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Abstract: The reduction of γ-N-benzylamino-β-ketophosphonates 6 and 10, readily 
available from L-proline and L-serine, respectively, can be carried out in high 
diastereoselectivity with catecholborane (CB) in THF at -78 ºC to produce the syn-γ-N-
benzylamino-β-hydroxyphosphonates 11  and 13 as a single detectable diastereoisomer, 
under non-chelation or Felkin-Anh model control. 

Keywords: β-ketophosphonates; diastereoselective reduction; γ-amino-β-hydroxy-
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1. Introduction 

Aminoalkylphosphonic acids are structurally analogous to the amino acids, obtained by isosteric 
substitution of the planar and less bulky carboxylic acid (CO2H) group by a tetrahedral phosphonic acid 
(PO3H2) functionality. Several aminophosphonic, aminophosphinic and aminophosphonous acids have 
been isolated from various natural sources, either as free amino acids or as constituents of more 
complex molecules [1–4]. In this context, γ-amino-β-hydroxyphosphonates such as 1 (Figure 1) have 
resulted in unique phosphate mimics with resistance to phosphatase hydrolysis [5,6]. The γ-amino-β-
hydroxyphosphonates 1 have been also used in the synthesis of complex molecules 2 (Figure 1) as 
Leu10-Val11 replacement (LVRs) 3 (Figure 1), which act as rennin [7], and D-Ala-D-Ala ligase 
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inhibitors [8]. The γ-N-acylamino-β-hydroxyphosphonic acids 4 (Figure 1) have been used as 
autotoxin (ATX) inhibitors [9]. Additionally, the γ-amino-β-hydroxyphosphonic acids have been also 
used as potent sphingosine-1-phosphate (S1P) receptors [10], and as polysaccharide fragments [11,12]. 

Figure 1. Structures of compounds 1–4. 
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In view of the different biological and chemical applications of the γ-amino-β-hydroxyphosphonate 
phosphonic acid derivatives, in the last years the development of suitable synthetic methodologies for 
their preparation in diastereoisomerically pure form has been a topic of great interest in several 
research groups [13–29]. In this context, several protocols for efficient diastereoselective synthesis of 
γ-amino-β-hydroxyphosphonic acids and derivatives have emerged, including ring opening of 
epoxides [30–33], type aldol reactions of α-aminoaldehydes with dialkyl methylphosphonates 
[7,8,34–41], catalytic asymmetric aminohydroxylation of β,γ-unsaturated phosphonates [42–44], and 
diastereoselective reduction of γ-amino-β-ketophosphonates [45–47].  

Recently, we reported the synthesis of phosphostatine and phosphoepistatine [48,49] via a high 
diastereoselective reduction of γ-amino-β-ketophosphonates readily obtained from L-amino acids 
[50–52]. In order to establish a general methodology for the synthesis of syn-γ-amino-β-
hydroxyphosphonates derived from L-amino acids, in this paper we would like to report the synthesis 
of γ-amino-β-ketophosphonates 6 and 10 derived from L-proline and L-serine, respectively, and their 
highly diastereoselective reduction. 

2. Results and Discussion 

In our initial study, the synthesis of (S)-N-benzyl-O-benzylpyrrolidine-2-carboxylate (5) was carried 
out by treatment of L-proline with benzyl bromide and K2CO3 in refluxing ethanol [50], however under 
this conditions a disappointing poor yield was obtained. For that reason, we decided to examine the 
methodology developed by Overman and co-workers [53] as a potentially more efficient and practical 
route to compound 5. Thus, treatment of L-proline with benzyl bromide and NaHCO3 in N,N-
dimethylformamide (DMF) at 100 ºC provided the corresponding N-benzyl O-benzyl proline 5 in 83% 
yield. Nevertheless, with the O-benzyl ester 5 in our hands, we focused our attention on the 
transformation to β-ketophosphonate 6. Thus, reaction of 5 with three equivalents of the lithium salt of 
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dimethyl methylphosphonate at -78 ºC in THF afforded the corresponding N-benzylamino-β-
ketophosphonate 6 in 80% yield (Scheme 1). 

Scheme 1. Preparation of β-ketophosphonate 6. 
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On the other hand, the reaction of hydrochloride salt of methyl ester of L-serine 7 readily obtained 
from commercial source or by treatment of L-serine with thionyl chloride in refluxing methanol, with 
benzyl bromide in the presence of K2CO3 in acetonitrile at room temperature gave the N,N-dibenzyl 
ester 8 in 92% yield. Subsequent treatment with tert-butyldimethylsilyl chloride (TBSCl) in the 
presence of triethylamine and catalytic amounts of 4-N,N-dimethylaminopyridine (DMAP) in 
dichloromethane produced the full protected L-serine 9 in 97% yield [54]. O-protection in 8 with 
TBSCl and imidazole in DMF proceed in poor yield. Finally, reaction of 9 with the lithium salt of 
dimethyl methylphosphonate at -78 ºC in THF provided the corresponding γ-N,N-dibenzylamino-β-
ketophosphonate 10 in 81% yield (Scheme 2). 

Scheme 2. Preparation of β-ketophosphonate 10. 
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Having efficiently prepared the β-ketophosphonates 6 and 10, we turned our attention to the 
diastereoselective reduction of the carbonyl groups to obtain the corresponding γ-N-dibenzylamino- and 
γ-N,N-dibenzylamino-β-hydroxyphosphonates syn-11 and syn-13, respectively. For this propose we 
choose NaBH4, LiBH4, DIBAL-H and catecholborane (CB) as the reducing agents, according to our 
previous results. Diastereoisomeric excess of the reduction of the β-ketophosphonates 6 and 10 were 
determined by means of 31P-NMR. In fact, the signals for the diastereoisomers syn were more shielded 
than for the diastereoisomers anti. Conditions, yields and diastereoisomeric ratio are summarized in 
Tables 1 and 2. 
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Table 1. Diastereoselective reduction of β-ketophosphonate 6. 
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a Determined after purification; bsyn:anti ratios have been determined on the crude products using 31P-NMR. 

As shown in the Table 1, when the reduction of β-ketophosphonate 6 was carried out with NaBH4 
in methanol (entry 1, Table 1), a mixture of the γ-amino-β-hydroxyphosphonates syn-11 and anti-12 in 
a 69:31 ratio in favor of syn-11 was obtained in good yield. The reduction of β-ketophosphonate 6 with 
LiBH4 and DIBAL-H afforded the mixture of the diastereoisomers syn-11 and anti-12 in 69% yield 
and ratios of 75:25 and 79:21, respectively (entries 2 and 3, Table 1). Finally, the reduction of β-
ketophosphonate 6 with catecholborane (CB) in THF at -78 ºC (entry 4, Table 1), provided the 
corresponding γ-amino-β-hydroxyphosphonates in 78% yield, with the syn:anti ratio ≥96:4 (the 
diastereoisomer anti-12 was not observed by 31P-NMR).  

Table 2. Diastereoselective reduction of β-ketophosphonate 10. 
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a Determined after purification; bsyn:anti ratios have been determined on the crude products using 31P-NMR. 

Under similar conditions, the reduction of γ-N,N-benzylamino-β-ketophosphonate 10 with NaBH4 
and LiBH4 as reducing agents provided the mixture of the γ-N,N-benzylamino-β-hydroxyphosphonates 
syn-13 and anti-14 in good yield and ratios of 81:19 and 82:18, respectively, (entries 1 and 2, Table 2). 
A better diastereoselectivity was observed when the β-ketophosphonate 10 was reduced with DIBAL-
H in THF at -78 ºC (entry 3, Table 2). Finally, reduction of 10 with catecholborane in THF at -78 ºC 
(entry 4, Table 2), afforded the γ-N,N-dibenzylamino-β-hydroxyphosphonates in 87% yield, with a 
syn:anti ratio ≥96:4 (the diastereoisomer anti-14 was not observed by 31P-NMR). The absolute 
configuration of the new stereogenic center in syn-11, anti-12, syn-13 and anti-14 was assigned by 
analogy with other γ-amino-β-hydroxyphosphonates obtained in our laboratory. 

The formation of the γ-amino-β-hydroxyphosphonates syn-11 and syn-13 as major diastereoisomer 
in the reduction of the β-ketophosphonates 6 and 10, respectively, with catecholborane, we propose 
that the reduction might took place under non-chelation or Felkin-Anh model control [55–58], and that 

Entry Hydride  Conditions  Yield (%)a syn-11:anti-12 b 
1 NaBH4 MeOH, 25 ºC 70 69:31 
2 LiBH4 THF, -78 °C  69 75:25 
3 DIBAL-H THF, -78 °C 69 79:21 
4 CB THF, -78 °C 78 ≥96:4 

Entry Hydride  Conditions Yield (%)a syn-13:anti-14b 
1 NaBH4 MeOH, 25 ºC 70 81:19 
2 LiBH4 THF, -78 ºC 75 82:18 
3 DIBAL-H THF, -78 ºC 91 88:12 
4 CB THF, -78 ºC 87 ≥96:4 
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the bulkiness of the N-benzylamino- and N,N-dibenzylamino- groups in the β-ketophosphonates 6 and 
10, are sufficient to simultaneously limit the rotamer populations around the hinge bounds adjacent to 
the carbonyl group blocking the re face of carbonyl group and, thereby allowing the addition of 
hydride to take in a diastereoselective manner by the si face (Figure 1). 

Figure 2. Reduction of the β-ketophosphonates 6 and 10 by non-chelation control. 
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3. Experimental  

3.1. General Procedures  

Optical rotations were taken on a Perkin-Elmer 241 polarimeter in a 1 dm tube; concentrations are 
given in g/100 mL. For flash chromatography, silica gel 60 (230–400 mesh ASTM, Merck) are used. 
1H-NMR spectra were recorded on a Varian INOVA 400 (at 400 MHz), 13C- (100 MHz) and 31P-NMR 
on a Varian Mercury 200 instrument. HRMS spectra were recorded on a JEOL JMS-700 instrument. 
Flasks, stirring bars, and hypodermic needles used for the generation of organometallic compounds 
were dried for ca. 12 h at 120 ºC and allowed to cool in a desiccator over anhydrous calcium sulfate. 
Anhydrous solvents (ethers) were obtained by distillation from benzophenone ketyl. The preparation 
and spectroscopic data for the compounds (S)-N-benzyl-O-benzylpyrrolidine-2-carboxylate (5) [53], 
(S)-methyl-2-(dibenzylamino)-3-hydroxypropanoate (8) [59] and (S)-methyl-3-(tert-butyldimethyl-
silyloxy)-2-(dibenzylamino) propanoate (9) [59], have all been described in the cited literature. 

(S)-Dimethyl-2-(1-benzylpyrrolidin-2-yl)-2-oxoethylphosphonate (6). A solution of dimethyl 
methylphosphonate (830 mg, 6.8 mmol) in anhydrous THF (50 mL), was cooled at -78 ºC before the 
slow addition of n-BuLi 2.35 M in hexanes (2.9 mL, 6.9 mmol). The resulting solution was stirred at 
-50 ºC for 1.5 h and then cooled at -78 ºC, followed by the addition of a solution of benzyl ester 
5 (500 mg, 1.7 mmol) in anhydrous THF (50 mL). The reaction mixture was stirred at -78 ºC for 4 h 
before the addition of a saturated solution of NH4Cl. The solvent was evaporated under reduced 
pressure, the residue was dissolved in water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The 
combined organic extracts were dried over anhydrous Na2SO4, filtered and evaporated under reduced 
pressure. The crude product was purified by column chromatography using hexane-ethyl acetate 
(50:50) as eluent to afford the desired product (420 mg, 80% yield) as a viscous oil. [α]D = -1.3 
(c = 1.37, CHCl3). 1H-NMR (CDCl3) δ 1.77–2.15 (m, 4H), 2.36 (m, 1H), 2.98 (dd, J = 21.2, 15.0 Hz, 
1H, CH2P), 3.07 (m, 1H), 3.27 (dd, J = 9.2, 6.6 Hz, 1H, CHN), 3.42 (dd, J = 21.2, 15.0, Hz, 1H, 
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CH2P), 3.48 (system AB, J = 15.0 Hz, 1H, CH2Ph), 3.75 (d, J = 11.2 Hz, 3H, (CH3O)2P), 3.77 
(d, J = 11.2 Hz, 3H, (CH3O)2P), 3.82 (system AB, J = 15.0 Hz, 1H, CH2Ph), 7.23–7.36 (m, 5 H, 
Harom); 13C-NMR (CDCl3) 23.9 (CH2CH2), 28.5 (CH2CH), 35.7 (d, J = 133.6 Hz, CH2P), 53.1 
[(CH3O)2P], 53.3 [(CH3O)2P], 54.2 (CH2N), 59.5 (CH2Ph), 73.7 (CHN), 127.4 (Cpara), 128.4 (Cmeta), 
129.2 (Cortho), 138.4 (Cipso), 204.8 (C=O); 31P-NMR (CDCl3) δ 25.94; HRMS (CI, CH4) calculated for 
C15H23O4NP (MH+) 312.1365, found 312.1287. 

(S)-Dimethyl-4-(tert-butyldimethylsilyloxy)-3-N,N-(dibenzylamino)-2-oxobutylphosphonate (10). A 
solution of dimethyl methylphosphonate (3.30 g, 26.6 mmol) in anhydrous THF (125 mL), was cooled 
at -78 ºC before the slowly addition of n-BuLi 2.15 M in hexanes (12.7 mL, 27.3 mmol). The resulting 
solution was stirred at -50 ºC for 1.5 h and then cooled at -78 ºC followed by the addition of a solution 
of benzyl ester 9 (2.75 g, 6.7 mmol) in anhydrous THF (125 mL). The reaction mixture was stirred at -
78 ºC for 4 h before the addition of a saturated solution of NH4Cl. The solvent was evaporated under 
reduced pressure, the residue was dissolved in water (30 mL) and extracted with ethyl acetate 
(3 × 30 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered and 
evaporated under reduced pressure. The crude product was purified by column chromatography using 
hexane-ethyl acetate (50:50) as eluent to give the desired product (2.7 g, 81% yield) as a viscous oil. 
[α]D = -56.0 (c = 1.17, CHCl3). 1H-NMR (CDCl3) δ 0.09 (s, 3H, (CH3)2Si), 0.12 (s, 3H, (CH3)2Si), 0.93 
(s, 9H, (CH3)3C), 2.99 (dd, J = 21.9 Hz, J = 14.5 Hz, 1H, CH2P), 3.48 (dd, J = 21.9 Hz, J = 14.5 Hz, 
1H, CH2P), 3.56 (d, J = 11.2 Hz, 3H, (CH3O)2P), 3.63 (d, J = 11.2 Hz, 3H, (CH3O)2P), 3.65 (t, 
J = 6.0 Hz, 1H, CHN), 3.78 (system AB, J = 13.4 Hz, 2H, CH2Ph), 3.84 (system AB, J = 13.4 Hz, 2H, 
CH2Ph), 4.03 (dd, J = 11.0 Hz, J = 6.1 Hz, 1H, CH2OSi), 4.13 (dd, J = 11.0 Hz, J = 6.1 Hz, 1H, 
CH2OSi), 7.23–7.35 (m, 10 H, Harom); 13C-NMR (CDCl3) δ -5.3 [(CH3)2Si], -5.2 [(CH3)2Si], 18.4 
[C(CH3)3], 26.2 [CH3)3C], 38.6 (d, J = 130.6 Hz, CH2P), 52.9 [d, J = 6.1 Hz, (CH3O)2P)], 52.9 [d, 
J = 6.0 Hz, (CH3O)2P], 55.4 (CH2Ph), 60.1 (CH2OSi), 67.44 (CHN), 127.4 (Cpara), 128.5 (Cmeta), 129.2 
(Cortho), 139.4 (Cipso), 201.8 (d, J = 6.1 Hz, C=O); 31P-NMR (CDCl3) δ 24.30; HRMS (CI, CH4) 
calculated for, C26H41O5NPSi (MH+) 506.2492, found 506.2575 

General procedure for the reduction of β-ketophosphonates (S)-6 and (S)-10 with NaBH4. To a 
solution of β-ketophosphonate (S)-6 or (S)-10 (1.0 eq.) in methanol (40 mL) at 0 ºC was added NaBH4 
(4.0 equiv.). After 5.0 h, the solvent was evaporated and the residue was diluted with H2O and 
extracted with ethyl acetate (3 × 30 mL). The organic layer was dried over Na2SO4 and evaporated in 
vacuum. The crude was analyzed by 1H- and 31P-NMR and purified by column chromatography. 

General procedure for the reduction of β-ketophosphonates (S)-6 and (S)-10 with LiBH4, DIBAL-H 
and catecholborane (CB). To a solution of β-ketophosphonate (S)-6 or (S)-10 (1.0 eq.) in anhydrous 
THF (50 mL) was added (2.0 equiv.) of reducing agent at -78 ºC. The reaction mixture was stirred for 
5.0 h at -78 ºC, and then was quenched with saturated solution of NH4Cl and extracted with ethyl 
acetate (3 × 40 mL). The organic layer was dried over Na2SO4 and evaporated in vacuum. The crude 
was analyzed by 1H- and 31P-NMR and purified by column chromatography.    

(2S)-1-Benzylpyrrolidin-2-yl)-(2R)-hydroxyethylphosphonate (syn-11). Following the general 
procedure, β-ketophosphonate 6 (100 mg, 0.32 mmol) in anhydrous THF (20 mL), was treated with 
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catecholborane (CB), 1 M in THF, (1.5 mL, 1.5 mmol). After work up and chromatographic 
purification gave (78 mg, 78% yield) of β-hydroxyphosphonate syn-11 as a viscous oil. [α]D = -2.0 
(c = 1.02, CHCl3); 1H-NMR (CDCl3) δ 1.24-1.90 (m, 7H), 2.48-2.58 (m, 1H,CH2P), 2.90-3.10 (m, 1H, 
CH2P), 3.421-3.614 (m,1H), 3.48 (system AB, J = 13.0 Hz, 1H, CH2Ph), 3.68 (d, J = 11.0 Hz, 3H, 
(CH3O)2P), 3.76 (d, J = 11.2 Hz, 3H, (CH3O)2P), 4.02 (system AB, J = 13.0 Hz, 1H, CH2Ph), 
7.23–7.36 (m, 10 H, Harom); 13C-NMR (CDCl3) 21.6 (CH2CH2), 29.5 (CH2CH), 330.1 (d, J = 133.6 
Hz, CH2P), 36.64 (CH2N), 46.8 (NCH2Ph), 51.7 [(CH3O)2P], 53.2 [(CH3O)2P], 68.20 (CHN), 68.3 
(CHOH), 127.4 (Cpara), 128.4 (Cmeta), 129.2 (Cortho), 138.4 (Cipso); 31P-NMR (CDCl3) δ 35.3; HRMS 
(CI, CH4) calculated for C15H25O4NP (MH+) 314.1521, found 314.1506. 

Dimethyl-(2R,3S)-4-(tert-butyldimethylsilyloxy)-3-N,N-(dibenzylamino)-2-hydroxybutyl-phosphonate  
(syn-13). Following the general procedure, (180 mg, 0.37mmol) of β-ketophosphonate 10 in anhydrous 
THF (20 mL), was treated with catecholborane (CB) 1 M in THF (1.5 mL, 1.5 mmol) of. After work 
up and chromatographic purification, (150 mg, 87% yield) of β-hydroxyphosphonate syn-13 was 
obtained as a viscosus oil. [α]D = +17.1 (c = 1.01, CHCl3); 1H-NMR (CDCl3) δ 0.12 (s, 3H, (CH3)2Si), 
0.12 (s, 3H, (CH3)2Si), 0.93 (s, 9H, (CH3)3C), 1.79 (ddd, J = 20.0, 15.1, 5.8 Hz, 1H, CH2P), 1.95 (ddd, 
J = 20.0 Hz, 15.1, 5.8 Hz, 1H, CH2P), 2.64 (m 1H), 3.57 (system AB, J = 13.4 Hz, 2H, CH2Ph), 3.67 
(d, J = 11.0 Hz, 3H, (CH3O)2P), 3.72 (d, J = 11.0 Hz, 3H, (CH3O)2P), 3.90 (m, 2H, CH2OSi), 4.00 
(system AB, J = 13.4 Hz, 2H, CH2Ph), 4.03–4.13 (m, 1H), 7.22–7.33 (m, 10 H, Harom); 13C-NMR 
(CDCl3) δ -5.4 ((CH3)2Si), -5.3 ((CH3)2Si), 18.3 (C(CH3)3), 26.1 (CH3)3C), 30.5 (d, J = 141.2 Hz, 
CH2P), 52.5 (d, J = 13.6 Hz, 2C, (CH3O)2P), 55.9 (CH2Ph), 59.6 (CH2OSi), 63.9 (CHOH), 64.1 
(CHN), 127.4 (Cpara), 128.6 (Cmeta), 129.4 (Cortho); 139.4 (Cipso); 31P-NMR (CDCl3) δ 33.92. HRMS 
(CI, CH4) calculated for C26H43O5NPSi (MH+) 508.2648, found 508.2672. 

4. Conclusions 

In conclusion, we have found that the reduction of N,N-disubstituted-γ-amino-β-ketophosphonates 
readily obtained from the appropriate L-amino acids, with catecholborane (CB) afforded the syn-γ-
amino-β-hydroxyphosphonates as principal diastereoisomers, which could be used as template 
compounds for the synthesis of molecules with biological and chemical interest.  
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