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Abstract: Conscious of the importance that stereochemical issues may have on the design 
of efficient organocatalyts for both Morita-Baylis-Hillman and aza-Morita-Baylis-Hillman 
reaction we have analyzed them in this minireview. The so-called standard reactions 
involve “naked” enolates which therefore should lead to the syn adducts as the major 
products, irrespective of the E, Z stereochemistry of the enolate. Accordingly, provided the 
second step is rate determining step, the design of successful bifunctional or polyfunctional 
catalysts has to consider the geometrical requirements imposed by the transition structures 
of the second step of these reactions. On the other hand, MBH and aza-MBH reactions co-
catalyzed by (S)-proline and a secondary or tertiary amine (co-catalyst) involve the aldol-
type condensation of either a 3-amino-substituted enamine, dienamine, or both, depending 
on the cases. A Zimmerman-Traxler mechanism defines the stereochemical issues 
regarding these co-catalyzed condensations which parallel those of the well established 
(S)-proline catalyzed aldol-like reactions. 

Keywords: Morita-Baylis-Hillman reaction; aza-Morita-Baylis-Hillman reaction; 
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1. Introduction 

The original Morita-Baylis-Hillman (MBH) reaction [1,2] and its aza analogue (aza-MBH) [3] are 
unique reactions in many respects, the most relevant being perhaps its atom-economic and 
organocatalytic nature [4–10]. The standard reactions typically require bulky, conformationally rigid, 
basic tertiary amines such as quinuclidines [11–13], though DBU [14], DMAP [15], imidazoles [16], 
guanidine [17], or even heterocyclic carbenes [18,19] or nucleophilic phosphines [20,21] acting as 
Lewis base catalysts [22] have been used as well for promoting the condensation of an α,β-unsaturated 
systems (aldehydes, ketones, esters, nitriles, amides, phosphonates, sulphonates, sulfones, sulfoxides 
or nitro compounds have been employed) with either the C=O functionality present in aldehydes, 
ketones or α-keto esters for the case of MBH reactions, or with the C=N moiety of N-sulfonyl, N-acyl, 
N-phosphinoyl, and N-alkoxycarbonyl imines in the case of aza-MBH reactions. The products are 
densely functionalized small molecules whose basic skeleton is that of a chiral, cyclic, or acyclic, α-
methylene-β-hydroxycarbonyl, or α-methylene-β-aminocarbonyl, compound for MBH [23–31], or 
aza-MBH reactions [32–35], respectively. Both skeletons have attracted great synthetic interest, 
especially when derived from prochiral C=O or C=N funcionalities since enantioselective versions 
could then be designed (Scheme 1).  
 

Scheme 1. Morita-Baylis-Hillman (MBH) and aza-Morita-Baylis-Hilman (aza-MBH) reactions. 
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Needless to say, great efforts have been made by researchers all over the world to find efficient 

catalysts for achieving highly enantioselective MBH and aza-MBH reactions. The challenge was and 
still is huge, as investigators need to overcome many reaction hurdles such as low conversions, long 
reaction times and poor enantioselection. Impulse for the research race has come from extensive 
mechanistic studies. 

The original mechanism for the standard MBH reaction cycle, proposed by Hill and Isaacs [36,37], 
invoked a series of four transition structures giving rise to three highly dipolar, zwitterionic 
intermediates eventually collapsing to the final adduct together with the catalyst, then ready for a new 
cycle (Scheme 2). Strong support for the original MBH mechanism has come in the past from kinetic 
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studies [38–41], and most recently by NMR studies [42] and ESI-MS data [43], according to which the 
aldol addition step (step 2 in Scheme 2) should be the rate determining step. Being highly dipolar 
means that the zwitterionic intermediates, as well as their preceding transition structures, should be 
high energy species impossible to detect or isolate in most cases [44], even if a specific, internal 
stabilization could be provided. Actually, it was soon recognized that Brönsted acid additives (water, 
methanol, ureas, thioureas, etc.) accelerated MBH reactions [45–51,15], thus spurring the search for 
suitable chiral, bifuntional molecules having a Lewis base (usually a rigid, tertiary amine or 
phosphine) and a Brönsted acid appropriately located for stabilizing those zwitterionic species and 
their precursory transition structures, i.e., LBBA catalysts [52–58,42]. 

Scheme 2. Original mechanistic proposal for the MBH reaction. 
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Recent experimental results and theoretical studies regarding the third step of the standard MBH 

and aza-MBH reactions (step 3 in Scheme 2) suggested a dualistic nature for it, thus significantly 
modifying the original mechanism. On the one hand McQuade has presented two key observations for 
quinuclidine-catalyzed MBH reaction of acrylate and benzaldehyde catalyzed by DABCO in non-
polar, polar or even protic solvents, namely: 1) the rate equation is first order in DABCO and acrylate 
and second order in aldehyde, and 2) a large kinetic isotope effect was observed when α-
deuterioacrylate was employed [59,60]. Altogether these facts are strong support for McQuade’s claim 
for a new mechanism for the standard MBH racemic reaction, according to which the rate determining 
step must be the proton shift occurring in the third step upon a hemiacetalate species. On the other 
hand, kinetic studies by Aggarwal et al. showed that the standard MBH reaction (ethyl acrylate with 
benzaldehyde catalyzed by quinuclidine) is autocatalytic at short reaction times, the implications being 
that in the presence of a proton donor molecule (alcohol, water, etc.) the rate determining step should 
be the protonation of the intermediate ammonium aldolate (int2) with the concomitant removal of the 
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carbonyl α-hydrogen [61]. This proposal was further supported by computational data which showed 
that the energy barrier for this ROH-promoted proton shift was even somewhat lower than that 
envisioned in McQuade’s mechanism [62]. Experimental support for this dual option-mechanism 
(Scheme 3) has been recently provided by ESI-MS [63–65]. One of the key issues that remain 
unanswered is the stereochemical outcome of MBH and aza-MBH reactions. In particular, one notes 
the lack of a unified proposal for the stereochemical outcome of the aldol addition step (step 2) and, in 
addition, there is uncertainty upon whether or not the original kinetic outcome of the aldol reaction 
suffers any modification due to reaction reversal driven by thermodynamics (step 3). Needless to say, 
these issues hamper future development of novel and more efficient catalysts. These stereochemical 
issues appear to be more complex for the case of MBH reactions where the third step is dual and minor 
details surely play stereochemically relevant roles that can affect the diastereomeric composition of the 
so-called aldolate int2, and consequently erode the final enantioselectivity.  

Scheme 3. Dual mechanism for the standard MBH reactions according to recent physico-
chemical studies. 
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In spite of the strong mechanistic analogies between MBH and aza-MBH reactions there are some 
relevant dissimilarites worth noting here. Both are accelerated by Brönsted acid additives. However, at 
difference with the McQuade’s findings for MBH reactions, the kinetic studies run by Leitner et al. 
showed that the rate expression for the aza-MBH reaction, carried out in THF, between methyl vinyl 
ketone with an N-tosyl imine in the presence of triphenylphosphine as catalyst, and a Brönsted acid as 
cocatalyst whose pKa was in the range 16–8, was first order in both imine, ketone and 
triphenylphosphine, but independent of the acid cocatalyst [66]. The implication was evident: the 
elimination step of aza-MBH reactions, in which the acid cocatalyst operates, should not be the rate-
determining step (Scheme 4). Instead, one could state, provided this behaviour could be extended to all 
kinds of aza-MBH reactions promoted by bifunctional LABA catalysts, that the rate-determining step 
should be the Mannich-type addition step also responsible for the eventual stereochemical results, 
provided racemization of the final product is avoided [66]. The consequence is evident: the race for the 
development of enantioselective, bifunctional catalysts for MBH and aza-MBH is being won by the 
latter, no doubt due to the fact that in this case the rate determining step is the addition step (second 
step) and the third step is fast, which derives in less stereochemical difficulties.  

Scheme 4. Mechanistic proposal for the aza-MBH reaction co-catalyzed with a Brönsted acid ROH. 
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From a mechanistic point of view there is a second major category of MBH and aza-MBH 
reactions, namely that which involves the aldol-like addition of an intermediate enamine species, 
instead of the enolates characteristic of the standard reactions. In particular, secondary α-aminoacid 
organocatalysts such as (S)-proline [67], or (S)-pipecolinic acid [68], often assisted with cocatalysts 
(N-methyl imidazole, DABCO, peptides, etc.), have recently been added to the above armoury of 
bifunctional organocatalysts [69–72]. Obviously, from a mechanistic viewpoint these α-amino acid-
organocatalyzed MBH reactions differ completely to those categorized as standard MBH and aza-
MBH reactions which involve tertiary amine or phosphine catalysts [73–75]. 

In addition, it is worth mentioning at this point that one can also reach MBH or aza-MBH products 
by means of non-organocatalytic protocols. These methods either employ Lewis acid catalysts such as 
BF3 or TiCl4 with an added halide as cocatalyst [76–79], or Ti(IV) tetraisopropoxide with, or without a 
chiral amine [80], phosphine or sulphur compound as co-catalyst [81]. Alternatively, a metallic salt 
can be used as catalyst or stoichiometric promoter. These miscellaneous methods which employ non-
organocatalytic will not be examined in the present minireview. 

In spite of the quite large number of reviews dedicated to the standard MBH and aza-MBH 
reactions no attempt has been made to outline their most prominent stereochemical aspects in a 
systematic manner, likely because of the still unanswered questions regarding their mechanism. The 
aim of this minireview is to analyze the stereochemical issues of the two main types of MBH reactions, 
namely the standard MBH reactions, and the α-aminoacid-cocatalyzed MBH reactions. 

2. The Standard MBH and Aza-MBH Reactions 

For the purpose of examining the stereochemical relevant details of the standard MBH and aza-
MBH reactions one needs to consider the general mechanism illustrated in Scheme 3, and keep in 
mind that those steps taking place before the rate determining step involve reversible reactions and 
that, according to recent physico-chemical observations, the rate determining step is dual (in other 
words, it can be one or the other for the same reaction, as a function of time and/or solvent) as a 
function of the actual experimental conditions, as discussed below.  

It is our contention that standard MBH and aza-MBH reactions should be considered as involving 
“naked” enolates i.e., fully separated ammonium, or phosphonium, enolates holding specific properties 
and reactivity [82]. A revealing experiment regarding reversibility of aldol reactions involving fully 
separated ion pairs (“naked” enolates), was reported in the nineties by Noyori et al. for 
tris(dimethylamino) sulfonium (TAS) enolates. What they found is that TAS enolates do not yield 
aldol products unless the reaction is driven by an O-silylation quench of the aldolate adducts which, 
accordingly, must be considered high energy species on the reaction profile [83,84]. This behaviour is 
reminiscent to that of standard MBH and aza-MBH reactions which usually require a protic solvent, a 
protic cosolvent, or a Lewis Base-Brönsted Acid (LBBA) catalyst for driving the reaction to an 
efficient level of conversion.  

The first step MBH and aza-MBH reactions (step 1 in Scheme 3) involves the reversible 
nucleophillic attack upon the β carbon of an α,β-unsaturated system, thereby giving rise, for acyclic 
systems, to a zwitterionic ammonium or phosphonium, enolate (int1) [23–28], which can undergo 
aldol condensation with a C=O or C=N moiety, as reported by Noyori et al. for other systems [85,86]. 
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Being this first step reversible, we can expect the formation of a thermodynamically controlled mixture 
of zwitterionic enolates, the most stable being the Z-configured ammonium enolate (thermodynamic 
enolate) by virtue of the fact that being the O- and CH2NR3

+ moieties cis to each other [87], strong 
attractive interactions between the charged oxygen atom and the nearby α-hydrogens of the onium 
moiety are being developed, as reported by both Houk [88], and Leahy [89]. In this regard it is worth 
mentioning that Aggarwal, Harvey et al. have estimated by means of computation at the B3LYP/6-
31+G*/THF level that the thermodynamic (Z)-enolate is stabilized by 1,1 kcal/mol relative to the 
kinetic enolate [87,90]. According to these authors this stabilization of the (Z)-enolate is due to the 
existence of stronger electrostatic interactions in the thermodynamic (Z)-enolate, rather than other 
specific bonding interactions. A recent experimental study has concluded that these specific bonding 
interactions are not present in the case of a phosphine-catalyzed MBH-like alkylation reaction 
involving the kinetic zwitterionic phosphonium enolates [91]. The MBH and aza-MBH reaction can 
thus be appropriately defined as a unique aldol condensation in which the enolate involved is a 
“naked”, zwitterionic, ammonium, or phosphonium, equilibrating enolate [92–94]. Since its formation 
is highly reversible it can be safely assessed that MBH reactions should involve the above mentioned 
thermodynamic (Z)-enolates as the major species [87]. Curiously enough, the rate of intramolecular 
MBH reactions has been shown to be highly dependant on the stereochemistry of the Michael 
acceptor, with the Z-stereoisomer being more reactive than the E-isomer [95]. 

Common metal enolates and “naked” enolates are quite dissimilar in reactivity [96,97]. As 
mentioned previously, the most revealing aspect for the present analysis is that “naked” enolates do 
not react with aldehydes unless in the presence of trialkylsilyl fluoride which acts as a quencher of the 
resulting “naked” aldolate, as reported by Noyori et al. for TAS enolates [98,99]. A further revealing 
issue is that of the diastereoselection of aldol condensations. Kinetic diastereoselection when common 
metal enolates (Li, Na, K, Mg, Zn, B, Ti) are employed is rather well established as a consequence of 
the running of the so-called Zimmerman-Traxler mechanism which invokes cyclic, chair-like transition 
states where the metal plays a significant role as it is an integral part of this cyclic array [100]. 
According to the general ruling for the reactions of these metal enolates, thermodynamic (Z)-enolates 
give rise preferentially to syn aldols, whereas (E)-enolates lead to anti aldols (Scheme 5).  

Scheme 5. Kinetic diastereoselection for metal enolates according to the Zimmerman-
Traxler mechanism of aldol condensations. 
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In contrast, a number of aldol reactions do not follow this general rule because a different 
mechanism is in effect. In particular, as put forward by Noyori and coworkers, “naked” enolates such 
as TAS enolates give rise to syn aldol derivatives regardless of the E-Z configuration of the enolate 
(Scheme 6) [101]. The reason for this is that an acyclic, extended transition state is at work and the 
energetically most favoured one is that which avoids electrostatic repulsion between the negatively 
charged oxygens, as illustrated in Scheme 6 [98,99,102,103]. 

Scheme 6. Kinetic diastereoselection of aldol condensations undergone by “naked” 
enolates as according to Noyori et al. 
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Curiously enough, Aggarwal, Harvey et al. in their computational study (at the B3LYP/6-

31+G*/THF level of theory) of the MBH reaction reported that the lowest transition estate of the C-C 
bond forming step i.e., that corresponding to the addition of the (Z)-configured enolate, was governed 
by the strength of the dipole-dipole interactions required for maximum electrostatic stabilization [104–
106], even when an explicit methanol molecule was included for activation [98,99]. Therefore the 
product stereochemistry should be that of syn aldolates, as a consequence of the preferred face 
selective ul (Re-Si or Si-Re) condensation of either (Z)- or (E)-configured enolates, as reported by 
Noyori et al. for aldol condensation of TAS “naked” enolates [98,99]. Two additional flag features 
regarding those aldol reactions undergone by “naked” enolates are worth being mentioned because 
they perfectly match those of MBH reactions: 1) the final aldolate can react with a second molecule of 
aldehyde thereby giving rise to dioxane byproducts, and 2) the reaction shows autocatalysis [98,99]. 
The diastereoselectivity of the addition step to (E)-N-substituted imines i.e, the rate determining step 
of aza-MBH reactions, will also be governed by identical principles, though achiral, Brönsted acid 
additives can actually invert the stereochemical course of the reactions, as shown recently by Masson, 
Zhu et al [107,108]. To sum up, predictions for the standard MBH and aza-MBH reactions are that the 
ammonium or phosphonium syn aldolates should be the kinetic products of the second step  
(Scheme 7).  
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Scheme 7. Stereochemical issues for the standard MBH (dual mechanism) and aza-MBH 
(single mechanism) reactions. 

 
 

Thus far only scattered information about the intrinsic diastereoselectivity of the MBH and aza-
MBH reactions had been advanced in the published literature due to the nature of the third step in 
which one of the two centers of chirality is eventually destroyed. A particular case is the mechanistic 
rationale proposed by Hatakeyama et al. for explaining the intriguing opposite enantioselectivity 
observed for the common MBH product and for the unexpected dioxanone adduct obtained in the β-
isocupreidine-catalyzed MBH reaction between 1,1,1,3,3,3-hexafluoroisopropyl acrylate with aliphatic 
or aromatic aldehydes in DMF at -55 °C [109]. The authors called for the formation of the two 
diastereoisomeric syn adducts that evolved, presumably at similar rates, to the divergent products. In 
particular, the syn (2S,3R) adduct undergoes direct β-elimination thereby yielding the (R)-MBH 
product, whereas the syn (2R,3S) reacted with a second aldehyde molecule, as predicted by the 
McQuade’s dual mechanism, thereby giving rise to the (S)-dioxanone byproduct which has the 
opposite configuration, as shown in Scheme 8.  
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Scheme 8. Hatakeyama’s stereochemically divergent β-isocupreidine-catalyzed MBH reaction. 
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Fortunately, a recent work by Xu et al. has provided clear-cut proof for the intrinsic 

diastereoselectivity, as well as the enantioselectivity, of the aza-MBH reaction of nitroalkenes with N-
tosylimines catalyzed by several chiral amino thioureas derived either from quinine or 1,2-trans-
diaminociclohexanes [110], which supports the above analysis. Instead of the prototypical proton shift 
and β-elimination, this reaction evolved through direct β-elimination thus resulting in the formation β-
nitro-γ-enamines containing the two contiguous centers of chirality previously generated in the 
addition step. The results shown in Scheme 9 for the reaction catalyzed by (1R,2R)-
diaminocyclohexane thiourea clearly provide sound support of the above reasoning as all reactions run 
in apolar, aprotic media yielded syn β-nitro-γ-enamines in high diastereomeric ratio, whereas those 
carried out in polar and protic solvents led to much lower diastereoselection. 

Scheme 9. Diastereo and enantioselective aza-MBH reaction of nitroalkenes with N-Ts 
protected imines catalyzed by bifunctional amino thioureas. 

 
 

Nonetheless, a cautionary note is needed. Even though Noyori reported that the syn or anti O-
silylated aldols are configurationally stable in the presence of fluoride in an aprotic medium, one 
should not forget that stereochemically defined lithium aldolates can suffer stereochemical 
isomerization in protic media [111]. Accordingly, at the time of devising new enantioselective 
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catalysts for the MBH reaction, best candidates ought to be those that allow for a rapid protonation of 
the syn aldolates (int2) formed in the second step of MBH aldol condensations. In other words, the 
role of a bifunctional LBBA catalyst may be that of providing for a rapid protonation of the syn 
aldolate (int2) thereby giving rise to a basic site appropriately located for promoting a rapid β-
elimination, i.e, promoting a concerted protonation-deprotonation sequence. Recent theoretical studies 
have provided evidences for declaring the second step the rate determining step for MBH reactions 
carried out in the presence of protic solvents or dual Lewis base-Brönsted acid catalysts [112–114], or 
the final β-elimination when in the absence of protic solvents or catalysts [56,60,115]. Trifunctional or 
multifunctional catalysts are conceivable and, in fact, some has already been described [116,117]. 

The lesson to be learned for the design of catalysts is clear: bifunctional LBBA molecules appear to 
be useful candidates for enantioselective catalysts for the standard MBH and aza-MBH reactions. 
Obviously, not all bifunctional LBBA catalysts will work, and in fact many of the so-called privileged 
catalysts have failed. In our view, in order to reach efficiency, catalysts will need to consider the 
spatial disposition of the dipoles in the stereochemically relevant transition state, as recently shown by 
Clarke, Philp et al. [118]. 

Quite a large armoury of highly successful enantioselective catalysts for standard MBH reactions is 
already available. Some of them, illustrated in Scheme 10, are classified in three main groups, namely 
the chiral bifunctional amines of Barrett [52] and Hatakeyama [109], the chiral, bifunctional thioureas 
of Wu [119] and Wang [120], and the chiral hydrogen donors combined with Lewis bases of 
Nagasawa [121], Schaus [122] and Shi [123]. 

Scheme 10. Catalytic systems for the standard, enantioselective MBH reactions. 
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The number of enantioselective catalysts for the aza-MBH reaction has grown exponentially in 
recent years. Some of them, illustrated in Scheme 11, can be classified in four main groups, namely the 
chiral bifunctional and multifunctional amines of Sasai [124,125], and Mason and Zu [107,108], the 
chiral bifunctional amines and phosphines of Xu [110] and Shi [126–128,42], the chiral 
multifunctional phosphines of Shi [129,130], Sasai [58], Liu [116,117], and Ito [131], and the chiral 
hydrogen donors, as well as chiral ionic liquids, combined with external Lewis base of Jacobsen [44], 
and Leitner et al. [156]. 

Scheme 11. Enantioselective catalysts for the standard aza-MBH reaction. 

 

3. The α-Aminoacid Catalyzed and α-Aminoacid-Amine Cocatalyzed Mbh and Aza-Mbh 
Reactions 

Secondary amines were recognized to promote intramolecular cyclizations of enonealdehydes 
thereby yielding MBH products. The reaction was interpreted, however, as involving a tandem 
Michael/aldol condensation [132–134]. To the best of our knowledge the first reported attempt at 
employing a secondary amine such as (S)-proline as enantioselective catalyst for MBH reactions is due 
to Shi and coworkers [135]. Their discovery was quite simple but fundamental: even though (S)-
proline itself failed to promote the MBH reaction of arylaldehydes with a β-unsubstituted α,β-
unsaturated ketone such as methyl vinyl ketone (MVK), the presence of an equimolar amount of a 
Lewis base such as imidazole, benzimidazole or DABCO acting as co-catalysts led to the 
corresponding MBH adducts in high yield, though in very low enantioselectivity (5–10% ee), the use 
of such chiral tertiary amines as Hatakeyama’s β-isocupreidine leading only to a somewhat marginal 
improvement in enantioselectivity [136]. 
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Scheme 12. General mechanism for the MBH (S)-proline-Lewis base co-catalyzed reactions. 
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additions have been well established by Houk, List and coworkers [141]. Accordingly, Shi’s enamine 
intermediate should react with the aldehyde in keeping with the generalized mechanism based on the 
Zimmerman-Traxler six-membered ring chair-like model [100]. Eventually, recycling of the catalyst 
should take place as a consequence of hydrolysis of the final iminium condensate (Scheme 13). At the 
time of writting this review it is clear that there is much room for improvement of the 
enantioselectivity of MBH co-catalyzed reactions.  

Scheme 13. Generalized mechanism for (S)-proline-catalyzed aldol reactions based on the 
Zimmerman-Traxler model. 

 
 

Other chiral, tertiary amino alcohols have also been explored for synergy with (S)-proline in 
catalyzing enantioselective MBH reactions by Zhou, He and coworkers with some improvement 
[142,143]. Miller’s approach to reach ideal synergy called for exploring π-(Me)His (Pmh)-containing 
peptides of various lengths and constitution [144]. The best enantioselection (78% ee) for the 
prototypical reaction of the o-nitrobenzaldehyde with an β-unsubstituted α,β-unsaturated (MVK) was 
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obtained when using (S)-proline with the chiral octapeptide BOC-(π-Me)His-Aib-Chg-(trt)Gln-D-Phe-
D-Pip-Cha-Phe-OMe as cocatalyst, the key observation being that the “unmatched” pair (R)-proline/ 
BOC-(π-Me)His-Aib-Chg-(trt)Gln-D-Phe-D-Pip-Cha-Phe-OMe yielded the MBH adduct with opposite 
configuration in only 33% ee. This observation led the authors to conclude that the stereochemical 
issues regarding proline/tertiary amine cocatalyzed MBH reactions are dominated by proline 
stereochemistry. The scope of the reaction has been examined [145]. 

Application of these ideas to an intramolecular MBH cyclization led Miller and coworkers to find 
that the (S)-pipecolinic acid/N-methylimidazole pair gave better enantioselectivities than the (S)-
proline/N-methylimidazole pair [146]. Simultaneously, Hong and coworkers not only observed that 
(S)-proline itself behaved as an effective catalyst but also reported the unexpected observation that the 
Lewis base co-catalyst employed (e.g., imidazole) gave rise to inversion of the enantioselectivity, an 
event that required a new reactive intermediate, as suggested by the authors [147]. From a mechanistic 
viewpoint, it was proposed that the reaction catalyzed by (S)-proline involved (E,E)-dienamine species 
which followed the widely accepted enamine mechanism as applied to an intramolecular aldol 
condensation, whereas that co-catalyzed by imidazole involved imidazole-substituted (E)-enamines 
having two centers of chirality [148,149].  

 
Scheme 14. Mechanism for the (S)-proline-catalyzed intramolecular cyclization of hept-2-
enedial to (S)-6-hydroxy-cyclohex-1-enecarbaldehyde. 
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Subtle details of this mechanism have come to light as a consequence of an extensive density 

functional analysis at the B3LYP/6-31-G(d,p) level which included the use of the polarized continuum 
model (PCM B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p)) to describe solvent effects, the most 
important being the role played by water to give rise to the required syn and anti, (E,Z)-dienamine key 
intermediates in equilibrium, as the theoretical calculations demonstrated that (E,E)-enamines could 
not undergo cyclization [150]. According to these PCM calculations, the cyclization of the anti, E,Z-
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dienamine is biased towards the formation of the (S)-configured product, as illustrated in Scheme 14 
which displays, in a simplified manner, the modifications introduced by the computational work by Gil 
Santos et al., in close analogy with the model proposed and by List and coworkers [151]. 

The original mechanistic proposal of Hong et al. for the imidazole co-catalyzed reaction has also 
been modified as a consequence of the theoretical studies of Gil Santos et al., which predict the 
formation of the (S,S)-diastereoisomer of the 3-(1-imidazolyl)-substituted enamine by attack of 
imidazole to the (E)-iminium ion assisted by water in the rate limiting step. Cyclization of this 
intermediate followed by hydrolysis yields the (R)-6-hydroxycyclohex-1-enecarbaldehyde and (S)-
proline, as illustrated in Scheme 15. Calculations also provide satisfactory data for explaining the 
temperature and solvent polarity dependence of the cyclization.  

Scheme 15. Mechanism for the (S)-proline, imidazole co-catalyzed intramolecular 
cyclization of hept-2-enedial to (R)-6-hydroxycyclohex-1-enecarbaldehyde. 
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First examples of aza-MBH reactions catalyzed by (S)-proline, as well as co-catalyzed with added 

bases, have come to light quite recently first published by Barbas, Tanaka and coworkers [152], and 
then by Córdova and coworkers [153]. From a stereochemical viewpoint, intermolecular reactions of 
β-alkyl substituted-α,β-unsaturated aldehydes with either N-PMP (Barbas and Tanaka) or N-BOC 
protected imines (Córdova) catalyzed by (S)-proline, can be understood as Mannich condensations 
involving either a (E,E)-dienamine, or the 3-substituted enamine resulting from the trapping of the 
precursory conjugated iminium ion by the cocatalyst. Whichever the case, a Zimmerman-Traxler six-
membered ring chair-like model as applied to N-substituted imines (Scheme 16) should apply 
[154,155].  
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Scheme 16. Generalized mechanism for (S)-proline-catalyzed Mannich reactions based on 
the Zimmerman-Traxler model. 

 
 
The available evidence found by Barbas, Tanaka and coworkers suggests that the role of the co-

catalyst (imidazole) was only that of increasing the rate of the reaction and improving the chemical 
yield, but had no influence on the enantioselectivity and absolute configuration of the final adducts, 
therefore implying that the reaction actually involves the condensation of a (E,E)-dienamine with the 
protected imine (route a in Scheme 17). Córdova and coworkers did not find positive evidences for 
distinguishing between the dienamine route (route a) and the 3-substituted enamine route (route b). 

Scheme 17. Alternative mechanisms for (S)-proline-amine co-catalyzed Mannich reactions 
of β-substituted aldehydes and N-protected imines (N-PG). 
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4. Conclusions  

Major efforts are being dedicated to the search of chemically efficient, enantioselective, 
organocatalytic Morita-Baylis-Hillman (MBH) and aza-Morita-Baylis-Hillman (aza-MBH) reactions. 
These reactions provide enantiomerically-enriched, densely-functionalized molecules of interest to 
synthetic organic chemists. The development of efficient reactions has been plagued with difficulties 
derived from low conversions, meagre chemical yields and poor enantioselectivities. Fortunately, 
along the years, chemists in their search for better oganocatalysts have identified a number of key 
mechanistic issues by means of fundamental, physical organic chemistry studies, and otherwise. 
Breakthroughs focussing on the nature of the rate determining step of both the MBH and aza-MBH 
reactions, and of course those that reveal the nature of the species actually involved paved the way for 
the actual development of the two major avenues that lead to efficient, enantioselective, 
organocatalytic MBH and aza-MBH methodologies.  

The so-called standard MBH and aza-MBH reactions involve Lewis base catalysts (typically 
tertiary amines or phosphines). Efficient catalytic systems for them either entail an external Lewis base 
and a chiral hydrogen donor, or instead the catalyst usually is a single chiral, bifunctional or 
multifunctional molecule having both a Lewis base and one or several hydrogen donors appropriately 
located in space. However, we believe that there is still room for improvement. This minireview has 
examined the stereochemical issues regarding these reactions in a coherent manner. The most relevant 
conclusion of this analysis is that standard MBH and aza-MBH reactions involve the aldol-type 
condensation of “naked” enolates, thereby leading to syn adducts irrespective of the configuration of 
the enolate. Several pieces of evidence already available in the published literature support this 
conclusion. Accordingly, provided the second step is rate determining step, the design of successful 
bifunctional or polyfunctional catalysts has to consider the geometrical requirements imposed by the 
transition structures of the second step of these reactions.  

On the other hand, all MBH and aza-MBH reactions promoted by both (S)-proline and a co-catalyst 
(a secondary or tertiary amine) invoke the aldol-type condensation of either a 3-amino substituted 
enamine, dienamine, or both, depending on cases. The stereochemical issues regarding these co-
catalyzed condensations appear to mirror those of the well established (S)-proline catalyzed aldol-like 
reactions. 
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