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Abstract: A variety of antioxidant compounds derived from urat products
(nutraceuticals) have demonstrated neuroprote@ot&ity in eitherin vitro or in vivo
models of neuronal cell death or neurodegenerati@spectively. These natural
antioxidants fall into several distinct groups khsen their chemical structures:
(1) flavonoid polyphenols like epigallocatechin 8Hgte (EGCG) from green tea and
quercetin from apples; (2) non-flavonoid polyphenslich as curcumin from tumeric and
resveratrol from grapes; (3) phenolic acids or plierditerpenes such as rosmarinic acid
or carnosic acid, respectively, both from rosemagyg (4) organosulfur compounds
including the isothiocyanate-sulforaphane, from broccoli and the thiosulfonaliein,
from garlic. All of these compounds are generatipsidered to be antioxidants. They may
be classified this way either because they diresithvenge free radicals or they indirectly
increase endogenous cellular antioxidant defenfsesexample, via activation of the
nuclear factor erythroid-derived 2-related factor(Nrf2) transcription factor pathway.
Alternative mechanisms of action have also beegestgd for the neuroprotective effects
of these compounds such as modulation of signalsthaction cascades or effects on
gene expression. Here, we review the literaturgapeng to these various classes
of nutraceutical antioxidants and discuss their eptal therapeutic value in
neurodegenerative diseases.
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1. Introduction

There are a wide variety of neurodegenerative desewith distinct symptoms and pathologies. For
many of these diseases, the vast majority of casessporadic and therefore, the challenge is to
discover the underlying causes of neurodegeneratioorder to prevent or slow these disorders.
Oxidative stress is recognized as a common factomany neurodegenerative diseases and is a
proposed mechanism for age-related degenerativeegges as a whole [1,2]. Numerous studies have
provided compelling evidence linking neuronal oxida stress to Parkinson’s disease (PD) [3-7],
Alzheimer’s disease (AD) [8-10], amyotrophic latesaelerosis (ALS) [11,12], and multiple sclerosis
(MS) [13,14], to highlight but a few.

Oxidative stress occurs when reactive oxygen spg@®S) accumulate in the cell, either from
excessive production or insufficient neutralizati@ausing damage to DNA, lipids, and proteins.
Mitochondria are both a major source and targetRi®S. Mitochondria are the powerhouses of the
cell; they have the essential function of genegatiallular energy in the form of ATP. Without ATP
the cell will become energy deprived and eventudiéy The most effective way for a cell to produce
ATP is through oxidative phosphorylation within th@tochondria via the electron transport chain
(ETC). The ETC is not entirely efficient so theseai basal level of electron leak under even thet mos
optimum of conditions. The inadvertent leakagelet®ons and their reaction with molecular oxygen
are major contributors to the production of celulROS. Moreover, ROS produced within
mitochondria subsequently target the various coraptnof the ETC (in particular, complexes | and
), resulting in a vicious feed forward cycle ehhanced generation of ROS, more severe ATP
depletion, and ultimately cell death [15,16]. Vaisogenetic mutations and environmental exposures
can undoubtedly sensitize neurons to mitochondR&S production either by increasing the
exogenous production of free radicals or decreasmupgenous antioxidant defense systems.

Based on the premise that oxidative stress undealiaumber of neurodegenerative diseases, the
identification of novel antioxidants as potentiddetapeutics is a prolific area of neuroscience
research [17]. Amongst the most studied categafeantioxidants, dietary polyphenols and other
natural antioxidants have rapidly gained attent@s viable candidates for clinical testing in
neurodegeneration and acute neuronal injury sucstrake [18-21]. In this review, we focus on a
variety of natural compounds (nutraceuticals) ahdirt abilities to act as antioxidants and cell
protectants in neuronal systems. Given that oxidagiress is a principal cause of neurodegenerative
disease, effective natural antioxidants could mevhovel and safe therapeutic options for these
devastating disorders.

2. Intrinsic Antioxidant Properties of Nutraceuticals

There are many chemical classes of nutraceuticatsdf in all sorts of foods. Some nutraceuticals
are well known, like epigallocatechin 3-gallate (EG) from green tea and resveratrol from grapes,
while others are largely foreign to the lay consurii@e chemical structures of the natural compounds
reviewed here are shown in Figure 1. Although tlesapounds differ structurally, each of them has
been shown to have neuroprotective and antioxigiaerties.
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A common method of determining intrinsic free radliscavenging activity is to use a cell free
assay system with the radical 2,2-diphenyl-1-pigdyhzyl (DPPH). Resveratrol [22], carnosic
acid [23], and rosmarinic acid [24] have each b&®ywn to be effective scavengers of DPPH radicals.
In contrast, allicin has been found to be a poa@venger of peroxyl radicals while another garlic
compound, 2-propenesulphenic acid, is a good sgavent these radicals [25]. Additionally, EGCG
has been shown to scavenge a wide variety of fideals including superoxide, hydroxyl radical,
hydrogen peroxide, and nitric oxide [26,27]. Théimsic free radical scavenging activities of these
nutraceutical antioxidants suggest that they mase lptential utility in mitigating neuronal oxide#
stress and neurodegeneration.

Figure 1. Chemical structures of various nutraceutical amdiants.
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3. Neuroprotective Properties of Flavonoid Polypheals

3.1. Epigallocatechin 3-Gallate (EGCG)

EGCG (Figure 1A) is a flavonoid polyphenol and thain antioxidant compound found in green
tea. EGCG displays neuroprotective effects in aetsarof in vitro paradigms. Our own work has
shown that EGCG selectively protects cultured ealoellar granule neurons (CGNs) from oxidative
stress [28]. Figure 2 shows the dramatic effect€E®as against oxidative stress in the CGN model.
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CGNs incubated with the Bcl-2 inhibitor, HA14-1 t{gk 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-
oxoethyl)-4H-chromene-3-carboxylate), undergo mitochondrial daktve stress and intrinsic
apoptosis [29,30]. Co-treatment with EGCG signfiittya preserves the microtubule network and
prevents the apoptotic nuclear morphology of CGmeed to HA14-1 (Figure 2).

Figure 2. EGCG protects neurons from oxidative stress. Regmtative images of CGNs
incubated for 24 hrs with the Bcl-2 inhibitor HA14-(15 M), HA14-1 + EGCG
(25 M), or no treatment (Control). Immunocytochemyiswas performed fob-tubulin
(green) and active caspase-3 (red). Nuclei arenesfawith DAPI, blue. Scale bar;
10 microns.

Other studies have demonstrated similar resultsrevis§5CG significantly mitigates oxidative
stress and neuronal death induced by hydrogen jerar motor neurons [31], N18D3 mouse
neuroblastoma x dorsal root ganglion hybrid ce38]] spiral ganglion cells [33], and RGC-5 retinal
ganglion cells [34]. EGCG similarly protects SH-S¥¥Hhuman neuroblastoma cells from amyloid
precursor protein (APP), 3-hydroxykynurenine, onyghoxydopamine (6-OHDA) toxicity [35—-37],
and rescues rat PC12 cells from serum withdrawalkoaquat-induced apoptosis [38,39]. In addition,
EGCG reduces apoptosis caused by exposure of fletmhbencephalic neurons to ethanol [40].
Furthermore, EGCG significantly reducbsamyloid-induced toxicity in hippocampal neurons by
inhibiting Ab fibril formation and oligomerization [41,42]. Fil\g EGCG rescues primary dopamine
neurons from 1-methyl-4-phenylpyridinium (MPP+) imty [43]. Thus, EGCG exerts significant
neuroprotective effects against a wide range ofdatwe insults in a multitude of neuronal
cell systems.

In addition to the neuroprotective effects of EGGl&servedn vitro, this nutraceutical antioxidant
also preserves neuronal survival and function wes# in vivo models of neurodegeneration. For
example, oral administration of EGCG protects nfioen the dopaminergic toxicity caused by the
Parkinson’s neurotoxin, 1-methyl-4-phenyl-1,2,36&dhydropyridine (MPTP). EGCG treatment
prevents the MPTP-induced loss of dopamine neufi@mms the substantia nigra pars compacta and
preserves striatal dopamine levels in mice [44]alsimilar manner, EGCG is protective in a mouse
model of familial ALS. Oral dosing of EGCG to trgesic mice expressing a human G93A mutant
SOD1 (Cu, Zn-superoxide dismutase) gene signifigadelays symptom onset and moderately
extends life span when compared to vehicle treate@ [45,46]. EGCG also reduces photoreceptor
degeneration and improves motor function irDesophila model of Huntington’s disease [47].
Finally, oral administration of EGCG to Swedish antt APP (APPsw) overexpressing transgenic
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mice substantially decreases amyloid plaque burded reduces cognitive impairment [48].
Collectively, these findings indicate that EGCG niay a viable therapeutic candidate for chronic
neurodegenerative diseases such as AD, PD, ALSuwotington’s [49,50]. Additionally, EGCG given

by intraperitoneal injection to rats with inducqanal cord injury, reduces malondialdehyde (MDA)
levels, TUNEL-positive staining, and lesion aressulting in increased motor function [51]. Thiddat
study suggests that EGCG may also be beneficigpisodes of acute neuronal damage such as spinal
cord trauma. The principal mechanism of action GfC& is probably antioxidant activity; however,
the activation of specific protein kinase pathwdgisscussed below in sections 7.2 and 7.3) also
appears to play a significant role in the neurggotive action of this polyphenol.

3.2. Quercetin

Quercetin (Figure 1A) is a flavonoid polyphenol mouin many common foods such as apples and
capers. Like EGCG, quercetin has also been extggsstudied inin vitro andin vivo neuronal
models.In vitro studies in PC12 cells show that quercetin incieasd survival in the presence of
hydrogen peroxide [52,53], linoleic acid hydropedex [54], and tert-butyl hydroperoxide [55].
Also, in C6 glioma cells quercetin alleviates oxida stress induced by hydrogen peroxide or
interleukin-b [56,57]. In addition, in human SH-SY5Y neuroblastocells, quercetin protects against
the PD toxin 6-OHDA. In another PD toxin model, MPRinduced toxicity in mixed ventral
mesencephalic cultures was significantly attenubtedquercetin treatment [58].

In vivo studies of quercetin effects on neurodegeneratiame mostly focused on cognitive
impairments, ischemia, and traumatic injury. Quencenproves memory and hippocampal synaptic
plasticity in models of impairment induced by chootead exposure [59]. In addition, quercetin is
neuroprotective against colchicine administratihich similarly causes cognitive impairments [60].
In a rat ischemia model using middle cerebral grtaclusion, quercetin decreases the size of the
ischemic lesion [61] and suppresses hippocampaionalideath [62]. Finally, in a model of acute
spinal cord injury, motor function was improved bgministration of quercetin post-injury [63].
Cumulatively, these studies indicate that querdedis: the potential, like EGCG, to be developed anto
novel therapy for neurodegeneration.

4. Non-Flavonoid Polyphenols as Neuroprotective Agés
4.1. Resveratrol

Resveratrol (Figure 1B) is a polyphenolic antioxitBound in many kinds of grapes and is known
mostly for its cardiovascular benefits [64,65]. Hawgr, resveratrol also demonstrates significant
neuroprotective activitin vitro andin vivo. In various culture models, resveratrol protectmootypic
hippocampal slices from oxygen-glucose deprivaf8], embryonic rat mesencephalic cultures from
tert-butyl hydroperoxide [67], and CGNs from MPR{r9luced toxicity [68].In vivo, resveratrol
significantly attenuates hippocampal neurodegeimgraind learning impairment in the inducible p25
transgenic mouse model of AD and tauopathy [69].rédwer, resveratrol also reduces oxidative
damage and preserves striatal dopamine in the 6Z0tdDmodel of PD [70]. The antioxidant activity



Molecules201Q 15 7797

of resveratrol plays a significant role in its ngpnotective mechanism of action as does its modylat
effects on sirtuins and protein kinases (discusstol in Sections 7.1 and 7.3).

4.2. Curcumin

Research into the neuroprotective effects of theftavonoid polyphenol curcumin (Figure 1B), is
less extensive than that for resveratrol. HoweweNeuro2a mouse neuroblastoma cells infected with
Japanese encephalitis virus, curcumin enhancesvi@dility by decreasing ROS and inhibiting
pro-apoptotic signals [71]n vivo, curcumin protects rats from focal cerebral iscikemduced by
middle cerebral artery occlusion [72]. In additionurcumin is neuroprotective against the
MPTP-induced neurodegeneration of the nigrostriétatt in mice and was shown to prevent
glutathione depletion and lipid peroxidation inddidey this toxin. Furthermore, curcumin displays an
additive protective effect to that of catalase &@M@D activities in the striatum and midbrain of
MPTP-treated mice [73].

The studies noted above indicate that the non-flaib polyphenols, resveratrol and curcumin,
each show beneficial effects in cell culture am&livo models of neurotoxicity and neurodegeneration,
respectively. Thus, these compounds may have peoras novel neuroprotective agents for
clinical use.

5. Phenolic Acids and Diterpenes from Rosemary Demstrate Significant Neuroprotective
Properties

Rosmarinic and Carnosic Acids

Phenolic acids and diterpenes constitute anothmeiyfaof nutraceutical antioxidants (Figure 1C).
Several of these compounds are found in rosematly, rasmarinic acid and carnosic acid being two
of the most prominent antioxidants concentratedhia herb. Rosmarinic acid has been shown to
scavenge the reactive nitrogen species, peroximitand various ROS [74,75]. As a free radical
scavenger, rosmarinic acid is effective at protgctSH-SY5Y human neuroblastoma cells from
hydrogen peroxide-induced oxidative stress and aedith [76]. In a similar experiment to the one
shown above for EGCG (see Figure 2), we have defmated that rosmarinic acid provides dramatic
neuroprotection in the CGN model against oxidasitress and mitochondrial apoptosis induced by the
Bcl-2 inhibitor, HA14-1 (Figure 3)In vivo studies using mouse models of AD and ALS have shown
that rosmarinic acid significantly alleviates megnonpairment associated withbAneurotoxicity and
significantly delays disease onset and prolongsspidn in the G93A mutant SOD1 mouse model,
respectively [77,78].

Carnosic acid, like rosmarinic acid, has been shimare neuroprotective in boih vitro models of
neuronal death anith vivo models of neurodegenerative disedsevitro, carnosic acid activates the
nuclear factor-erythroid 2-related factor 2 (NrtEanscription factor pathway (discussed in detail i
the next section), and in this manner, protectsareufrom oxidative stress [79h vivo, carnosic acid
crosses the blood brain barrier and preserves eedgtutathione levels in the brain protecting it
against injury induced by middle cerebral artechemia/reperfusion [79]. Collectively, these fingkn
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suggest that the phenolic acids and diterpeneseotrated in rosemary may provide a novel class of
neuroprotective agents for future theraputic dgwelent.

Figure 3. Rosmarinic acid protects neurons from oxidativesst. Representative images of
CGNs incubated for 24 hrs with the Bcl-2 inhibitdA14-1 (15 M), HA14-1 + rosmarinic
acid (Ros Acid; 50 M), or no treatment (Contronhunocytochemistry was performed
for b-tubulin (green) and active caspase-3 (red). Nwieistained with DAPI, blue. Scale
bar; 10 microns.

6. Organosulfur Compounds as Inducers of Endogenousntioxidant Defenses
6.1. Allicin andL-Sulforaphane

The last class of nutraceutical antioxidants taliseussed in this review includes the organosulfur
compounds, allicin and-sulforaphane (Figure 1D). Allicin is highly enrth in garlic, and garlic
extract is used more often than pure allicin in ynatudies. One such study examined the effects of
garlic extract on brain synaptosomes isolated fg@mungversusold rats. In synaptosomes isolated
from young rats, under both control and hydrogemxyide-induced oxidative stress conditions garlic
extract significantly decreased the production @$@prostaglandin & (8-iso-PGF). 8-iso-PGF is a
modified, unsaturated fatty acid released from pesma membrane under oxidative stress. In
contrast, aged rat brain synaptosomes only shomrgdiiion of 8-iso-PGF release at the highest dose
of garlic extract studied and specifically undenditions of oxidative stress [80]. In a cell fri@evitro
study, garlic extract directly inhibited caspasetBe executioner protease of the apoptotic
cascade [81]. Thus, the neuroprotective mechanfsgartic appears to be two-fold; it depends on its
capacity to suppress oxidative stress and its piateo inhibit caspase-3 and prevent apoptosi® Th
potential neuroprotective effects of garlic in twtext of AD are reviewed elsewhere [82].

L-Sulforaphane is an isothiocyanate compound foandroccoli and other cruciferous vegetables
which has also been used as a neuroprotectant. ndogagic neurons, which are affected
in PD, produce toxic dopamine quinone and ROS wheposed to 6-OHDA [83]. Dopamine
quinone-induced neuronal death is markedly inhibiby pretreatment with.-sulforaphane [84].
Additionally, neurons undergoing hydrogen peroxiggdced oxidative stress in a mixed
neuron-astrocyte culture system are protected giratimulation of the Nrf2-antioxidant response
element (ARE) transcriptional pathway, whichsulforaphane has been shown to activate [85].
L-Sulforaphane activates this pathway by causinglibgociation of the negative regulator, kelch-like
ECH associating protein 1 (Keapl), from Nrf2, asvah in Figure 4 (discussed in detail below).
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Finally, in a rat organotypic nigrostriatal tisssiice model,L-sulforaphane mitigated dopaminergic
neuronal loss induced by 6-OHDA [86].

Figure 4. Activation of the Nrf2 transcription factor pathydy L-sulforaphane. The
schematic shows a general mechanism by which AR#@atesl gene transcription
Is induced.

6.2. The Nrf2/ARE Antioxidant Pathway as a Tarddlutraceuticals

The above studies indicate that the sulfur-comtg@imutraceuticals, allicin and-sulforaphane,
demonstrate neuroprotective effects in a numben @ftro systems. Although these compounds may
have some direct antioxidant effects that have tgetbe elucidated, their principal mode of
neuroprotection is indirect via activation of endogus antioxidant systems, including gene targets o
the Nrf2/ARE transcription factor pathway.

ROS created during normal cellular respiration nlagsheutralized by cellular antioxidant defenses
before these free radicals have the opportunitgdamage the cell. As previously discussed, ROS
become a major problem for the cell when therenisnabalance between ROS created and ROS
neutralized. As the cell’'s balance of ROS and ardents becomes disparate, oxidative stress occurs
which can act as a trigger for apoptosis and othedes of cell death. The ETC within the
mitochondria is a major source of ROS productiothiwia cell. For this reason, it is important tvéa
antioxidants like glutathione peroxidase and SO&ated within the mitochondria.

Glutathione peroxidase, SOD, and other endogenotigxadants are critical for cell survival. In
addition, transcription factors for these antioxitigenes, like Nrf2, are equally essential becusg
regulate the expression of these key antioxiddntgesponse to oxidative stress, Nrf2 induces a
variety of antioxidant genes by recognizing an ABREding site within their promoter regions [87].
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Some key antioxidant genes induced by Nrf2 inclggggutamylcysteine ligase (GCL), the rate
limiting enzyme in the synthesis of glutathione SMnSOD (SOD2), and heme oxygenase, to
name a few [88]. As a result, this pathway has hdentified as a promising therapeutic target for
neurodegenerative diseases [89]. Nrf2 is norma&tusstered in the cytoplasm by Keapl, which must
be dissociated in order for Nrf2 to translocate itiie nucleus and promote gene transcription. The
general mechanism of activating Nrf2 is demonstrateFigure 4 and reviewed by Kobayashi and
Yamamoto [90].

The organosulfur compounds, allicin amesulforaphane, share the unique ability to activate
Nrf2 [91-93]. This common attribute is derived frahe fact that each of these compounds has an
electrophilic center which can serve as an attatk f®r nucleophiles, such as specific protein
sulfhydryl groups present on Keapl (Figure 5). édjethe mechanism of Nrf2 activation by
L-sulforaphane has been demonstrated to involvaumtion of the Nrf2-Keapl interaction due to
modification of critical Keapl cysteine residuesl,®,95]. The ability of these organsulfur
compounds to induce Nrf2-ARE-dependent gene trgigmm suggests that this pathway is essential
for their neuroprotective effects.

Nrf2 has been meticulously investigated in ordegltecidate its role in antioxidant gene regulation.
It has been shown to be neuroprotective in manyerdiht paradigms of neuronal injury or
neurodegeneration. For example, an increase in &ttifity protects SH-SY5Y human neuroblastoma
cells from oxidative damage induced by the PD nexin, 6-OHDA [96]. 6-OHDA was again used in
bothin vivoandin vitro models to demonstrate Nrf2 neuroprotection [86,97]

Figure 5. Proposed chemical mechanism by which organosufunpounds dissociate
Keapl from Nrf2. HS-Protein = critical Cys residuas Keapl which are essential for its
ability to suppress Nrf2 activity. Modified from Hget al.[91] and Rabinkowet al.[92].
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Figure 5. Cont

Allicin (garlic)

Mixed neuron/astrocyte cultures from mice are aeothodel in which Nrf2 induction is protective
against oxidative stress [85,98]. Nrf2 activatiottigates dopamine neuron loss and striatal dopamine
depletion in the MPTP mouse model of PD [99]. Idiadn to Nrf2 activation being neuroprotective
in the previously mentioned PD models, a transgalianouse model showed attenuated tAxicity
following either adenoviral Nrf2 expression or imtion of Nrf2 by tert-butylhydroquinone [100]. The
critical importance of Nrf2 in controlling oxidagvstress is further demonstrated by the enhanced
oxidative stress and early embryonic lethality obsé in combination Nrfl/Nrf2 knockout
mice [101]. Nrf2 knockout alone is not embryonithld but does enhance the susceptibility of these
animals to oxidative stress [89]. Finally, Johnsord colleagues have shown that Nrf2 induction
specifically inastrocytess sufficient to rescue neuroirs vivo from death induced by mutant SOD1,
MPTP, or malonate-induced complex Il inhibition P+104]. Given the striking neuroprotective
effects of Nrf2 activation, it is reasonable towmms that nutraceutical Nrf2 inducers, like alli@nd
L-sulforaphane, may provide significant therapebénefit against neurodegeneration.

7. Alternative Mechanisms of Neuroprotection Attributed to Nutraceuticals
7.1. Sirtuins

The sirtuin (SIRT) proteins are a part of the Mmstodeacetylase family and they possess
(NADH)-dependent deacetylase activity. SIRT1 isomblogue of the yeast gene, silent information
regulator two (Sir2), which is linked to longevitn extra copy of the Sir2 gene in yeast can mianic
calorie-restricted diet, extending lifespan [10%). a similar manner, caloric restriction delays
neurodegenerative disease onset. &iral showed that caloric restriction activated SIRTlthe
brains of AD model Tg2576 mice, and reduced amylwadiropathology [106]. Furthermore, they
showed that expression of SIRT1 in either primagg376 neuronal cultures or CHO cells expressing
APPsw significantly attenuated Apeptide formation. SIRT1 has also been linkedlteviating A
toxicity in cortical neuron/glial co-cultures [107here is still much to learn about how nutracsals,
like resveratrol, induce SIRT1. Regardless of whetthe mechanism of SIRT1 activation by
resveratrol is direct [108] or indirect [109,110hduction of SIRT1 appears to be a principal
mechanism underlying the neuroprotective effectstto§ polyphenol [111-113]. The putative
pro-survival effects of SIRT1 activation are mutéted and involve the inhibition of Apeptide
generation, suppression of Bax-dependent apopt@sid, repression of multiple pro-apoptotic
transcription factors (Figure 6) [114-118].
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Figure 6. Pro-survival effects of SIRT1. The schematic desti@tes the downstream
consequences of nutraceutical activation of SIRT1.

7.2. Protein Kinase C (PKC)

PKC is another protein involved in a myriad of siing pathways including cell survival and
programmed cell death [119]. In rat hippocampalroes it was shown that resveratrol activates a
PKC pathway which protects these neurons frdmt@xicity [120]. EGCG is also known to activate a
pro-survival PKC pathway. EGCG activation of PK@a enhanced phosphorylation of this kinase,
underlies its neuroprotective effects in SH-SY5Yd aC12 cells against bAtoxicity [121]. The
beta/gamma secretase-dependent processing of AR tmxic A peptide forms the basis of the
pathophysiology underlying AD. There are howeventogric processing pathways for APP, one of
which is the alpha secretase-dependent producfianreamyloidogenic SAPR EGCG augments this
nontoxic processing pathway through PKC activafii?il]. PKC activation has also been implicated
in EGCG neuroprotection from serum withdrawal in1RCcells [122] and 6-OHDA toxicity in
SH-SY5Y cells [35]. Finally, Kalforet al have connected EGCG to the PKC-mediated degoadetfi
pro-apoptotic Bad in SH-SY5Y neuroblastoma celB®3]1 Thus, the activation of PKC by EGCG may
play as significant a role in its neuroprotectiveamanism of action as its intrinsic antioxidantasaty
(Figure 7). There are many isozymes of PKC thatehbeen investigated individually for their
neuroprotective effects. Specifically, PkGion overexpression has been shown to reduce amyloid
plaqgue burden and Aevels in human APP transgenic mice [124].
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Figure 7. PKC is a key mediator of EGCG neuroprotection. Bbhbematic shows the
effects of PKC activation downstream of EGCG on phecessing of APP being skewed
towards the nonamyloidogenic product, SAPP, andpth@sphorylation and targeting of
pro-apoptotic Bad for degradation.

7.3. Other Protein Kinases

There are a number of additional signaling cascdlas have been shown to be modulated by
nutraceutical antioxidants including the predomtharpro-survival MEK/ERK and PI3K/AKT
pathways, reviewed by Spencer [125]. For instaresjeratrol protects HT22 hippocampal cells from
glutamate-induced oxidative stress via a PI3K/AKependent induction of SOD2 [126]. Similarly,
EGCG rescues retinal ganglion cells from axotonduoed injury through activation of both
PISK/AKT and MEK/ERK pro-survival pathways [127].0lvnstream of each of these pathways lies
the transcription factor, cAMP-response elementdibip protein (CREB), which can induce the
expression of key pro-survival genes like Bcl-2§129]. Consistent with a role for this pathway in
the neuroprotective effects of nutraceuticals, Idagn administration of green tea catechins in
drinking water significantly increased CREB actyviind decreased Aoligomer production in a
mouse model of early onset deficits in learning ameory [130]. The characteristic of nutraceuticals
to modulate key pro-survival kinase pathways likplstys a significant role in their neuroprotective
actions (Figure 8).
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Figure 8. Modulation of pro-survival protein kinase pathwdysnutraceuticals.

8. Conclusions

Nutraceutical antioxidants have strong scientifipmort to be developed as novel therapies for
neurodegenerative diseases. Many of these natntialxidants are not only active scavengers of free
radicals but also act as modulators of pro-survorapro-apoptotic signaling pathways. As a result,
these compounds may have a greater potential Emapleutic success than drugs with only one
mechanism of action. The multiple modes of actibmraceuticals to mitigate oxidative stress and
promote neuronal survival signals likely underleit effectiveness in so mamy vitro andin vivo
models of neuronal injury and neurodegenerativeatis. Although individual neurodegenerative
diseases manifest in distinct neuronal cell typegjative stress and suppression of neuronal sairviv
signals are common to many of these pathologicadlitions and appear to be highly relevant targets
for treatment.

Overall, neurodegenerative diseases lack effedtigatment options for patients. AD and PD
receive the most attention through extensive fumpdind research, yet even these diseases have only
palliative therapies available and none that sigaiftly slow or halt the underlying pathology otth
disease. Others, like ALS, have an even worse igiwith death occurring typically 2-5 years after
diagnosis and only one FDA approved drug, Riluzadeich is minimally effective and only prolongs
life by two-to-three months. Nutraceutical anticxidis may be the best options for these patieritsein
short term since they are subject to fewer reguiatithan traditional pharmaceuticals and therefore,
could be made available to patients much more haghdn new prescription drugs.

Finally, a testament to the tremendous potentialutfaceutical antioxidants as novel therapeutics
for neurodegeneration includes the recent initratdd several clinical trials with these compounds.
EGCG is currently being tested in Phase Il triailsHD (Xuanwu Hospital, Beijing, China) and early
stage AD (Charite University, Berlin, Germany). 8arly, resveratrol is being tested in a Phase Il
trial to improve memory performance in the eldefiMcKnight Brain Institute, University of
Florida) [131]. Lastly, the safety and tolerabildfycurcumin is being investigated in patients wkih
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in a Phase Il study [132]. The future appears td nouch promise for nutraceutical antioxidants to
provide significant therapeutic benefits to patserduffering from neurodegenerative diseases.
Research, medical, and patient communities eageriyt the results of these initial clinical trialgth

this novel class of neuroprotective compounds.
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