates **6** and **10**, we turned our attention to the diastereoselective reduction of the carbonyl groups to obtain the corresponding γ -*N*-dibenzylamino- and γ -*N*,*N*-dibenzylamino- β -hydroxyphosphonates *syn*-**11** and *syn*-**13**, respectively. For this propose we choose NaBH₄, LiBH₄, DIBAL-H and catecholborane (CB) as the reducing agents, according to our previous results. Diastereoisomeric excess of the reduction of the β -ketophosphonates **6** and **10** were determined by means of ³¹P-NMR. In fact, the signals for the diastereoisomeric ratio are summarized in Tables 1 and 2.

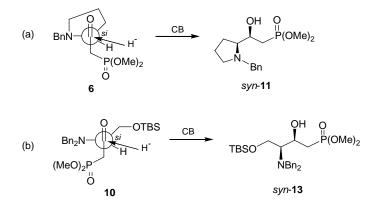
$ \begin{array}{c} $		$\xrightarrow{\text{OH O}}_{P(OMe)_2}^{OH O} + $		OH O P(OMe) ₂ Bn anti- 12
Entry 1	Hydride	Conditions	Yield (%) ^a	syn-11:anti-12 ^b
1	NaBH ₄	MeOH, 25 °C	70	69:31
2	$LiBH_4$	THF, -78 °C	69	75:25
3	DIBAL-H	THF, -78 °C	69	79:21
4	CB	THF, -78 °C	78	≥96:4

Table 1. Diastereoselective reduction of β -ketophosphonate 6.

^a Determined after purification; ^bsyn:anti ratios have been determined on the crude products using ³¹P-NMR.

As shown in the Table 1, when the reduction of β -ketophosphonate 6 was carried out with NaBH₄ in methanol (entry 1, Table 1), a mixture of the γ -amino- β -hydroxyphosphonates *syn*-11 and *anti*-12 in a 69:31 ratio in favor of *syn*-11 was obtained in good yield. The reduction of β -ketophosphonate 6 with LiBH₄ and DIBAL-H afforded the mixture of the diastereoisomers *syn*-11 and *anti*-12 in 69% yield and ratios of 75:25 and 79:21, respectively (entries 2 and 3, Table 1). Finally, the reduction of β -ketophosphonate 6 with catecholborane (CB) in THF at -78 °C (entry 4, Table 1), provided the corresponding γ -amino- β -hydroxyphosphonates in 78% yield, with the *syn:anti* ratio \geq 96:4 (the diastereoisomer *anti*-12 was not observed by ³¹P-NMR).

TE	0 3SO NBn ₂ 10	P(OMe) ₂ hydri	de TBSO NBn₂ syn-1:		BSO NBn ₂ anti-14
_	Entry Hyd	lride	Conditions	Yield (%) ^a	syn-13:anti-14 ^b
	1	NaBH ₄	MeOH, 25 °C	70	81:19
	2	$\rm LiBH_4$	THF, -78 °C	75	82:18
	3	DIBAL-H	THF, -78 °C	91	88:12
_	4	CB	THF, -78 °C	87	≥96:4


Table 2. Diastereoselective reduction of β -ketophosphonate 10.

^a Determined after purification; ^bsyn:anti ratios have been determined on the crude products using ³¹P-NMR.

Under similar conditions, the reduction of γ -*N*,*N*-benzylamino-β-ketophosphonate **10** with NaBH₄ and LiBH₄ as reducing agents provided the mixture of the γ -*N*,*N*-benzylamino-β-hydroxyphosphonates *syn*-**13** and *anti*-**14** in good yield and ratios of 81:19 and 82:18, respectively, (entries 1 and 2, Table 2). A better diastereoselectivity was observed when the β-ketophosphonate **10** was reduced with DIBAL-H in THF at -78 °C (entry 3, Table 2). Finally, reduction of **10** with catecholborane in THF at -78 °C (entry 4, Table 2), afforded the γ -*N*,*N*-dibenzylamino-β-hydroxyphosphonates in 87% yield, with a *syn:anti* ratio ≥96:4 (the diastereoisomer *anti*-**14** was not observed by ³¹P-NMR). The absolute configuration of the new stereogenic center in *syn*-**11**, *anti*-**12**, *syn*-**13** and *anti*-**14** was assigned by analogy with other γ -amino-β-hydroxyphosphonates obtained in our laboratory.

The formation of the γ -amino- β -hydroxyphosphonates *syn*-11 and *syn*-13 as major diastereoisomer in the reduction of the β -ketophosphonates 6 and 10, respectively, with catecholborane, we propose that the reduction might took place under non-chelation or Felkin-Anh model control [55–58], and that the bulkiness of the *N*-benzylamino- and *N*,*N*-dibenzylamino- groups in the β -ketophosphonates **6** and **10**, are sufficient to simultaneously limit the rotamer populations around the hinge bounds adjacent to the carbonyl group blocking the *re* face of carbonyl group and, thereby allowing the addition of hydride to take in a diastereoselective manner by the *si* face (Figure 1).

Figure 2. Reduction of the β -ketophosphonates 6 and 10 by non-chelation control.

3. Experimental

3.1. General Procedures

Optical rotations were taken on a Perkin-Elmer 241 polarimeter in a 1 dm tube; concentrations are given in g/100 mL. For flash chromatography, silica gel 60 (230–400 mesh ASTM, Merck) are used. ¹H-NMR spectra were recorded on a Varian INOVA 400 (at 400 MHz), ¹³C- (100 MHz) and ³¹P-NMR on a Varian Mercury 200 instrument. HRMS spectra were recorded on a JEOL JMS-700 instrument. Flasks, stirring bars, and hypodermic needles used for the generation of organometallic compounds were dried for ca. 12 h at 120 °C and allowed to cool in a desiccator over anhydrous calcium sulfate. Anhydrous solvents (ethers) were obtained by distillation from benzophenone ketyl. The preparation and spectroscopic data for the compounds (*S*)-*N*-benzyl-*O*-benzylpyrrolidine-2-carboxylate (**5**) [53], (*S*)-methyl-2-(dibenzylamino)-3-hydroxypropanoate (**8**) [59] and (*S*)-methyl-3-(*tert*-butyldimethyl-silyloxy)-2-(dibenzylamino) propanoate (**9**) [59], have all been described in the cited literature.

(*S*)-*Dimethyl*-2-(*1*-*benzylpyrrolidin*-2-*yl*)-2-*oxoethylphosphonate* (6). A solution of dimethyl methylphosphonate (830 mg, 6.8 mmol) in anhydrous THF (50 mL), was cooled at -78 °C before the slow addition of *n*-BuLi 2.35 M in hexanes (2.9 mL, 6.9 mmol). The resulting solution was stirred at -50 °C for 1.5 h and then cooled at -78 °C, followed by the addition of a solution of benzyl ester 5 (500 mg, 1.7 mmol) in anhydrous THF (50 mL). The reaction mixture was stirred at -78 °C for 4 h before the addition of a saturated solution of NH₄Cl. The solvent was evaporated under reduced pressure, the residue was dissolved in water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was purified by column chromatography using hexane-ethyl acetate (50:50) as eluent to afford the desired product (420 mg, 80% yield) as a viscous oil. [α]_D = -1.3 (c = 1.37, CHCl₃). ¹H-NMR (CDCl₃) δ 1.77–2.15 (m, 4H), 2.36 (m, 1H), 2.98 (dd, *J* = 21.2, 15.0 Hz, 1H, CH₂P), 3.07 (m, 1H), 3.27 (dd, *J* = 9.2, 6.6 Hz, 1H, CHN), 3.42 (dd, *J* = 21.2, 15.0, Hz, 1H,

CH₂P), 3.48 (system AB, J = 15.0 Hz, 1H, CH₂Ph), 3.75 (d, J = 11.2 Hz, 3H, (CH₃O)₂P), 3.77 (d, J = 11.2 Hz, 3H, (CH₃O)₂P), 3.82 (system AB, J = 15.0 Hz, 1H, CH₂Ph), 7.23–7.36 (m, 5 H, H_{arom}); ¹³C-NMR (CDCl₃) 23.9 (CH₂CH₂), 28.5 (CH₂CH), 35.7 (d, J = 133.6 Hz, CH₂P), 53.1 [(CH₃O)₂P], 53.3 [(CH₃O)₂P], 54.2 (CH₂N), 59.5 (CH₂Ph), 73.7 (CHN), 127.4 (C_{para}), 128.4 (C_{meta}), 129.2 (C_{ortho}), 138.4 (C_{ipso}), 204.8 (C=O); ³¹P-NMR (CDCl₃) δ 25.94; HRMS (CI, CH₄) calculated for C₁₅H₂₃O₄NP (MH⁺) 312.1365, found 312.1287.

(S)-Dimethyl-4-(tert-butyldimethylsilyloxy)-3-N,N-(dibenzylamino)-2-oxobutylphosphonate (10). A solution of dimethyl methylphosphonate (3.30 g, 26.6 mmol) in anhydrous THF (125 mL), was cooled at -78 °C before the slowly addition of n-BuLi 2.15 M in hexanes (12.7 mL, 27.3 mmol). The resulting solution was stirred at -50 °C for 1.5 h and then cooled at -78 °C followed by the addition of a solution of benzyl ester 9 (2.75 g, 6.7 mmol) in anhydrous THF (125 mL). The reaction mixture was stirred at -78 °C for 4 h before the addition of a saturated solution of NH₄Cl. The solvent was evaporated under reduced pressure, the residue was dissolved in water (30 mL) and extracted with ethyl acetate $(3 \times 30 \text{ mL})$. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was purified by column chromatography using hexane-ethyl acetate (50:50) as eluent to give the desired product (2.7 g, 81% yield) as a viscous oil. $[\alpha]_D = -56.0$ (c = 1.17, CHCl₃). ¹H-NMR (CDCl₃) δ 0.09 (s, 3H, (CH₃)₂Si), 0.12 (s, 3H, (CH₃)₂Si), 0.93 (s, 9H, (CH₃)₃C), 2.99 (dd, J = 21.9 Hz, J = 14.5 Hz, 1H, CH₂P), 3.48 (dd, J = 21.9 Hz, J = 14.5 Hz, 1H, CH₂P), 3.56 (d, J = 11.2 Hz, 3H, (CH₃O)₂P), 3.63 (d, J = 11.2 Hz, 3H, (CH₃O)₂P), 3.65 (t, J = 6.0 Hz, 1H, CHN), 3.78 (system AB, J = 13.4 Hz, 2H, CH₂Ph), 3.84 (system AB, J = 13.4 Hz, 2H, CH₂Ph), 4.03 (dd, J = 11.0 Hz, J = 6.1 Hz, 1H, CH₂OSi), 4.13 (dd, J = 11.0 Hz, J = 6.1 Hz, 1H, CH₂OSi), 7.23–7.35 (m, 10 H, H_{aron}); ¹³C-NMR (CDCl₃) δ -5.3 [(CH₃)₂Si], -5.2 [(CH₃)₂Si], 18.4 $[C(CH_3)_3]$, 26.2 $[CH_3)_3C]$, 38.6 (d, J = 130.6 Hz, CH_2P), 52.9 [d, J = 6.1 Hz, $(CH_3O)_2P$], 52.9 [d, J = 6.0 Hz, $(CH_3O)_2P$], 55.4 (CH_2Ph) , 60.1 (CH_2OSi) , 67.44 (CHN), 127.4 (C_{para}) , 128.5 (C_{meta}) , 129.2 (Cortho), 139.4 (Cipso), 201.8 (d, J = 6.1 Hz, C=O); ³¹P-NMR (CDCl₃) & 24.30; HRMS (CI, CH₄) calculated for, $C_{26}H_{41}O_5NPSi$ (MH⁺) 506.2492, found 506.2575

General procedure for the reduction of β -ketophosphonates (S)-6 and (S)-10 with NaBH₄. To a solution of β -ketophosphonate (S)-6 or (S)-10 (1.0 eq.) in methanol (40 mL) at 0 °C was added NaBH₄ (4.0 equiv.). After 5.0 h, the solvent was evaporated and the residue was diluted with H₂O and extracted with ethyl acetate (3 × 30 mL). The organic layer was dried over Na₂SO₄ and evaporated in vacuum. The crude was analyzed by ¹H- and ³¹P-NMR and purified by column chromatography.

General procedure for the reduction of β -ketophosphonates (S)-6 and (S)-10 with LiBH₄, DIBAL-H and catecholborane (CB). To a solution of β -ketophosphonate (S)-6 or (S)-10 (1.0 eq.) in anhydrous THF (50 mL) was added (2.0 equiv.) of reducing agent at -78 °C. The reaction mixture was stirred for 5.0 h at -78 °C, and then was quenched with saturated solution of NH₄Cl and extracted with ethyl acetate (3 × 40 mL). The organic layer was dried over Na₂SO₄ and evaporated in vacuum. The crude was analyzed by ¹H- and ³¹P-NMR and purified by column chromatography.

(2S)-1-Benzylpyrrolidin-2-yl)-(2R)-hydroxyethylphosphonate (syn-11). Following the general procedure, β -ketophosphonate 6 (100 mg, 0.32 mmol) in anhydrous THF (20 mL), was treated with

catecholborane (CB), 1 M in THF, (1.5 mL, 1.5 mmol). After work up and chromatographic purification gave (78 mg, 78% yield) of β-hydroxyphosphonate *syn*-**11** as a viscous oil. $[\alpha]_D = -2.0$ (c = 1.02, CHCl₃); ¹H-NMR (CDCl₃) δ 1.24-1.90 (m, 7H), 2.48-2.58 (m, 1H,CH₂P), 2.90-3.10 (m, 1H, CH₂P), 3.421-3.614 (m,1H), 3.48 (system AB, J = 13.0 Hz, 1H, CH₂Ph), 3.68 (d, J = 11.0 Hz, 3H, (CH₃O)₂P), 3.76 (d, J = 11.2 Hz, 3H, (CH₃O)₂P), 4.02 (system AB, J = 13.0 Hz, 1H, CH₂Ph), 7.23–7.36 (m, 10 H, H_{arom}); ¹³C-NMR (CDCl₃) 21.6 (CH₂CH₂), 29.5 (CH₂CH), 330.1 (d, J = 133.6 Hz, CH₂P), 36.64 (CH₂N), 46.8 (NCH₂Ph), 51.7 [(CH₃O)₂P], 53.2 [(CH₃O)₂P], 68.20 (CHN), 68.3 (CHOH), 127.4 (*C*_{para}), 128.4 (*C*_{meta}), 129.2 (*C*_{ortho}), 138.4 (*C*_{ipso}); ³¹P-NMR (CDCl₃) δ 35.3; HRMS (CI, CH₄) calculated for C₁₅H₂₅O₄NP (MH⁺) 314.1521, found 314.1506.

Dimethyl-(2*R*,3*S*)-4-(tert-butyldimethylsilyloxy)-3-*N*,*N*-(dibenzylamino)-2-hydroxybutyl-phosphonate (syn-13). Following the general procedure, (180 mg, 0.37mmol) of β-ketophosphonate 10 in anhydrous THF (20 mL), was treated with catecholborane (CB) 1 M in THF (1.5 mL, 1.5 mmol) of. After work up and chromatographic purification, (150 mg, 87% yield) of β-hydroxyphosphonate *syn*-13 was obtained as a viscosus oil. [α]_D = +17.1 (c = 1.01, CHCl₃); ¹H-NMR (CDCl₃) δ 0.12 (s, 3H, (CH₃)₂Si), 0.12 (s, 3H, (CH₃)₂Si), 0.93 (s, 9H, (CH₃)₃C), 1.79 (ddd, *J* = 20.0, 15.1, 5.8 Hz, 1H, CH₂P), 1.95 (ddd, *J* = 20.0 Hz, 15.1, 5.8 Hz, 1H, CH₂P), 2.64 (m 1H), 3.57 (system AB, *J* = 13.4 Hz, 2H, CH₂Ph), 3.67 (d, *J* = 11.0 Hz, 3H, (CH₃O)₂P), 3.72 (d, *J* = 11.0 Hz, 3H, (CH₃O)₂P), 3.90 (m, 2H, CH₂OSi), 4.00 (system AB, *J* = 13.4 Hz, 2H, CH₂Ph), 4.03–4.13 (m, 1H), 7.22–7.33 (m, 10 H, H_{arom}); ¹³C-NMR (CDCl₃) δ -5.4 ((CH₃)₂Si), -5.3 ((CH₃)₂Si), 18.3 (C(CH₃)₃), 26.1 (CH₃)₃C), 30.5 (d, *J* = 141.2 Hz, CH₂P), 52.5 (d, *J* = 13.6 Hz, 2C, (CH₃O)₂P), 55.9 (CH₂Ph), 59.6 (CH₂OSi), 63.9 (CHOH), 64.1 (CHN), 127.4 (*C*_{para}), 128.6 (*C*_{meta}), 129.4 (*C*_{ortho}); 139.4 (*C*_{ipso}); ³¹P-NMR (CDCl₃) δ 33.92. HRMS (CI, CH₄) calculated for C₂₆H₄₃O₅NPSi (MH⁺) 508.2648, found 508.2672.

4. Conclusions

In conclusion, we have found that the reduction of *N*,*N*-disubstituted- γ -amino- β -ketophosphonates readily obtained from the appropriate L-amino acids, with catecholborane (CB) afforded the *syn*- γ -amino- β -hydroxyphosphonates as principal diastereoisomers, which could be used as template compounds for the synthesis of molecules with biological and chemical interest.

Acknowledgements

This work was carried out with the financial support of CONACYT-MEXICO (Project 62271). This research was also supported (in part) by CONACYT-MEXICO (Project 44126) and CONACYT-MEXICO-INDIA (Bilateral Project J110.501/2006).

References and Notes

 For a review on the stereoselective synthesis of α-aminophosphonic acids and derivatives, see: Ordóñez, M.; Rojas-Cabrera, H.; Cativiela, C. An Overview of Stereoselective Synthesis of α-Aminophosphonic Acids and Derivatives. *Tetrahedron* 2009, 65, 17–49.

- 2. Kukhar, V.P.; Hudson, H.R., Eds. *Aminophosphonic and Aminophosphinic Acids*; John Wiley & Sons: Chichester, UK, 2000.
- 3. Kafarsky, P.; Lejczak, B. Biological Activity of Aminophosphonic Acids. *Phosphorous, Sulfur Silicon* **1991**, *63*, 193–215.
- 4. McLeod, D.A.; Brinkworth, R.I.; Ashley, J.A.; Janda, K.D.; Wirsching, P. Phosphonamidates and Phosphonamidate Esters as HIV-1 Protease Inhibitors. *Bioorg. Med. Chem. Lett.* **1991**, *1*, 653–658.
- Nieschalk, J.; Batsanov, A.S.; O'Hagan, D.; Howard, J.A.K. Synthesis of Monofluoro- and Difluoromethylenephosphonate Analogues of *sn*-glycerol-3-phosphate as Substrate for Glycerol-3-phosphate Dehydrogenase and the X-ray Structure of the Fluoromethylene-phosphonate Moiety. *Tetrahedron* 1996, *52*, 165–176.
- Burke, T.R., Jr.; Smyth, M.S.; Nomizu, M.; Otaka, A. Roller, P.P. Preparation of Fluoro- and Hydroxy-4-(phosphonomethyl)-D,L-phenylalanine Suitable Protected for Solid-Phase Synthesis of Peptides containing Hydrolytically Stable Analogs of *O*-phosphotyrosine. *J. Org. Chem.* 1993, 58, 1336–1340.
- Dellaria, J.F., Jr.; Maki, R.G.; Stein, H.H.; Cohen, J.; Whittern, D.; Marsh, K.; Hoffman, D.J.; Plattner, J.J.; Perun, T.J. New Inhibitors of Renin that Contain Novel Phosphostatine Leu-Val replacements. *J. Med. Chem.* 1990, *33*, 534–542.
- Chakravarty, P.K.; Greenlee, W.J.; Parsons, W.H.; Patchett, A.A.; Combs, P.; Roth, A.; Busch, R.D.; Mellin, T.N. (3-Amino-2-oxoalkyl)phosphonic Acids and Their Analogs as Novel Inhibitors of D-Alanine:D-alaline Ligase. *J. Med. Chem.* 1989, *32*, 1886–1890.
- 9. Cui, P.; McCalmont, W.F.; Tomsig, J.L.; Lynch, K.R.; MacDonald, T.L. α- and β-Substituted phosphonate analogs of LPA as Autotoxin Inhibitors. *Bioorg. Med. Chem.* **2008**, *16*, 2212–2225.
- Hale, J.J.; Neway, W.; Mills, S.G.; Hajdu, R.; Keohane, C.A.; Rosenbach, M.; Milligan, J.; Shein, G.J.; Chrebet, G.; Bergstrom, J.; Card, D.; Koo, G.C.; Koprak, S.L.; Jackson, J.J.; Rosen, H.; Mandala, S. Potent S1P Receptor Agonists Replicate the Pharmacologic Actions of the Novel Immune Modulator FTY720. *Bioorg. Med. Chem. Lett.* 2004, *14*, 3351–3355.
- 11. Chang, R.; Vo, T.-T.; Finney, N.S. Synthesis of the C1-Phosphonate Analog of UDP-GlcNAc, *Carbohydr. Res.* **2006**, *341*, 1998–2004.
- Torres-Sánchez, M.I.; Zaccaria, C.; Buzzi, B.; Miglio, G.; Lombardi, G.; Polito, L.; Russo, G.; Lay, L. Synthesis and Biological Evaluation of Phosphono Analogues of Capsular Polysaccharide Fragments from *Neisseria meningitidis* A. *Chem. A. Eur. J.* 2007, *13*, 6623–6635.
- Kolodiazhnyi, O.I. Asymmetric Synthesis of Hydroxyphosphonates. *Tetrahedron: Asymmetry* 2005, *16*, 3295–3340 and references therein.
- Bowery, N.G.; Bettler, B.; Froestl, W.; Gallagher, J.P.; Marshall, F.; Raiteri, M.; Bonner, T.I.; Enna, S.J. International Union of Pharmacology. XXXIII. Mammalian γ-Aminobutyric Acid_B Receptors: Structure and Function. *Pharmacol. Rev.* 2002, *54*, 247–264.
- Pozza, M.F.; Manuel, N.A.; Steinmann, M.; Froestl, W.; Davies, C.H. Comparison of Antagonist Potencies at Pre- and Post-synaptic GABA_B receptors at Inhibitory Synapses in the CA1 Region of the Rat Hippocampus. *Br. J. Pharmacol.* **1999**, *127*, 211–219.

- 17. Yuan, C.-Y.; Wang, K.; Li, Z.-Y. Enantioselective Reduction of 2-Keto-3-haloalkane Phosphonates by Baker's Yeast. *Heteroat. Chem.* **2001**, *12*, 551–556.
- 18. Mikołajczyk, M.; Łuczak, J.; Kiełbasinski, P. Chemoenzymatic Synthesis of Phosphocarnitine Enantiomers. J. Org. Chem. 2002, 67, 7872–7875.
- 19. Wróblewski, A.E.; Hałajewska-Wosik, A. An Efficient Synthesis of Enantiomeric (S)-Phosphocarnitine. *Eur. J. Org. Chem.* **2002**, *16*, 2758–2763.
- Yuan, C.-y.; Wang, K.; Li, J.; Li, Z.-Y. Stereoselective Synthesis of Phosphorus Analogs of (*R*)-Carnitine and (*R*)-GABOB. *Phosphorous, Sulfur Silicon* 2002, 177, 2391–2397.
- 21. Wang, K.; Zhang, Y.; Yuan, C. Enzymatic Synthesis of Phosphocarnitine, Phosphogabob and Fosfomycin. *Org. Biomol. Chem.* **2003**, *1*, 3564–3569.
- Ordóñez, M.; González-Morales, A.; Ruíz, C.; De la Cruz-Cordero, R.; Fernández-Zertuche, M. Preaparation of (*R*)- and (*S*)-γ-amino-β-hydroxypropylphosphonic Acid from Glycine. *Tetrahedron: Asymmetry* 2003, 14, 1775–1779.
- 23. Wróblewski, A.E.; Hałajewska-Wosik, A. An Efficient Synthesis of an Enantiomerically Pure Phosphonate Analogue of L-GABOB. *Tetrahedron: Asymmetry* **2003**, *14*, 3359–3363.
- Ordóñez, M.; González-Morales, A.; Salazar-Fernández, H. Highly Diastereoselective Reduction of β-Ketophosphonates Bearing Homochiral Bis-(α-methylbenzyl)amine: Preaparation of Both Enantiomers of Phosphogabob (GABOB^P). *Tetrahedron Asymmetry* 2004, *15*, 2719–2725.
- 25. Nesterov, V.V.; Kolodyazhnyi, O.I. Enantioselective Reduction of Ketophosphonates Using Chiral Acid Adducts with Sodium Borohydride. *Russ. J. Gen. Chem.* **2006**, *76*, 1022–1030.
- Nesterov, V.V.; Kolodiazhnyi, O.I. New Method for the Asymmetric Hydroboration of Ketophosphonates and the Synthesis of Phosphocarnitine. *Tetrahedron Asymmetry* 2006, 17, 1023–1026.
- Nesterov, V.V.; Kolodiazhnyi, O.I. Efficient Method for the Asymmetric Reduction of α- and β-Ketophosphonates *Tetrahedron* 2007, *63*, 6720–6731.
- Nesterov, V.V.; Kolodiazhnyi, O.I. Di(1*R*,2*S*,5*R*)-menthyl 2-Hydroxy-3-chloropropylphosphonates as a Useful Chiral Synthon for the Preparation of Enantiomerically Pure Phosphonic Acids. *Synlett* 2007, 15, 2400–2404.
- Vargas, S.; Suárez, A.; Álvarez, E.; Pizzano, A. Highly Enantioselective Hydrogenation of Enol Ester Phosphonates: A Versatile Procedure for the Preparation of Chiral β-Hydroxyphosphonates. *Chem. Eur. J.* 2008, *14*, 9856–9859.
- Ciardi, C.; Romerosa, A.; Serrano-Ruiz, M.; Gonsalvi, L.; Peruzzini, M.; Reginato, G. Synthesis of New Enantiomerically enriched β-Hydroxy-γ-amino Phosphines by Selective Transformation of Naturally Occurring Amino Acids. J. Org. Chem. 2007, 72, 7787–7789.
- Clayden, J.; Collington, E.W.; Warren, S. Stereocontrolled Synthesis of *R* or *S*, *E* or Z-Unsaturated α-Amino Acids by Enantio- and Diastereoselective Epoxidation of δ-Hydroxy Allylic Phosphine Oxides. *Tetrahedron Lett.* 1993, 34, 1327–1330
- Clayden, J.; McElroy, A. B.; Warren, S. Control Over Absolute (*R*,*S*), Relative (*syn,anti*) and Geometrical (*E*,*Z*) Stereochemistry in the Synthesis of Allylcally Substituted Alkenes from Diphenylphosphinoyl Epoxy Alcohols. J. Chem. Soc., Perkin Trans. 1 1995, 13, 1913–1934.

- Krawiecka, B.; Jerziorna, A. Stereocontrolled Synthesis of 3-Amino-2-hydroxyalkyl Diphenylphosphine Oxides Mediated by Chiral Azetidinium Salts and Epoxyamines. *Tetrahedron Lett.* 2005, 46, 4381–4384.
- 34. Dellaria, J.F.; Maki, R.G. The Enantio- and Diastereoselective Synthesis of the First Phosphostatine Derivative. *Tetrahedron Lett.* **1986**, *27*, 2337–2340.
- 35. Shalem, H.; Shtzamiller, S.; Feit, B.-A. Synthesis of 2-(Aminophenyl)-2-hydroxyethyl-phosphonates and Their Incorporation in Short Peptides. *Liebigs Ann.* **1995**, 433–436.
- Froestl, W.; Mickel, S.J.; Hall, R.G.; Sprecher, G.V.; Strub, D.; Baumman, P.A.; Brugger, F.; Gentsch, C.; Jaeckel, J.; Olpe, H.-R.; Rihs, G.; Vassout, A.; Waldmeier, P.C.; Bittiger, H. Phosphinic Acid Analogs of GABA. 1. New Potent and Selective GABAB Agonists. *J. Med. Chem.* 1995, *38*, 3297–3312.
- Otaka, A.; Miyoshi, K.; Burke Jr.; T.R.; Roller, P.P.; Kubota, H.; Tamamura, H.; Fujii, N. Synthesis and Application of *N*-Boc-L-Amino-4-(diethylphosphono)-4,4-difluorobutanoic Acid for Solid-Phase Synthesis of Nonhydrolyzable Phosphoserine Peptide Analogues. *Tetrahedron Lett.* 1995, *36*, 927–930.
- Yokomatsu, T.; Takechi, H.; Akiyama, T.; Shibuya, S.; Kominato, T.; Soeda, S.; Shimeno, H. Synthesis and Evaluation of Difluoromethylene Analogue of Sphingomyelin as an Inhibitor of Sphingomyelinase. *Bioorg. Med. Chem. Lett.* 2001, 11, 1277–1280.
- Yokomatsu, T.; Murano, T.; Akiyama, T.; Koizumi, J.; Shibuya, S.; Tsuji, Y.; Soeda, S.; Shimeno, H. Synthesis of Non-competitive Inhibitors of Sphingomyelinases with Significant Activity. *Bioorg. Med. Chem. Lett.* 2003, 13, 229–236.
- O'Brien, P.; Warren, S. Synthesis of Phenylalanine-derivative β-Hydroxy and β-Keto Phosphine Oxides – Investigation of the Configurational Stability of Lithiated Phosphine Oxides Using the Hoffmann Test. *Tetrahedron Lett.* **1996**, *37*, 4271–4274.
- O'Brien, P.; Powell, H.R.; Raithby, P.R.; Warren, S. Investigation of the Configurational Stability of Lithiated Phosphine Oxides Using the Hoffmann Tetst: X-ray Structures of (2*S**,3*S**,4*R**)-2-(*N*,*N*-Dibenz-ylamino)-4-diphenylphosphinoyl-1-phenylpentan-3-ol and (2*S**,4*S**)-2-(*N*,*N*-Dibenzylamino-4-diphenyl-phosphinoyl-1-phenylpentan-3-one. *J. Chem. Soc., Perkin Trans. 1* 1997, *7*, 1031–1039.
- 42. Thomas, A.A.; Sharpless, K.B. The Catalytic Asymmetric Aminohydroxylation of Unsaturated Phosphonates. *J. Org. Chem.* **1999**, *64*, 8379–8385.
- 43. Yamagishi, T.; Fujii, K.; Shibuya, S.; Yokomatsu, T. Asymmetric Synthesis of Phosphonic Acids Analogues for Acylcarnitine. *Tetrahedron* **2006**, *62*, 54–65.
- 44. Yamagishi, T.; Fujii, K.; Shibuya, S.; Yokomatsu, T. Synthesis of Chiral γ-Amino-βhydroxyphosphonate Derivatives from Unsaturated Phosphonates. *Synlett* **2004**, *14*, 2505–2508.
- 45. Chen, S.; Yuan, C. Studies on Organophosphorus Compounds 82. Synthesis of Some Functionalized Difluoromethylphosphonates. *Phosphorous, Sulfur Silicon* **1993**, *82*, 73–78.
- 46. Berkowitz, D.B.; Eggen, M.-J.; Shen, Q.; Shoemaker, R.K. Ready Access to Fluorinated Phosphonate Mimics of Secondary Phosphates. Synthesis of the (α,α -Difluoroalkyl)phosphonate Analogues of L-Phosphoserine, L-Phosphoallotreonine, and L-Phosphothreonine. *J. Org. Chem.* **1996**, *61*, 4666–4675.

- Cui, P.; Tomsig, J.L.; McCalmont, W.F.; Lee, S.; Becker, Ch.J.; Lynch, K.R.; MacDonald, T.L. Synthesis and Biological Evaluation of phosphonate derivative as Autotaxin (ATX) Inhibitors. *Bioorg. Med. Chem. Lett.* 2007, 17, 1634–1640.
- De la Cruz-Cordero, R.; Hernández-Núñez, E.; Fernández-Zertuche, M.; Muñoz-Hernández, M.A.; Ordóñez, M. Preparation of Phosphostatine and Phosphoepistatine from L-Leucine *via* High Diastereoselective Reduction of 3-Amino-2-ketophosphonates. *ARKIVOK* 2005 *vi*, 277–286.
- 49. De la Cruz-Cordero, R.; Labastida-Galván, V.; Fernández-Zertuche, M.; Ordóñez, M. Preparation of Phosphostatine Analogues from L-Amino Acids. J. Mex. Chem. Soc. 2005, 49, 312–321.
- Ordóñez, M.; De la Cruz-Cordero, R.; Fernández-Zertuche, M.; Muñoz-Hernández, M.A. Diastereoselective Reduction of γ-N,N-Dibenzylamino-β-ketophosphonates γ-Substituted. *Tetrahedron: Asymmetry* 2002, 13, 559–562.
- Ordóñez, M.; De la Cruz-Cordero, R.; Fernández-Zertuche, M.; Muñoz-Hernández, M.A.; García-Barradas, O. Diastereoselective Reduction of Dimethyl γ-[(*N-p*-Toluenesulfonyl)-amino]-βketophosphonates Derived from Amino Acids. *Tetrahedron Asymmetry* 2004, 15, 3035–3043.
- Ordóñez, M.; De la Cruz-Cordero, R.; Quiñones, C.; González-Morales, A. Highly Diastereoselective Synthesis of *anti-γ-N*-Benzylamino-β-hydroxyphosphonates. *Chem. Commun.* 2004, 6, 672–673.
- 53. Goldstein, S.W.; Overman, L.E.; Rabinowitz, M.H. The First Enantioselective Total Synthesis of the Allopumiliotoxin A Alkaloids 267A and 339B. *J. Org. Chem.* **1992**, *57*, 1179–1190.
- 54. Corey, E.J.; Margriotis, P.A. Total Synthesis and Absolute Configuration of 7,20-Diisocyanoadociane. J. Am. Chem. Soc. 1987, 109, 287–289.
- 55. Cherest, M.; Felkin, H.; Prudent, N. Torsional Strain Involving Partial Bonds. The Stereochemistry of the Lithium Aluminium Hydride Reduction of Some Simple Open-chain Ketones. *Tetrahedron Lett.* **1968**, *18*, 2199–2204.
- Cherest, M.; Felkin, H. Torsional Strain Involving Partial Bonds. The Steric Course of the Reaction Between Allyl Magnesium Bromide and 4-*t*-Butyl-cyclohexanone. *Tetrahedron Lett.* 1968, 18, 2205–2208.
- 57. Anh, N.T.; Eisenstein, O. Theoretical Interpretation of 1,2 Asymmetric Induction Importance of Antiperiplanarity. *Nouv. J. Chem.* **1977**, *1*, 61–70.
- 58. For an excellent summary, see: Eliel, E.L.; Wilen, S.H.; Mander, L.N. *Stereochemistry of Organic Compounds*; John Wiley & Sons: New York, NY, USA, 1994; p. 876.
- Läib, T.; Chastanet, J.; Zhu, J. Diastereoselective Synthesis of γ-Hydroxy-β-amino Alcohols and (2*S*,3*S*)-β-Hydroxyleucine from Chiral D-(*N*,*N*-Dibenzylamino)serine (TBDMS). *J. Org. Chem.* 1998, *63*, 1709–1713.

Sample Availability: Samples of the compounds are available from authors.

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).