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Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 

hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have 

biological activities. The chemical structures, natural occurrence throughout the plant, 

algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these 

phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, 

biological and ecological importance, and potential as new leads for the development of 

pharmaceutical and agricultural products to improve human health and nutrition.  

Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; 
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1. Introduction  

Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential 

for growth, development or reproduction but may play roles as antioxidants and in interactions 

between the plant and its biological environment. Phenolics are also important components of the 

human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress-

induced tissue damage resulted from chronic diseases [2], and their potentially important properties 

such as anticancer activities [3-5].  
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The structure of phenolics consists of an aromatic ring carrying one (phenol) or more hydroxyl 

(polyphenol) moieties. Several classes can be distinguished according to the number of phenol rings 

and to the structural elements that join these rings [6]. Two main groups of polyphenols, termed 

flavonoids and non-flavonoid polyphenols, have been adopted in the literature [7]. The flavonoid 

group, including flavanones, flavones, dihydroflavonols, flavonols, flavan-3-ols, isoflavones, 

anthocyanidins, proanthocyanidins and chalcones, comprises those compounds with a C6-C3-C6 

structure (Figure 1).  

 

Figure 1. Flavonoids and phenolic acids. 
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The non-flavonoid polyphenols can be classified based on their carbon skeleton into the following 

subgroups: simple phenols, benzoic acids, hydrolysable tannins, acetophenones, phenylacetic acids, 

cinnamic acids, lignans, coumarins, benzophenones, xanthones, stilbenes, and secoiridoids.  

Phenolic acids have a carboxyl group attached or linked to benzene ring [8]. Two classes of 

phenolic acids can be distinguished depending on their structure: benzoic acid derivatives (i.e. 

hydroxybenzoic acids, C6-C1) and cinnamic acid derivatives (i.e. hydroxycinnamic acids, C6-C3) [9] 

(Figure 1).  

This review will cover the natural occurrence and recently described biological activities of 

monocyclic hydroxy- and polyhydroxybenzoic acids. Research published prior to the last ten years will 

not be included as considerable efforts have been made already to cover those findings [e.g., 10-12]. 

Many hydroxybenzoic acids have not been discussed here due to their lack of known bioactivities. 

2. Results and Discussion  

3-Hydroxybenzoic acid (1, Figure 2) is found in common plants such as grapefruit (Citrus 

paradisi), olive oil (Olea europaea) [13], and medlar fruit (Mespilus germanica) [14]. It has 

glucosylating activity [15]. p-Hydroxybenzoic acid (4-hydroxybenzoic acid, 2, Figure 2) has been 

isolated from many sources including carrots (Daucus carota) [16], oil palm (Elaeis guineensis) [17], 

grapes (Vitis vinifera), and numerous other species including east African satinwood (Fagara 

macrophylla), yellow-leaf tree (Xanthophyllum rubescens), peroba (Paratecoma peroba), taheebo 

(Tabebuia impetiginosa), red sandalwood (Pterocarpus santalinus), southern catalpa (Catalpa 

bignonioides), Chinese chastetree (Vitex negundo) [18], betel palm (Areca catechu), Cuban royal palm 

(Roystonea regia) [19], and medlar (Mespilus germanica) [14]. It shows antifungal, antimutagenic, 
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antisickling, estrogenic [20], and antimicrobial [17] activities. p-Hydroxybenzoic acid has a growth 

stimulation effect on the freshwater green alga Pseudokirchneriella subcapitata [21]. 

 

Figure 2. 3-Hydroxybenzoic acid (1) and 4-Hydroxybenzoic acid (2). 
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1. 3-Hydroxybenzoic acid 2. 4-Hydroxybenzoic acid  
 

Pyrocatechuic acid (2,3-dihydroxybenzoic acid, 3, Figure 3) occurs in rhododendrons 

(Rhododendron spp.) and other members of the heather family such as winter heath (Erica carnea) and 

teaberry (Gaultheria procumbens), yellow gentian (Gentiana lutea) and the related European centaury 

(Erythraea centaurium), and the common and Madagascar or rosy periwinkles (Vinca minor and 

Catharanthus roseus) [22]. It is also produced by algal, bacterial and fungal microorganisms such as 

marine-derived actinomycetes [23], the green alga Spongiochloris spongiosa, the cyanobacterium 

Anabaena doliolum [24], the other bacteria Streptomyces sp., Acinetobacter calcoaceticus, Brucella 

abortus, Aspergillus sojae, and Bacillus sp., and the fungi Rhizobium sp. and Penicillium roquefortii. 

Pyrocatechuic acid is an antioxidant [25], a radical scavenger [23], and a siderophore [26]. It has some 

natural derivatives such as the 3-O-β-D-glucopyranoside isolated from totally unrelated plants such as 

the gentian relative Geniostoma antherotrichum, the common periwinkle (Vinca minor), and the 

mustard relative Boreava orientalis; and 2-hydroxy-3-methoxybenzoic acid from a crocus (Colchicum 

decaisnei) and a birch (Betula pendula). 

Gentisic acid (2,5-dihydroxybenzoic acid, 4, Figure 3) also has a widespread occurrence, being 

found in citrus fruits (Citrus spp.), grapes (Vitis vinifera), Jerusalem artichoke (Helianthus tuberosus), 

sesame (Sesamum indicum), gentians (Gentiana spp.), red sandalwood (Pterocarpus santalinus), rose 

gum (Eucalyptus grandis), saxifrage (Saxifraga spp.), and olive (Olea europaea) [13]. In addition to 

being an analgesic, anti-inflammatory, antirheumatic, antiarthritic, and cytostatic agent, gentisic acid 

inhibits low-density lipoprotein oxidation in human plasma [27]. It is believed that gentisic acid has an 

effective role in the anticarcinogenetic activity of China-rose hibiscus (Hibiscus rosa-sinensis) extract 

[28]. A recent study has shown that gentisic acid is a Fibroblast Growth Factor (FGF) inhibitor [29].  

Many derivatives of gentisic acid are found naturally, such as 5-O-(1-carboxyethenyl) in aster 

(Aster indicus), 5-methylether in cowslip (Primula veris), 2-O-[β-D-glucopyranosyl-(1→3)-3-

hydroxybenzoyl] in marsh felwort (Lomatogonium rotatum), 5-O-[4-hydroxy-3,5-dimethoxybenzoyl-

(→5)-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside] (albizinin) in Indian albizia (Albizia lebbek), 5-

O-[β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside] in sensitive-plant (Mimosa pudica), 5-O-[β-D-

apiofuranosyl-(1→2)-β-D-xylopyranoside] in the legume Spatholobus suberectus, 5-(6-

galloylglucoside) in sawtooth oak (Quercus acutissima), 5-O-[4-hydroxy-3-methoxy-benzoyl-(→6)-β-

D-glucopyranoside] in squirrel’s-foot fern (Davallia mariesii), 5-O-β-D-glucopyranoside in cassia 

(Cassia absus), Chinese goldthread (Coptis chinensis), and sensitive-plant (Mimosa pudica), 5-
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xyloside in Indian coral-tree (Erythrina indica), 2-O-β-D-glucopyranoside (orbicularin) in cotoneaster 

(Cotoneaster orbicularis), 5-O-β-xylopyranosyl, 5-O-{[5"-O-E-(4"'-O-threo-guaiacylglycerol)-

feruloyl]-β-apiofuranosyl-(1→2)-β-xylopyranosyl}, 5-O-[(5"-O-vanilloyl)-β-apiofuranosyl-(1→2)-β-

xylopyranosyl] and 1-O-[E-(4"'-O-threo-guaiacylglycerol)-feruloyl]-3-O-β-galacturonopyranosyl 

glycerol in barrel medic (Medicago truncatula) [30]. 

α-Resorcylic acid (3,5-dihydroxybenzoic acid, 5, Figure 3) is a constituent of peanuts (Arachis 

hypogaea), chickpeas (Cicer arietinum), red sandalwood (Pterocarpus santalinus), and hill raspberry 

(Rubus niveus). It has nematicidal activity [31]. 

 

Figure 3. Pyrocatechuic acid (3), Gentisic acid (4), and α-Resorcylic acid (5). 

 

3. Pyrocatechuic acid (R1=OH, R2=R3=H)
4. Gentisic acid (R1=R3=H, R2=OH)
5. -Resorcylic acid (R1=R2=H, R3=OH)
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Salicylic acid (2-hydroxybenzoic acid, 6, Figure 4) occurs in such diverse plants as willow bark 

(Salix spp.), poplar (Populus pseudo-simonii), Voodoo lily (Sauromatum guttatum), gumweed 

(Grindelia spp.), and medlar (Mespilus germanica) [14]. It is also produced by the bacterium 

Pseudomonas cepacia. Salicylic acid has keratolytic, anti-inflammatory, antipyretic, analgesic, 

antiseptic, and antifungal properties for several skin conditions such as dandruff and seborrhoeic 

dermatitis, ichthyosis, psoriasis, acne, etc. [32]. It functions as a hormonal mediator of plant resistance 

responses to environmental stress and pathogen attacks [33,34]. 

6-Methylsalicylic acid (2-hydroxy-6-methylbenzoic acid, 7, Figure 4) is a polyketide derivative 

occurring in narrow-leaf yerba-santa (Eriodictyon angustifolium). It is also produced as a mold 

metabolite by Phyllosticta and Penicillium spp. [35]. 6-Methylsalicylic acid is a phytotoxin. It has 

antibacterial and antifeeding [36] activities. 

β-Resorcylic acid (2,4-dihydroxybenzoic acid, 8, Figure 4) is found in red sandalwood (Pterocarpus 

santalinus) and the related coralwood (Adenanthera pavonina). β-Resorcylic acid has thyroid 

peroxidase inhibitory effect [37]. Its methyl ether derivatives are also found naturally. For example, 2-

methyl ether (pluchoic acid) is a constituent of the fleabane Pluchea lanceolata and 4-methyl ether is 

found in leaves and stems of the unrelated legume, Anthyllis sericea.  

Orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid, 9, Figure 4) presents in some lichens such as 

Roccella, Lecanora, and Lobaria yunnanensis. It has also been isolated from cultures of the fungi 

Penicillium spp., Hypoxylon spp., and Chaetomium cochliodes. Orsellinic acid has antimicrobial 

activity. Some derivatives of orsellinic acid are found naturally, for example, the 2-O-β-D-

glucopyranoside in cloves (Syzygium aromaticum), the 2-methyl ether (isoeverninic acid) in the lichen 

Lecanora gangaleoides, and the 4-methyl ether (everninic acid) in the honey mushroom  

Armillaria mellea. 
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Figure 4. Salicylic acid (6), 6-Methylsalicylic acid (7), β-Resorcylic acid (8), and Orsellinic acid (9). 
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Protocatechuic acid (3,4-dihydroxybenzoic acid, 10, Figure 5) found in Spanish heath (Erica 

australis), dog rose (Rosa canina), Korean spruce (Picea koraiensis), gum-tree (Eucalyptus grandis), 

the Traditional Chinese Medicine (TCM) herb shensi (Picrorhiza kurrooa), ferns, buckwheat 

(Fagopyrum spp.), alder (Alnus spp.), onion and garlic and relatives (Allium spp.), Japanese pepper 

(Zanthoxylum piperitum) [38], another TCM herb danshen (Salvia miltiorrhiza) [39], sharp-leaf 

galangal (Alpinia oxyphylla) [40], sea buckthorn (Hippophae rhamnoides) [41], Japanese honeysuckle 

(Lonicera japonica) [42], mulberry (Morus alba) [43], and medlar (Mespilus germanica) [14]. It has 

been found to have several bioactivities such as antifungal, antihepatotoxic, anti-inflammatory, 

antioxidant [25,44], free radical scavenger, cytotoxic [42], chemopreventive, apoptotic [45-47], 

platelet aggregation inhibitor, neuroprotective [40], and LDL oxidation inhibitor [38]. Protocatechuic 

acid is the major metabolite of anthocyanins [48,49]. Many protocatechuic acid glucosides are also 

found naturally. For example the 3-O-β-glucopyranoside is reported in lobelia (Lobelia sessilifolia), 

the 4-O-β-glucopyranoside in turnip fern (Angiopteris lygodiifolia) and in the oriental and American 

cockroaches (Blatta orientalis and Periplaneta americana) perhaps coming from their diet rather than 

endogenously produced, dracunculifoside B in the groundsel relative Baccharis dracunculifolia, and 

the 4-O-(4-O-methyl-β-D-glucopyranoside) in Japanese climbing fern (Lygodium japonicum). 

Vanillic acid (4-hydroxy-3-methoxybenzoic acid, 11, Figure 5) occurs in many plants such as 

prickly ash (Fagara spp.), Japanese alder (Alnus japonica), spiny oleaster (Elaeagnus pungens), 

Spanish heath (Erica australis), upland cotton (Gossypium mexicanum), Chinaberry (Melia 

azedarach), oriental ginseng (Panax ginseng), Korean peroba (Paratecoma koraiensis), red 

sandalwood (Pterocarpus santalinus), dog rose (Rosa canina), shensi (Picrorhiza kurrooa), luo shi 

(Trachelospermum asiaticum), ishpingo (Amburana cearensis), and Shiitake mushroom (Lentinula 

edodes). Besides antisickling and anthelmintic activities, vanillic acid could suppress hepatic fibrosis 

in chronic liver injury [50,51]. It is also found to be an inhibitor of snake venom 5'-nucleotidase [52]. 

 

Figure 5. Protocatechuic acid (10), Vanillic acid (11), and Isovanillic acid (12). 
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10. Protocatechuic acid (R1=R2=H)
11. Vanillic acid (R1=CH3, R2=H)
12. Isovanillic acid (R1=H, R2=CH3)

 
 

Isovanillic acid (3-hydroxy-4-methoxybenzoic acid, 12, Figure 5) is a methyl ether derivative of 

protocatechuic acid. It is found in hortensia (Hydrangea macrophylla), Chinese endospermum tree 

(Endospermum chinense) [53], the orange relative Citrus changshan-huyou [54], Chinese banyan 
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(Ficus microcarpa) [55], the chamomile relative Anthemis melanolepis [56], poonspar (Calophyllum 

polyanthum) [57], sanchi ginseng (Panax notoginseng) [58], Formosa koa (Acacia confusa) [59,60], 

the breadfruit relative Treculia obovoidea [61], and saffron (Crocus sativus) [62]. Isovanillic acid has 

antibacterial [56,61] and antioxidant [59,60] activities. 

Gallic acid (3,4,5-trihydroxybenzoic acid, 13, Figure 6) is a widespread phytochemical that occurrs 

in tallow-tree (Allanblackia floribunda), the mangosteen relative Garcinia densivenia, bridelia 

(Bridelia micrantha), sappanwood (Caesalpinia sappan), elephant-apple (Dillenia indica), cinnabar 

ebony (Diospyros cinnabarina), peroba (Paratecoma peroba), guava (Psidium guajava), water-berry 

(Syzygium cordatum), staghorn sumac (Rhus typhina), tamarisk (Tamarix nilotica), grape (Vitis 

vinifera), witch-hazel (Hamamelis virginiana) [63], and red toon (Toona sinensis) [64]. It has uses as a 

astringent and styptic. Besides having antineoplastic and bacteriostatic activities, gallic acid possesses 

antimelanogenic and antioxidant properties [65]. A phenolic fraction from evening primrose 

(Oenothera biennis) containing gallic acid showed anti-tumour activity [66]. Gallic acid has shown 

anticancer properties in prostate carcinoma cells [64,67,68]. It is believed that gallic acid is partially 

responsible for the antiangiogenic activities of sweet leaf tea (Rubus suavissimus) extract [69]. Gallic 

acid is a potent inhibitor of brush border sucrase and other disaccharidases in the mammalian intestine 

[70]. It showed promising results as an anti-HSV-2 (Herpes simplex virus) agent [71]. Gallic acid has 

been proposed to be a candidate for treatment of brain tumours as it suppresses cell viability, 

proliferation, invasion, and angiogenesis in human glioma cells [72], although the cytotoxic effects of 

tannins are generally not specific to tumour cells. Gallic acid induced HeLa cervical cancer cells death 

via apoptosis and/or necrosis [73]. Many gallic acid derivatives (as phenolic acids) are naturally 

occurring. This includes 3-O-β-D-glucopyranoside (3-glucogallic acid) from rhubarb (Rheum spp.), 3-

O-(6-galloylglucoside) from rhubarb and great burnet (Sanguisorba officinalis), 3-O-[β-D-

apiofuranosyl-(1→6)-β-D-glucopyranoside] (or mudanoside B) from tree peony (Paeonia 

suffruticosa), 4-O-(6-galloylglucoside) from rhubarb, 3-O-dodecanoyl (3-lauroylgallic acid) with 

antioxidant and antimicrobial activities from the palm tree Satakentia liukiuensis, 3-methyl ether from 

the geranium Geranium collinum and the knotweed relative mu liao (Atraphaxis frutescens), 3-methyl-

5-O-sulfate (as salts) from sea-heath (Frankenia laevis) and tamarisk (Tamarix amplexicaulis), 3-

methyl-4-O-[3,4-dihydroxy-5-methoxybenzoyl-(→6)-β-D-glucopyranoside] (or bistortaside A) from 

bistort (Polygonum bistorta), 3-methyl-5-O-β-D-glucopyranoside from the dogbane relative 

Tabernaemontana cymosa, 3-methyl ether from the cashew relative Poupartia axillaris and the related 

smooth sumac (Rhus glabra), 3-ethyl ether from emblic (Phyllanthus emblica), and 4-ethyl ether from 

mimosas (Mimosa hamata, Mimosa rubicaulis), logwood (Haematoxylum campechianum), strawberry-

tree (Arbutus unedo), cider tree (Eucalyptus gunnii), black myrobalan (Terminalia chebula) and the 

toxic legume Elephantorrhiza elephantina. 

Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid, 14, Figure 6) occurs in many natural sources 

including Chinese catalpa (Catalpa ovata), garden balsam (Impatiens balsamina), New Jersey tea 

(Ceanothus americanus), Citrus spp., soybean (Glycine max), saxifrages (Saxifragaceae), thyme 

(Thymus vulgaris), summer savory (Satureja hortensis), hyssop (Hyssopus officinalis), rosemary 

(Rosmarinus officinalis) [74], pot marigold (Calendula officinalis) [75], tinder fungus (Phellinus 

igniarius) [76], golden eye grass (Curculigo orchioides) [77], date (Phoenix dactylifera) [78], sea 

hibiscus (Hibiscus tiliaceus) [79], Natal mahogany (Trichilia emetica) [80], birch conk (Inonotus 
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obliquus) [81], chickory (Cichorium intybus) [82], finger millet (Eleusine coracana) [83], woad (Isatis 

tinctoria) [84], clove (Syzygium aromaticum) [85], shiitake (Lentinula edodes) [50], the African 

medicinal shrub Anisophyllea dichostyla [86], French tamarisk (Tamarix gallica) [87], the Brazilian 

medicinal tree Caraipa densifolia [88], propolis (resinous materials gathered by bees from tree buds, 

sap flows and various other botanical sources, obtained in this case from Turkey) [89], rhododendrons 

(Rhododendron spp.) [90], medlar (Mespilus germanica) [14], and several other cereal grains such as 

barley, maize, millet, oat, rice, rye, sorghum, and wheat [91]. Besides being an antioxidant, syringic 

acid has antibacterial [84] and hepatoprotective [50,51] activities. 

Digallic acid ([3,4-dihydroxy-5-[(3,4,5-trihydroxybenzoyl)oxy]benzoic acid], 15, Figure 6) is 

isolated from sweet acacia (Acacia farnesiana), gum arabic (Acacia arabica), dawn redwood 

(Metasequoia glyptostroboides), chinkapin (Castanopsis spp.), oriental white oak (Quercus aliena) 

[92], mango (Mangifera indica) [93], Chinese sumac (Rhus chinensis) [94], wild granadilla (Adenia 

cissampeloides) [95], black myrobalan (Terminalia chebula) [96], and mastic (Pistacia lentiscus) [97]. 

It is an HIV reverse transcriptase inhibitor. Digallic acid has cytotoxic/antiapoptotic activity [3]. It also 

shows antigenotoxic and antioxidant activities [97]. 

 

Figure 6. Gallic acid (13), Syringic acid (14), and Digallic acid (15). 

COOH

OR1R2O

OH

13. Gallic acid (R1=R2=H)
14. Syringic acid (R1=R2=CH3)
15. Digallic acid (R1=H, R2=gallate)

 
 

Lunularic acid ([2-hydroxy-6-[2-(4-hydroxyphenyl)ethyl]benzoic acid], 16, Figure 7) has been 

isolated from hortensia (Hydrangea macrophylla), the liverworts Lunularia cruciata [98], Riella spp., 

Marchantia polymorpha, Blasia pusilla, and Riccia spp. [99], and celery (Apium graveolens) [100]. It 

has growth inhibitory and dormancy-inducing effects for lower plants [101]. It has also shown 

fungicidal, algicidal and antihyaluronidase activities [102]. 

Hydrangeic acid ([2-hydroxy-6-[2-(4-hydroxyphenyl)ethenyl]benzoic acid], 17, Figure 7) is a 

stilbenecarboxylic acid constituent of hortensia (Hydrangea macrophylla) [98]. Hydrangeic acid 

possesses anti-diabetic activity and lowers blood glucose, triglyceride and free fatty acid levels [103]. 

Figure 7. Lunularic acid (16) and Hydrangeic acid (17). 

COOH

OH

HO

16. Lunularic acid
17. Hydrangeic acid (1',2'-E-didehydro)

1'

2'

 

Pinosylvic acid ([2,4-dihydroxy-6-styrylbenzoic acid], 18, Figure 8) is another stilbenecarboxylic 

acid found in climbing skullcap (Scutellaria scandens). The leaves of this plant are traditionally used 

to treat wounds and swelling by insects [104].  
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4-O-Methylpinosylvic acid (2-hydroxy-4-methoxy-6-styrylbenzoic acid, 19, Figure 8) is the methyl 

ether derivative of pinosylvic acid found in leaves of pigeon pea (Cajanus cajan) [105]. The 4-O-β-D-

glucopyranoside derivative of pinosylvic acid, called gaylussacin (20, Figure 8), is found in black 

huckleberry (Gaylussacia baccata), dangleberry (Gaylussacia frondosa) and climbing skullcap 

(Scutellaria scandens) [106].  

 

Figure 8. Pinosylvic acid (18), 4-O-Methylpinosylvic acid (19), and Gaylussacin (20). 

COOH

OH

OR

18. Pinosylvic acid (R=H)
19. 4-O-Methylpinosylvic acid (R=CH3)
20. Gaylussacin (R=-D-glucopyranoside)

 
 

Anacardic acid (6-pentadecyl-2-hydroxybenzoic acid, 21, Figure 9) is a phenolic lipid; one of the 6-

alkylated-2-hydroxybenzoic acids. The name “anacardic acid” is also used for a mixture of different 6-

alkylated-2-hydroxybenzoic acids in which the alkyl chain is either saturated or unsaturated. Anacardic 

acid is found in cashew (Anacardium occidentale) [107], ginkgo (Ginkgo biloba), sumac (Rhus 

javanica), zonal geranium (Ozoroa mucronata), pistachio (Pistacia vera), the Thai medicinal tree 

Knema elegans, heart-leaf philodendron (Philodendron scandens), California figwort (Scrophularia 

californica), and cuachalalate (Amphipterygium adstringens). A mixture of anacardic acids showed 

antibacterial action against methicillin-resistant Staphylococcus aureus (MRSA) [108]. Some 

anacardic acids have also been found to be lipoxygenase inhibitors [109]. Anacardic acids prevent 

generation of superoxide radicals by inhibiting xanthine oxidase [110]. Anacardic acid has bioactivity 

against Colorado potato beetle (Leptinotarsa decemlineata) larvae [111]. An anacardic acid mixture 

has shown anti-Helicobacter pylori activity [112]. 

Ginkgolic or ginkgoic acid ([2-hydroxy-6-(8-pentadecenyl)benzoic acid], 22, Figure 9) is a 

derivative of anacardic acid isolated from ginkgo [113,114] and cashew [115]. Besides antitumor and 

antitubercular activities, ginkgolic acid inhibits protein SUMOylation. Small ubiquitin-related modifier 

proteins (SUMO) control several cellular functions, which can be related to cancer and 

neurodegenerative diseases [116]. 

 

Figure 9. Anacardic acid (21) and Ginkgolic acid (22). 

 

21. Anacardic acid
22. Ginkgolic acid (8',9'-Z-didehydro)

COOH

HO

8'
9'

 

Turgorins such as turgorin A (23, Figure 10) are Periodic Leaf Movement Factor (PLMF) 

substances isolated from honey locust (Gleditsia triacanthos) (PLMF1, PLMF3-6), karoo-thorn 

(Acacia karroo) (PLMF1-2), sensitive-plant (Mimosa pudica) (PLMF1), yellow wood-sorrel (Oxalis 
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stricta) (PLMF3), silk tree (Albizia julibrissin) (K-PLMF1), black locust (Robinia pseudoacacia), and 

hairy Indian mallow (Abutilon grandifolium). They are believed to be substances that control 

thigmonastic (touch-sensitive) and nyctinastic (diurnal light and temperature-sensitive) leaf 

movements [117]. Recent studies have shown that nyctinastic leaf movement is not regulated by plant 

hormones but rather by chemicals that differ depending on the plant species [118,119]. For example, 

the potassium salt of PLMF1 is the leaf-closing substance for Mimosa pudica [120]. 

 

Figure 10. Turgorin A (23). 
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HO 23. Turgorin A
O

O OH
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Merulinic acid A (24, Figure 11) is a phenolic lipid isolated from basidiomycetes such as 

Hapalopilus mutans [121], Phlebia radiata, and Merulius tremellosus. It has antibacterial activity, for 

example against Arthrobacter citreus, Bacillus subtilis, Corynebacterium insidiosum, Micrococcus 

roseus, and Sarcina lutea [122]. Merulinic acid A has pronounced promotory and/or inhibitory 

activities on biological membranes as an amphiphilic molecule [123]. 

Figure 11. Merulinic acid A (24). 
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Platencin (25, Figure 12) and its analogs (platencin A1-A4) were isolated from the bacterium 

Streptomyces platensis [124-126]. They have been found to be dual FabF and FabH inhibitors of 

bacterial fatty acid biosynthesis enzymes, dubbed ‘Superbug challengers’ [127]. Superbugs are 

bacteria resistant to almost all antibiotics. Platencin shows broad-spectrum antibacterial activity 

against gram-positive pathogens such as S. aureus, MRSA, macrolide- and Linezolid-resistant S. 

aureus, Vancomycin intermediate S. aureus, Vancomycin-resistant enterococci and Streptococcus 

pneumonia [128].  

Platensimycin (26, Figure 12) is another superbug challenger produced by Streptomyces platensis 

isolated from soil [129,130]. Platensimycin is an inhibitor of cellular lipid biosynthesis and active 

against gram-positive bacteria including MRSA [131,132]. 
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Figure 12. Platencin (25) and Platensimycin (26). 
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Lasalocid (Lasalocid A, 27, Figure 13) is an ionophorous (transport-inducing) [133] antibiotic 

produced by Streptomyces lasaliensis. Its sodium salt is used as an antiprotozoal in veterinary practice 

for the prevention of coccidiosis [134]. 

 

Figure 13. Lasalocid (27). 
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Cannabidiolic acid (28, Figure 14) is a cannabinoid from marijuana (Cannabis sativa) [135-136]. It 

is a selective cyclooxygenase-2 inhibitor [137], TRPA1 (a member of the transient receptor potential 

channel family) and TRPV1 (a member of the transient receptor potential vanilloid family) agonist and 

TRPM8 (a member of the transient receptor potential cation channel family) antagonist [138]. 

Cannabidiolic acid exerts anti-proliferative actions [139]. 

Figure 14. Canabidiolic acid (28). 
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Cajaninstilbene acid (3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid, 29, Figure 15) is a 

stilbenecarboxylic acid found in pigeon pea (Cajanus cajan) [140]. It has hypotriglyceridic and 

hypoglycaemic activities [141,142]. Besides being a good antioxidant [143,144], cajaninstilbene acid 

has potential use in the treatment of postmenopausal osteoporosis [145]. It also showed anti-

inflammatory, impermeability (not permitting fluids to pass through) and analgesic effects [146]. 
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Isocajaninstilbene acid (6-hydroxy-4-methoxy-3-prenyl-2-styrylbenzoic acid, 30, Figure 15) is an 

isoprenylated stilbene-2-carboxylic acid also found in the leaves of pigeon pea [105,147]. 

 

Figure 15. Cajaninstilbene acid (29) and Isocajaninstilbene acid (30). 
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3. Conclusions  

The structural features common to the 30 compounds described in this review are the presence of 

benzoic and phenolic functional groups on a core monocyclic carbon skeleton. This does not imply a 

common biosynthetic origin. Many of these compounds arise from the shikimic acid pathway that 

starts with the coupling of phosphoenolpyruvate and D-erythrose-4-phosphate to give the core 6-

membered ring with one carboxyl and three hydroxyl substituents. However, other molecules with 

similar functionality, such as the orsellinic acids, cannabidiolic acid and 6-methylsalicylic acid, are 

biosynthesized through the acetate pathway via polyketide intermediates. This indicates that the source 

organisms have a variety of routes by which these monocyclic phenolic acids can be synthesized. 

By providing detailed descriptions of the source organisms for these monocyclic phenolic acids, we 

have endeavored to demonstrate that unlike many secondary metabolites which have a very restricted 

distribution in the bacterial, algal, fungal, and plant (and to a much lesser and generally secondary 

extent, animal) kingdoms, many of the compounds discussed here are found in a wide diversity of 

unrelated plant, algal, fungal, and bacterial species. Since, as secondary metabolites, their biosynthesis 

arises from mutations in the genes coding for enzymes involved in the biosynthesis of primary 

metabolites, a wide distribution in distantly related or unrelated species suggests that the mutations 

occurred early in phylogeny and are highly conserved and/or they occurred more recently and 

frequently across the taxa, and have been conserved. In either case, their frequent occurrence suggests 

that many of these phenolic acids confer advantages to the survival of the source organisms. 

Despite their various biosynthetic origins, many of these molecules have been shown in 

experimental studies to have similar biological functions. For example, they have antioxidant, 

antimutagenic and even leaf movement regulating agents that protect the organism that produces them 

from the oxidative stress created by metabolism and their physical environment. They also have 

antiviral, antibacterial (bactericidal, bacteriostatic), algicidal, plant growth regulating, phytotoxic, 

antifungal, antiprotozoal, nematicidal, insecticidal, antifeedant, and mammalian estrogenic, keratolytic, 

platelet aggregation inhibiting, hypoglycemic, cytotoxic, and neurotoxic activities that may serve to 

protect the organism that biosynthesizes them from competing, pathogenic, and herbivorous organisms 

in their biological environment. 
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The diverse biological functions of these monocyclic phenolic acids suggest potential 

pharmacological activities. Thus, this review of the structures, occurrence and activities of phenolic 

acids can provide not only ecological insights but leads for the development of natural and derivative 

pharmaceutical and agricultural chemicals with implications for significant benefits to human health 

and nutrition. 

The focus of this review on the last 10 years of peer-reviewed publications has shown that the study 

of the chemistry, occurrence, biological and pharmacological functions of the monocyclic phenolic 

acids continues to be a very active and dynamic field of investigation. From this it is reasonable to 

predict that many novel compounds and applications remain to be discovered. 
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