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Abstract: Human neurodegenerative diseases arise from a wide array of genetic and 

environmental factors. Despite the diversity in etiology, many of these diseases are 

considered "conformational" in nature, characterized by the accumulation of pathological, 

misfolded proteins. These misfolded proteins can induce cellular stress by overloading the 

proteolytic machinery, ultimately resulting in the accumulation and deposition of 

aggregated protein species that are cytotoxic. Misfolded proteins may also form aberrant, 

non-physiological protein-protein interactions leading to the sequestration of other normal 

proteins essential for cellular functions. The progression of such disease may therefore be 

viewed as a failure of normal protein homeostasis, a process that involves a network of 

molecules regulating the synthesis, folding, translocation and clearance of proteins. 

Molecular chaperones are highly conserved proteins involved in the folding of nascent 

proteins, and the repair of proteins that have lost their typical conformations. These 

functions have therefore made molecular chaperones an active area of investigation within 

the field of conformational diseases. This review will discuss the role of molecular 

chaperones in neurodegenerative diseases, highlighting their functional classification, 

regulation, and therapeutic potential for such diseases. 
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1. Introduction 

A significant percentage of the aging population suffers from neurodegenerative conditions, which 

are among the most intractable of diseases. Decades of both clinical and basic science research have 

discovered and characterized dozens of neurodegenerative disorders, triggered by a variety of genetic 

and environmental factors. Compared to other cell types, neurons are especially susceptible to 

degeneration because of their long lifetime (the entire lifespan of the organism for most neurons), and, 

when damaged or lost, they are not readily replenished through cell division, with the exception of 

neurons in special neurogenic zones in vertebrates [1]. The long life of neurons demands a high level 

of neuronal maintenance and protection. Healthy neurons are able to maintain their integrity 

throughout the lifespan, suggesting the existence of a maintenance mechanism that allows neurons to 

sustain or even repair damage. Chaperones are the main workforce for cellular maintenance and stress 

response.  Research on neurodegenerative diseases in recent years has uncovered the tremendous 

neuroprotective properties of chaperones and has since placed chaperones in the center stage of 

neuroprotection. Hence, stimulating and augmenting the intrinsic chaperone activity in the nervous 

system has become a main focus in the design of many neuroprotective strategies.  

In this review, we first provide an overview of the different types of chaperones in the nervous 

system. Then we highlight the mechanisms of chaperone regulation with the focus on augmenting the 

protective activity of chaperones. Next we review in detail the role of chaperones in several 

neurodegenerative conditions, including Parkinson’s disease (PD), Alzheimer’s disease (AD), 

Polyglutamin diseases (PolyQ disease), as well as ischemia and stroke. We also discuss several known 

diseases that are caused by mutations in chaperones. Finally, we review the pharmacological 

modulators of molecular chaperones that either have been used or have the potential to be used as 

therapeutics for neurodegenerative diseases.  

2. Functional Classification of Chaperones 

Molecular chaperones are a family of proteins that facilitate and regulate proper protein folding. In 

other words, they bind to and stabilize proper conformation of client proteins, and, through cycles of 

regulated binding and release, facilitate their correct fate by preventing inappropriate misfolding [2]. 

Based on their abundance at any one time in a cell, chaperones can be categorized into three groups: 1) 

constitutively expressed; 2) constitutively expressed and induced (upon stress, Hsp90); and 3) only 

inducible (upon stress, Hsp70) [3].   

2.1. Constitutively expressed 

Although the information detailing how a native protein should fold is encoded in a protein’s linear 

sequence of amino acids [4], the crowded microenvironment of the cellular milieu fosters 

intermolecular interactions that promote aggregation of newly synthesized proteins rather than 

productive protein folding (referred to as the excluded volume effect) [5,6]. Constitutively expressed 
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molecular chaperones primarily serve to shield newly synthesized proteins from such interactions, 

generally by interacting with stretches of hydrophobic residues or polypeptide chains lacking 

secondary structure, assisting in the maintenance of protein solubility, and promoting proper 

folding [5]. The subcellular location at which a protein is synthesized is typically dictated by a 

protein’s final destination, and specialized networks of constitutively expressed chaperones exist to aid 

in folding proteins in distinct cellular compartments.  

2.1.1. Constitutively expressed cytosolic chaperones 

A broad range of client proteins in the eukaryotic cytosol are chaperoned co-translationally by the 

70-kDa heat shock protein cognate protein (Hsc70) of the heat shock protein 70 (Hsp70) family of 

proteins [7–9]. Hsc70 is comprised of a ~44-kDa N-terminal ATPase domain and a ~27-kDa C-

terminal peptide binding domain [10]. In conjunction with its J-domain containing co-chaperone HDJ1 

(or HDJ2; also referred to as 40-kDa heat shock protein (Hsp40)), Hsc70 facilitates the folding of large 

[11], often multi-domain proteins greater than 50-kDa [12] in an ATP-dependent manner [5]. Hsc70 

often functions together with the 90-kDa heat shock protein (Hsp90) and may be considered a single, 

multi-chaperone complex mediating the folding of a smaller subset of client proteins that includes 

steroid hormone receptors [13,14], regulatory kinases, and transcription factors [15,16]. It is also 

interesting to note that by complexing with a large host of co-chaperone proteins, Hsc70/Hsp90 are 

capable of additional functions including uncoating of clatherin coated vesicles, protein translocation, 

and cytoskeleton assembly [17]. The 60-kDa heat shock protein (Hsp60) family proteins (also referred 

to as chaperonins) are double-ring shaped heptameric protein complexes forming a large central cavity 

within which protein folding takes place [10]. The TCP-1 ring complex (TRiC, also referred to as CT 

for chaperonin-containing CCT) is a Group II chaperonin that also contributes to the folding of 

proteins in the eukaryotic cytosol [5]. TRiC has been shown to be critical for the folding of the 

cytoskeletal proteins β-actin [18] and tubulin [19] in addition to other specific protein clients including 

Gα-transducin subunit, von Hippel-Lindau (VHL) tumor suppressor, anaphase promoting complex 

(APC), and cyclin E [20–23].  

2.1.2. Constitutively expressed ER chaperones 

Proteins destined for incorporation into membranes or the secretory pathway are synthesized and 

transported co-translationally into the lumen of the endoplasmic reticulum (ER) [24,25]. Studded with 

ribosomes, the ER is a highly active site of protein synthesis through which nearly 1/3 of the 

eukaryotic proteome is synthesized as unfolded polypeptides [26]. A large proportion of the protein 

content of the ER is therefore dedicated to assisting in protein folding, so much so that chaperones far 

outnumber their newly synthesized client proteins in the ER lumen [27]. This extensive network of ER 

chaperones additionally establishes a stringent mechanism of protein quality control (QC) by funneling 

proteins incapable of appropriately folding through a highly regulated ER-associated degradation 

pathway (ERAD) [28,29]; as proteins progressing along the secretory pathway lack access to folding 

support, it is essential that every protein assume its native conformation prior to embarking from the 

ER [24,30]. The most abundant resident ER chaperone in mammals is the Hsp70 family related 

immunoglobulin heavy chain binding protein (BiP, also referred to as 78-kDa glucose regulated 
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protein, Grp78), which can immediately interact and aid with drawing newly synthesized proteins 

through the ER translocation pore, the translocon, as BiP has been demonstrated to form a gating cap 

on the luminal side of the transolocon [27,31,32]. BiP contains an N-terminal ATPase domain which, 

through ATP hydrolysis and ADP exchange, regulates client binding and release at its C-terminal 

protein substrate binding domain [33]. A number of Hsp40 family J-domain containing proteins have 

been found in mammals (ER-localized DnaJ homologues, ERdj1-5) that act as BiP co-chaperones by 

facilitating nucleotide hydrolysis and exchange [10,34,35]. The ER resident Hsp90 family chaperone 

94-kDa glucose regulated protein (Grp94) is also highly expressed in the ER and, similar to that of 

Hsc70 and Hsp90 in the cytosol, facilitates the folding of client proteins that it sequentially receives 

from BiP, such as immunoglobulins [36] and procollagen [37]. Unique to the ER are chaperones that 

interact exclusively with secretory and membrane proteins covalently modified by N-linked 

glycosylation of oligosaccharides (glycoproteins) [38]. The ER transmembrane chaperone calnexin, 

and its soluble homologue calreticulin, are lectin chaperones that recognize proteins retaining one or 

more monoglucosylated N-glycan sidechains [38], promoting folding in an ATP-independent manner 

[39]. The lectin chaperones most readily contribute to protein folding through their complexing with 

ERp57, a protein disulfide isomerase (PDI) family member [40]. Through two thioredoxin motifs, 

ERp57 has thiol-dependent reductase activity that catalyzes the formation of nascent disulphide bonds 

specifically in N-glycoproteins [38]. The complex of calnexin/calreticulin with ERp57 forms a unique 

cage-like structure, similar to that of Hsp60 in the cytosol [24]. The presence of the lectin chaperones 

has also been shown to enhance the disulfide isomerase activity of ERp57 [41]. 

2.1.3. Constitutively expressed “moonlighting” chaperones 

Other constitutive chaperones have been described serving mitochondria-specific protein clients 

[42,43] as well as clients specific to nuclear roles such as histones during DNA replication and repair 

[44]. A new class of “nontraditional” constitutively expressed chaperones is also emerging as a number 

of proteins, often referred to as proteins that “moonlight”, are being discovered to multitask, 

performing multiple unrelated functions [45–47]. For example, peroxiredoxin (Prx) is a thioredoxin-

dependent antioxidant protein that also retains chaperone activity [48]. This constitutively expressed 

protein exists in its low molecular weight form to catabolize reactive oxygen species (ROS) such as 

peroxide, peroxinitrite, and other organic hydryoperoxides, but may oligomerize into high molecular 

weight chaperone complexes upon both oxidative and heat shock stress [48]. This dual peroxidase-

chaperone function has been demonstrated for both yeast [48] and human [49] homologues of the Prx 

protein, and can be differentially regulated by site-specific phosphorylation [50]. Nicotinamide 

mononucleotide adenylyl transferase (NMNAT) is a constitutively expressed protein and key enzyme 

in the reaction that catalyzes the condensation of nicotinamide mononucleotide (NMN) and adenosine 

triphosphate (ATP) to nicotinamide adenine dinucleotide (NAD+), a coenzyme critical to metabolic 

redox reactions of the cell [51,52]. In addition to its NAD+ synthase activity, NMNAT has also been 

demonstrated to have chaperone activity that can afford neuroprotection in response to neuronal 

proteotoxic stress, independent of its enzymatic activity [53,54]. Collectively, this new class of 

constitutively expressed, moonlighting chaperones may serve as an immediate, first responder to 

various forms of stress prior to mounting an induced chaperone response. 
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2.2. Constitutively expressed and induced: Hsp90 

Hsp90 is present in most cellular compartments such as the cytosol, endoplasmic reticulum (ER), 

mitochondria (and chloroplast in plants), and is one of the most abundant proteins in eukaryotic cells, 

comprising 1–2% of total proteins under unstressed conditions [55]. Hsp90 is indispensible for cell 

survival, playing an important role in the folding of at least 200 specific proteins in essential signaling 

pathways, and in the refolding of denatured proteins after stress [56,57]. Hsp90 is an evolutionarily 

conserved ATP-dependent chaperone, with a very unique N-terminal ATP binding site (in addition to 

another C-terminal nucleotide binding site) that has allowed for the development of very specific 

Hsp90 inhibitors such as geldanamycin, a macrocyclic antitumor agent [58].  

Hsp90 is quite unique from other heat shock chaperones: it does not bind to non-native proteins but 

rather to substrates in their native states and targets a specific set of client proteins that are involved in 

signal transduction [59]. Hsp90 has been shown to interact with important kinases that are known to 

function as hubs integrating multiple inputs [60]. These multifunctional client kinases include ErbB2, 

Src, Abl or Met tyrosine kinases, and cyclin-dependent serine kinases [57], which are a part of an 

intricate multidimensional signaling web that integrate information from various levels. The functional 

consequence of Hsp90 interaction with these kinases is possibly to regulate the specificity of activation 

of these signaling pathways by controlling the potential of its clients to interact with each other [61]. In 

fact, many of these client proteins are known to be bound to Hsp90 in an inactive state and are 

activated upon dissociation from Hsp90. For example, the catalytic domain of raf proteins, members of 

MAP kinase kinase kinases (MEKKs), are in a heterocomplex with Hsp90, and are activated upon 

dissociation from Hsp90 such as in stress conditions [62]. Moreover, the abundance of Hsp90 in an 

unstressed cell enables it to bind to and keep stress transcription factors such as Heat Shock Factor-1 

(HSF-1) in a monomeric inert state [56]. Upon heat shock, HSF-1 is relieved from Hsp90 complex due 

to a surge in demand for chaperones to protect from protein misfolding. This is the first step in the 

activation of HSF-1 (discussed later in section 3.1).  

Hsp90 is constitutively expressed, but heat shock also causes induction of Hsp90 [63]. In the 

cytoplasm of Saccharomyces cerevisiae (a yeast), there are two isoforms of Hsp90: the heat shock 

induced Hsp82, and the constitutively expressed Hsc82 [64]. The inducible Hsp90 offers a negative 

feedback loop to control the transcriptional activity of HSF-1 [63]. 

2.3. Inducible: Hsp70 

The Hsp70 family has several members, some of which are stress-inducible (Hsp70, Hsp70i), while 

others are constitutively expressed (Hsc70). The inducible Hsp70 proteins are among the first to be up-

regulated upon heat shock to cope with the immediate protein misfolding stress. Hsp70 chaperones are 

found in most cellular compartments, including the nucleus and cytoplasm (Hsc70), mitochondria 

(mortallin), and ER (Grp78) [65]. Hsp70 proteins have two unique domains critical for their chaperone 

function: an N-terminal ATPase domain and a C-terminal substrate binding domain [65]. ATP 

hydrolysis in the N-terminal domain causes a conformational change in the client binding domain, 

which is composed of a base of beta strands and a lid which closes upon ATP hydrolysis to form a 

clamp [66]. The clamp structure allows the binding to short extended hydrophobic regions of the 
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misfolded client proteins and therefore prevents aggregation of the misfolded clients [66]. By 

associating with a number of co-chaperones such as Hsp40, Hsp70 proteins achieve versatile functions 

in different cellular compartments [67].  

3. Regulation of Chaperones 

3.1. Transcriptional regulation: the heat shock response 

Various stress conditions such as extreme temperature and fluctuation of oxygen supply can cause 

protein misfolding and other cellular damage. Cells respond by transcriptionally activating various 

protective chaperones, collectively known as the heat shock proteins. This heat shock response is 

regulated by a family of heat shock transcription factors (HSFs). Mammalian cells express multiple 

HSF genes (HSF1, HSF2, and HSF4), while Drosophila, C. elegans, and yeast express only HSF1 

[68–71]. HSF1 is the key stress-responsive transcription factor in mammals [72], while HSF2 and 

HSF4 are essential for regulating developmental processes [73–75]. Upregulation of HSPs by HSF1 is 

triggered by a variety of acute and chronic stress conditions and disease states [69].  

Under unstressed conditions, HSF1 is maintained in monomeric state by transient association with 

multi-chaperone complex of Hsp90, Hsp70 and Hsp40 [76–78]. Upon stress, a surge in chaperone 

demand from stress-induced protein misfolding sequesters HSF1-bound chaperones, and thus relieves 

HSF1 from its monomeric state [71]. Freed HSF1 monomers trimerize through an extended heptad 

repeat (HR-A/B) located between the DNA-binding domain and the transcription activation domain 

[79]. Trimerization is an essential step, as it exposes the DNA-binding domain of HSF1 and following 

nuclear localization, allows binding to heat shock elements (HSE) in respective candidate gene 

promoters, leading to upregulation of HSPs [69]. Binding of HSF1 to respective HSEs  releases a pre-

initiated paused RNA polymerase II complex upon recruitment of elongation factors including pTEFb 

[80]. HSPs are transcriptionally upregulated only when HSF trimers are bound to HSEs under 

prevailing stress signals [76]. The presence of stress is essential to the activation state of DNA-bound 

HSF1 via various post translational modifications such as phosphorylation [81–83] and sumoylation 

[84]. Reduced stress level will trigger a negative feedback loop where excess chaperones will sequester 

monomeric HSF1, thus attenuating HSF1-mediated transcription [68,69,71]. Therefore, a combination 

of post translational modifications and protein-protein interactions offers various levels of control on 

the stress-induced transcriptional activities of HSF1. A schematic diagram of the HSF1 activation is 

illustrated in Figure 1. 

3.2. Post-transcriptional regulation: “minimal stress miRNAs” 

MicroRNAs (miRNAs) play important roles in development, growth, and many other fundamental 

cellular processes [85–87]. Recently, miRNAs were also implicated in regulating cell stress response 

arising from diverse stress conditions such as heat and hypoxic stress [85,88,89]. Recent work by 

Wilmink et al. [90] uncovered several miRNAs (miR-125b, -222, -22, and let-7c) to be expressed in 

response to most stressor types, while some miRNAs are specific to thermal stress (miR-452, -382, and 

-378). More importantly, their work revealed a significant general down-regulation of miRNAs in 

response to stress. This is quite evident in stressed cells where demand for rapid protein translation 
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interferes with the translation-repression role of miRNAs, allowing evolution of mechanisms that 

reduce miRNA synthesis during stress. Future work on analyzing the targets of these miRNAs will 

likely reveal an additional level of regulation to controlling stress protein expression.     

3.3. Post-translational modifications 

The activity of some chaperones, like other proteins, has been shown to be regulated by different 

post-translational modifications. Reversible phosphorylation of the bacterial Hsp70 homolog DnaK 

and Hsp60 homolog GroEL was shown to affect their binding affinities to client proteins as well as 

ATPase activity [91–93]. Similarly, S-nitrosylation of Hsp90 was shown to inhibit its ATPase activity 

and prevent its regulation of a client protein, nitric oxide synthase [94], which is physiologically 

essential to initiate a negative feedback loop regulating the levels of nitric oxide. Other chaperones, 

such as Hsp33, are sensitive to cellular redox state, and thus provide an immediate response to 

oxidative stress. Under oxidative conditions, Hsp33 is activated by the  formation disulfide bonds that 

release a zinc ion bound to the protein and ultimately lead to dimerization; under non-stressed 

conditions, this redox-sensitive chaperone is inactivated by the elimination of the disulfide bonds with 

reversal of these structural changes [95,96]. Such transient covalent modifications allow stress proteins 

to remain inert in normal conditions and to be rapidly switched on during stress.  

3.4. Allosteric regulation and co-chaperones 

Many of the members of the HSP family, such as Hsp70, Hsp60, and Hsp90, are subject to 

allosteric regulation by nucleotides. Such regulation is common for many proteins whose activities are 

governed in response to the level of one or several small metabolites, such as ATP, which dictate the 

metabolic state of the cell. Many of the HSPs are known to exist in an ATP-bound and an ADP-bound 

state, allowing for differential binding affinities with client proteins [97–100]. Such interactions allow 

for continuous cyclic interactions between chaperones and their client proteins, providing a feedback 

regulation of chaperone function. Also, interactions with ATP and its subsequent hydrolysis into ATP 

provide “energy” for these chaperones to carry out their “mechanical” folding functions.  

In addition to the essential post-translational modifications and allosteric interactions, the activity of 

many chaperones would not be complete without interactions with other indispensible proteins called 

“co-chaperones”. The best studied co-chaperone is GroES, which helps GroEL (bacterial Hsp60) to 

function properly [10]. Extensive studies have shown that the key role of GroES is to enable GroEL to 

bind to the client protein in the central cavity and enable a conformational change and also help the 

release of the client protein. A large number of co-chaperones have also been indicated for Hsp90, 

helping regulate both its ATPase and client protein-binding activities [101]. 

4. Chaperones in Neurodegenerative Diseases 

Many neurodegenerative diseases are considered “conformational” in nature as they are 

characterized by the accumulation of aberrantly folded protein species [102–106]. As neurons are a 

terminally differentiated, post-mitotic cell type, it has been suggested that they are especially 

susceptible to the cumulative effects of misfolded proteins as they are unable to reduce the load of 
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toxic intermediates through consecutive rounds of mitosis [106]. Therefore, the capacity of neuronal 

chaperones to reduce misfolded proteins is essential for maintaining neuronal integrity. Moreover, 

most neurodegenerative diseases are characterized by typical misfolded protein aggregates, which have 

been shown to strongly colocalize with molecular chaperones (Table 1). A recent study comparing the 

expression levels of Hsc70 in different neuronal subtypes typically vulnerable in neurodegenerative 

diseases, including spinal motoneurons (vulnerable in amyotrophic lateral sclerosis (ALS)), neurons of 

the hippocampus/entorhinal cortices (vulnerable in Alzheimer’s disease (AD)), and tyrosine 

hydroxylase positive neurons of the substantia nigra (vulnerable in Parkinson’s disease (PD)), reported 

that the relative levels of Hsc70 expression was inversely correlated with the frequency of disease 

prevalence in the US population [107]. For example, hippocampal/entorhinal neurons express 

significantly less Hsc70 than both spinal moto- and substantia nigra neurons, while the frequency of 

AD is 4-fold higher than PD and 133-fold higher than ALS in the US population. This suggests that 

the vulnerability of particular subpopulations of neurons may be attributed to their variable pools of 

chaperones (e.g., reduced misfolded protein buffering capacity) [102]. Therefore, the induction of 

chaperone expression in neurons has become an active area of both basic science and translational 

research providing both a greater understanding of the underlying mechanisms of many 

neurodegenerative diseases as well as providing a new target for therapeutic design. 

4.1. Parkinson’s disease (PD) 

PD is the most common neurodegenerative movement disorder,
 
affecting more than 0.1% of the 

population older than 40 years
 
of age [108]. PD patients suffer from a motor disorder characterized by 

slowness of movement, rest tremors,
 
rigidity, and disturbances in balance. PD is characterized by 

inclusion bodies called Lewy bodies formed by aberrant misfolding and aggregative proteins [109]. 

Chaperones, such as Hsp70 and Torsin A, a protein with homology to yeast Hsp104, are colocalized 

with α-synuclein (αSN) containing Lewy bodies [110]. Furthermore, Hsp70 was shown to inhibit αSN 

fibril formation by binding to prefibrillar oligomers and changing toxicity of αSN aggregates [111]. 

Mutations in DJ-1, a novel oncogene, are linked with familial PD and have been shown to cause 

oxidative stress and mitochondrial degeneration, leading to protein aggregation and neuronal cell 

death [112]. DJ-1 and its mutants are known to associate with Hsp70, CHIP (chaperone interacting 

protein) and mtHSP70/Grp75, which is enhanced with H2O2 treatment in cells [113]. Since stress 

chaperones play such a vital role in the pathogenesis of PD, it is important to note that the level of 

HSPs decreases significantly with aging, which leads to failure in cellular protein homeostasis, giving 

rise or contributing to such aging diseases [114]. 

It has been shown in Drosophila that overexpression of Hsp70 can prevent dopaminergic neuronal 

loss induced by αSN-overexpressing, and that reducing Hsp70 levels enhance αSN toxicity [115]. The 

likely mechanism of Hsp70-mediated protection in PD involves the recruitment of misfolded proteins 

as substrates for parkin E3 ubiquitin ligase and degradation of aberrant αSN [116]. In addition to its 

role in reducing proteotoxic stress, Hsp70 exerts anti-apoptotic activity by blocking the function of 

several key proapoptotic factors and also by activating the survival pathway in rotenone and MPTP 

induced sporadic PD models [117]. Increased expression and abnormal aggregation of small HSPs, 

such as αB-crystallin, is also a prominent feature of Lewy bodies and reactive astrocytes in various 
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neurodegenerative diseases [118]. αB-crystallin overexpression reduces αSN fibrillization in vitro 

showing that it may revert fibril-αSN to an amorphous aggregation pathway, and help to reduce stable 

amyloid deposits to a more easily degradable form [119]. Hsp90, which exerts a negative effect on 

HSF1 regulation, was recently shown to be significantly increased in age-matched postmortem PD 

brains, along with a high level of insoluble αSN [120]. Increase of Hsp90 was also seen in αSN mutant 

transgenic mouse model of PD [120]. Therefore, increased Hsp90 level may inhibit the induction of 

stress chaperone and subsequently compromise the neuronal capacity to handle misfolded protein load. 

4.2. Alzheimer’s disease (AD) 

AD is the most common form of irreversible dementia and is characterized by a rapid progression 

from episodic memory problems to a decline in overall cognitive functions, impairing patients’ ability 

to carry out activities of daily living (ADL) and leading to death typically nine years following 

diagnosis [121]. The disease is characterized by the cortical presence of extracellular deposits of 

amyloid-β (Aβ), called senile plaques, and intraneuronal inculusions, called neurofibrillary tangles 

(NFTs), formed by accumulation of abnormal filaments of tau, both found predominately in the brain 

regions involved in memory and learning [122]. Postmortem expression studies of AD brain tissue has 

shown that a number of chaperones such as HSP27 and HSP70 are elevated in affected areas, which 

was partly a result of gliosis and stressed neurons [123,124]. 

Chaperones have been strongly implicated in AD pathology. Amyloid precursor protein (APP) 

interacts with the ER resident chaperone BiP/Grp78 (the ER isoform of Hsp70), during its normal 

processing in the ER-Golgi pathway [125]. Hence, increased Grp78 may help proper processing of 

APP therefore reduce amyloid production [125]. In addition, overexpression of cytosolic Hsp70 and 

Hsp90 has been shown to inhibit early stages of amyloid aggregation [126]. It has also been 

demonstrated that small HSPs such as Hsp22 and Hsp27 bind to fibrillar amyloid plaques and inhibit 

fibrillarisation [127]. Furthermore, overexpression of the small Hsp16.2 in C elegans is strongly 

protective against Aβ-induced toxicity [128]. 

The role of chaperones in AD has been studied extensively with respect to tau aggregation and 

fibrillization. Chaperones, including Hsp27, Hsp70 and CHIP were shown to colocalize with abnormal 

tau aggregates, and overexpression of these chaperones reduced hyperphosphorylation and increase 

misfolded tau degradation [129,130]. These chaperones were shown to preferentially bind to 

hyperphosphorylated tau as well as paired helical filamentous tau but not to non-phosphorylated tau. 

Moreover, increased levels of Hsp70 and Hsp90 promoted tau solubility and enhanced its binding to 

microtubules in various cellular models [131]. These studies have shown that chaperones are important 

for maintaining tau in its physiological form, bound to microtubules, and reduce its aggregation as a 

result of hyperphosphorylation. 

4.3. PolyQ disease 

PolyQ diseases are a family of dominant neurodegenerative diseases that are caused by proteins 

containing tandem polyglutamine repeats. At least nine polyQ related disorders are known to date, 

including spinal bulbar muscular atrophy (SBMA), Huntington’s disease (HD), 

dentatorubropallidoluysian atrophy (DRPLA), and six types of spinocerebellar ataxia (SCA1, 2, 3, 6, 7, 
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and 17) [132]. PolyQ diseases are among the first characterized protein misfolding diseases in which 

neuroprotective properties of chaperones have been identified. Studies using different model systems 

have shown that overexpression of Hsp40 and Hsp70 can reduce polyQ toxicity and inclusion body 

formation [133,134]. Similarly, overexpression of Hsp27 was also shown to ameliorate polyQ toxicity, 

by reducing oxidative stress but without affecting inclusion body formation [135]. In yeast, 

overexpression of Ssa1 (Hsp70) or Ydj1 (an Hsp40 homolog) significantly reduces the formation of 

large, detergent-insoluble inclusion bodies and facilitates the accumulation of smaller aggregates 

[136]. Consistent with this, knocking down two of the Hsp70 isoforms in a C elegans model of polyQ 

disease accelerates disease progression [137]. Expression of a truncated form of ataxin 3 with a polyQ 

expansion (MJDtr-Q78) in Drosophila nervous system caused lethality that is rescued by co-

expression of human Hsp70 [138]. Interestingly, Hsp70 expression did not affect inclusion body size, 

indicating that these aggregates might not be the toxic species.  Furthermore, Hsc70 overexpression 

restores neuronal transport and significantly reduces cell death associated with polyQ pathogenesis 

[139]. Overexpression of Hsp70 in spinocerebellar ataxia 1 homolog (SCA1) transgenic mice (Ataxin 

1 with 82 polyQ repeats) significantly improved the behavioral and pathological phenotypes, without 

causing any change in inclusion body formation [140]. 

4.4. Cerebral ischemia 

Stroke, or focal reductions in cerebral blood flow (ischemia) as a result of blood vessel occlusion or 

hemorrhage [141], accounted for approximately one in every 18 deaths in 2006 and represents a 

significant cause of long term disability in the U.S. [142,143]. Ischemic injury to nervous tissue, 

including neurons, glia, and neurovasculature, is attributed to hypoxia and metabolic deficits that 

initiate a cascade of intracellular events, including ionic imbalance, oxidative/nitrosative stress, and 

excitotoxicity, ultimately resulting in necrotic or apoptotic cell death [141]. Recent studies have also 

observed that transient global and focal cerebral ischemia induces the accumulation of protein 

aggregates [144,145] and arrest of protein synthesis secondary to activation of the ER unfolded protein 

response (UPR) within cells soon after ischemic injury [146,147]. Proteotoxicity from ischemia 

induced protein aggregation may therefore further contribute to cell death following ischemic injury 

[148], especially in the periphery of flow compromised regions where milder ischemia is observed as a 

result of perfusion from nearby collateral vessels known as the penumbra [149]. In contrast to the zone 

immediate to the ischemic injury where cell death is more rapid and irreversible, cells within the 

penumbra die more slowly and may be rescued upon reperfusion [149]. Interestingly, upregulation of 

stress response proteins such as Hsp70 have been observed in a penumbra distribution [150,151], 

potentially an endogenous protective mechanism that distinguishes reversible ischemia in this region. 

Overexpression of Hsp70 has been demonstrated to reduce infarct size and protect both neurons and 

glia from cell death in several in vivo mammalian models of stroke [151–156] via mechanisms that 

directly inhibit apoptosis and injury secondary to immune activation [157] as well as by reducing 

ischemia induced protein aggregation [144,145,158]. Similar results have been obtained by 

overexpressing other heat shock response proteins such as Hsp27 [159,160] and the Hsp40 co-

chaperone Hdj-2 [158,161]. Pharmacological induction of the constitutive ER chaperone BiP was also 

demonstrated to be neuroprotective by mitigating ischemia induced ER stress [162]. These 
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observations and the fact that chaperones including Hsp70 can prevent both apoptotic and necrotic cell 

death has made heat shock response proteins ideal candidates in providing neuroprotection following 

cerebral ischemia [158]. 

Table 1. Association of molecular chaperones with neurodegenerative disorders. Examples 

of common neurodegenerative diseases with chaperones shown to colocalize with 

respective protein aggregates either in disease tissue or in experimental models.  

(Aβ= amyloid beta; APP= amyloid precursor protein; DJ1= Parkinson’s disease 

(autosomal recessive, early onset) 1; PINK1= phosphatase and tensin induced putative 

kinase 1; SOD1= superoxide dismutase 1). 

Disease Associated Genes Pathology 
Aggregate-Associated 

Chaperones 
References 

Alzheimer’s disease 

 
APP, Presenilin1/2 

Extracellular plaques of 

Aβ40 and Aβ42; 

Intracellular neurofibrillary 

tangles (NFTs) 

Hsp72, Hsp28 

Hsp27, GRP78 

Hsp27, Hsp90 

[123, 124, 

125, 126, 

127] 

Parkinson’s disease 

 
α-synuclein, 

Parkin, Pink1, DJ1 
Intracellular Lewy Bodies 

Hsp70, Hsp40, 

αβ-crystallin 

[110, 111, 113, 

115] 

Familial ALS SOD1 
Intracellular inclusion 

bodies 
Hsc70  [163] 

Spinocerebellar ataxia 

(SCA1-3, 7) 
Ataxins Nuclear inclusions Hsp40, Hsp70 [133, 134] 

5. Diseases Caused by Mutations in Chaperones 

With the completion of the human genome project, a lot of attention has been placed on linking 

mutations in genes with defined functions to disease susceptibility. Analysis of the open reading 

frames (ORFs) that contain mutations has revealed alterations in genes encoded for molecular 

chaperones that may be responsible for some complex human diseases. 

Hsp60: The hereditary spastic paraplegia SPG13 is caused by a missense mutation of a conserved 

Valine (V72I) residue in the mitochondrial chaperonin Hsp60 [164]. The disease is characterized by 

weakness and poor coordination of lower limbs, resulting from severe degeneration of the distal ends 

of long axons in the spinal cord [165]. The relatively mild phenotype associated with the mutation is 

rather surprising, as Hsp60 is crucial for mitochondrial biogenesis and the missense mutation renders 

Hsp60 partially or completely nonfunctional. It is possible that compensatory mechanisms are in place 

to allow mitochondrial biogenesis without functional Hsp60 proteins. 

hMKKS: Mutations in the cytosolic chaperonin hMKKS have been implicated in McKusick-

Kaufman Syndrome (MKKS), characterized by malformations of the genital tract, polydactyly and 

congenital heart disease; and Bradet-Biedel type 6 Syndrome (BBS6), characterized by obesity, retinal 

dystrophy, renal malformations, learning and behavioral abnormalities and endocrinological 

dysfunction [166,167]. hMKKS is 40% similar to human TRiC protein, and is known to be expressed 

during development and in adults, but not much is known about its biochemical or structural properties.  

α-Crystallins: α-Crystallins are small HSPs, mutations in which have been linked with two diseases: 

R116C mutation in αA-crystallin is linked to a form of hereditary cataract [168]; and R120G 

substitution in αB-Crystallin results in a form of desmin-related myopathy (DRM) [169]. Although the 

precise mechanism by which mutant αA-Crystallin causes cataract is not known, it is predicted that the 
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mutant chaperone fails to properly fold other major lens proteins. In the case of DRM, it is known that 

αB-Crystallin specifically interacts with desmin in muscle cells, possibly mediating its folding and/or 

assembly into intermediate filaments [170].  

TBCE: The tubulin-specific chaperone E (cofactor E, TBCE) is an essential chaperone required for 

efficient folding of α-tubulin and its dimerization with β-tubulin. Mutations in TBCE lead to a 

reduction in the amount of available α-tubulin to be incorporated into microtubules, causing severe 

cytoskeletal defects such as aberrant polarity of microtubule network. Several severe diseases have 

been linked with mutation in this gene, including HRD (hypoparathyroidism, mental retardation and 

facial dysmorphism), Sanjad–Sakati syndrome, and autosomal recessive Kenny–Caffrey syndrome 

(AR-KCS) [171]. 

Sacsin: Sacsin was originally reported to consist of a single gigantic exon spanning 12.8 kb with an 

11.5-kb ORF, with mutations linked to autosomal recessive spastic ataxia of Charlevoix–Saguenay 

(SACS) [172]. Recently, eight exons upstream from the original one have been found, and the new 

ORF has elongated to 13.7 kb. Sequence similarity revealed an ubiquitin domain and a DnaJ molecular 

chaperone homology domain preceding a HEPN (higher eukaryotes and prokaryotes nucleotide-

binding) domain. The mutations R4325X and N4549D that cause SACS are present in the DnaJ 

domain and the HEPN domain, respectively [173]. The DnaJ heat shock domain is essential for 

interactions with chaperone Hsp70-like proteins and the HEPN domain is implicated in nucleotide 

binding [173]. This raises possibilities of Sacsin functioning either directly or indirectly in chaperone-

mediated protein folding. 

6. Pharmacological Modulators of Molecular Chaperones as a Therapeutic Approach 

6.1. Small molecule regulators of the heat shock response 

Most neurodegenerative diseases are “protein misfolding disorders” that could therapeutically 

benefit from active small molecules that regulate HSF1 or modulate chaperone activities that could 

possibly ameliorate the prevailing imbalance in protein homeostasis.  

Two of the first chemical inducers of the heat shock response were the protein synthesis inhibitor 

puromycin and the amino acid analog azetidine, both of which result in accumulation of prematurely-

terminated new peptide chains or amino acid analog-containing misfolded proteins, igniting the stress 

response [174,175]. In following years, inhibitors of protein degradation, including proteasomal 

inhibitor MG132 and serine protease inhibitors such as DCIC and TLCK, were shown to induce HSF 

activation by inducing proteotoxic stress [176]. Potential inhibitors of Hsp90, including the antifungal 

agent radicocol and geldanamycin (a benzoquinone ansamycin), also activate HSF1 [177]. Both of 

these compounds have been shown to bind to the ATP-binding domain of Hsp90 and inhibit its 

activity, thereby de-repressing and activating HSF1 [178] (Figure 1). In mammalian cell culture and 

mouse brain slice culture models of Huntington’s disease, both drugs were shown to inhibit the 

aggregation of polyQ containing protein huntingtin and to be significantly neuroprotective [179,180]. 

The triterpenoid celastrol, a natural product from the Celastraceae plant family, is able to induce HSF1 

with an EC50 in the micromolar range, making it highly suitable for therapeutics [181] (Figure 1). 

Other activators of HSF1 include the hydroxylamine derivative bimolclomol [182] (Figure 1), which 
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was shown to be therapeutic in wound healing and ischemia [183], and arimoclomol which delayed 

disease progression in a mouse model of ALS [184].   

Also important are compounds that are classified as co-inducers which partially activate 

components of the heat shock response. Belonging to this group are the non-steroidal anti-

inflammatory drugs (NSAIDS), including sodium salicylate, which promotes trimerization of HSF1 

without causing its activation [185]. Hence, co-inducers can only work in association with a stress 

signal for properly inducing the heat stress response. Long term use of NSAIDS for arthritis was 

shown to reduce the outcome of Alzheimer’s disease, further supporting a neuroprotective role of the 

heat shock response [186].  

6.2. Chemical chaperones 

Chemical chaperones are small molecular mass compounds that increase protein stability in vitro. 

These compounds include organic solvents such as dimethyl sulfoxide (DMSO) and osmolytes such as 

glycerol and trelahose [187,188]. Addition of DMSO and glycerol to scrapie-infected mouse 

neuroblastoma in vitro was able to effectively reduce the extent of the scrapie (abnormal) form of the 

prion protein and increase the normal cellular form of the protein [188]. In yeast, the synthesis of 

trehalose is responsive to stress and is important for maintaining protein stability during stress 

[189,190]. In fact, trehalose was shown to inhibit polyQ aggregation in R6/2 transgenic mouse model 

of Huntington’s disease [191]. In this study, feeding mice 2% trehalose in drinking water reduced 

disease pathology and improved motor deficits and lifespan. Consistent with this finding, deletion of 

the trehalose gene in yeast enhances α-synuclein toxicity [192]. 

6.3. Hsp90 inhibition: from cancer therapy to potential therapeutic for neurodegeneration 

Hsp90 is an extremely important chaperone as it interacts with various kinases that have been 

implicated in malignant transformation, such as the ErbB2, Src, Abl or Met tyrosine kinases, or the 

Raf, Akt and cyclin-dependent serine kinases [56]. As such, targeting Hsp90 can ideally be 

therapeutic, as such inhibitors can act as multi-target drugs, which are more efficient than highly 

selective single-target drugs. The most widely used Hsp90 inhibitors are the macrocyclic antitumor 

agent geldanamycin and its less toxic analog, 17-allylamino-17-demethoxygeldanamycin (17AAG) 

[193]. In tumor cells, Hsp90 prevails in an activated large complex with various co-chaperones, in 

contrast to a latent, uncomplexed state in normal cells. Inhibitors such as 17AAG bind to the tumor-

specific, complex form of Hsp90 with a 100-fold higher affinity than to the latent form in normal cells 

[194], which affords highly specific anti-tumor activity. 

The primary focus on Hsp90 in neurodegenerative diseases has been limited to its inhibitory role in 

regulating the heat shock response [195]. More recently, new evidence suggests an additional role for 

Hsp90 in buffering some of the client proteins that might be directly responsible for disease 

progression [196,197]. In spinal and bulbar muscular atrophy (SBMA), an inherited motor neuron 

disease caused by the expansion of a polyglutamine tract within the androgen receptor (AR), the 

mutant AR is an Hsp90 client protein that forms a molecular complex with the chaperone [198]. In the 

same study, treatment of both cellular and mouse models of SBMA with 17AAG led to a preferential 

degradation and clearance of mutant AR compared to wild-type, indicating that mutant AR was 
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maintained stably by complexing with Hsp90, and inhibiting Hsp90 promoted the clearance of mutant 

AR and led to amelioration of disease-associated motor impairments [198]. Another example of a 

potential therapeutic use of Hsp90 inhibitors is in tauopathies, or neurodegenerative disorders marked 

by abnormalities in tau phosphorylation leading to tau aggregation and neurodegeneration. In 

Alzheimer’s disease, tau hyperphosphorylation has been linked to aberrant activation of several 

kinases, such as cyclin-dependent protein kinase (cdk) 5 and glycogen synthase kinase (GSK) 3β 

[199]. Hsp90 has been shown to stabilize the P301L mutant tau protein and p35, a neuronal protein 

that may activate cdk5, while Hsp90 inhibition reduced the aberrant activity of these proteins and the 

level of aggregated tau, leaving normal tau largely unaffected [197]. 

6.4. Nutraceuticals 

A majority of neurodegenerative diseases arise sporadically, revealing the importance of 

environmental factors that may contribute to disease progression or even dictate the outcome in some 

cases. Several epidemiological studies have indicated that dietary habits and antioxidants from diet can 

influence the incidence of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases 

[200,201]. For example, results from the Personnes Agees Quid study showed that people consuming 

three to four glasses of wine per day had an 80% decreased incidence of dementia and Alzheimer's 

disease three years later, compared to people who drank less or not at all [202]. Consumption of tea 

was shown to reduce the risk of Parkinson's disease [203]. Moreover, in a separate study on a 

population of 65 years of age and above, there was a striking inverse relationship between flavonoid 

intake (fruits, vegetables, wine and tea) and the risk of dementia [204]. Similarly, a positive correlation 

has been shown between the consumption of the Ginkgo biloba extract EGb 761 and improved 

cognitive performance in Alzheimer's patients [205,206]. These clinical and epidemiological results 

indicate a protective effect of flavonoids and polyphenols in neurodegenerative diseases.   

Polyphenols are natural substances present in plants, fruits, vegetables, and processed foods 

including olive oil, red wine, and tea. Flavonoids represent the largest group of polyphenols. There is 

increasing evidence that consumption of foods or beverages rich in polyphenols is beneficial and can 

increase the antioxidant levels in serum protecting against oxidative-induced damage [207]. Apart 

from being great scavengers of free radicals, some polyphenols may directly stimulate the stress 

response and increase cellular chaperone levels. Resveratrol, a polyphenol from red wine, is a known 

inducer of the heat shock response, shown to upregulate chaperones like Hsp70 in pre-treated human 

cell lines, when compared to moderate heat shock stress [208]. 

Curcumin, a non-flavonoidic polyphenol derived from the yellow curry spice, displays anti-

inflammatory and antioxidant activities. Studies indicate this molecule, widely used by Indian and 

other South and East Asian populations, to be responsible for the significantly lower prevalence of 

Alzheimer's disease in India compared to the United States [209]. Curcumin is cytoprotective and 

induces nuclear translocation of HSF1 and its activation through the extracellular regulated kinase 

(ERK)/mitogen activated protein (MAP) and c-jun N-terminal kinase (JNK) pathways [210]  

(Figure 1). 
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7. Conclusions 

Neurodegeneration, or the broad or selective loss of neuronal populations, is a common underlying 

feature of many inherited and acquired diseases, and injury of the central (CNS) and peripheral 

nervous systems (PNS). Their long life and often enormous size make neurons highly susceptible to all 

types of intracellular or extracellular insults. Cellular stress response is an evolutionarily conserved 

defense mechanism to protect cells against insults. Chaperones are the major players in the stress 

response. They are proteins often conserved over distant phyla. Neurons are endowed with the full 

repertoire of chaperones; however their importance in neuroprotection only became evident recently. 

The neurons’ high demand on maintenance and self-protection predicts the indispensable role of 

chaperones in neuronal maintenance and protection. A failure of such a maintenance system, or toxic 

stress at levels surpassing the maintenance capacity, would lead to neurodegeneration. Indeed, several 

mutations in chaperones have been linked to specific neurodegenerative diseases. It is also expected 

that compromised activity or function of chaperones would increase the susceptibility of an organism 

to neurodegeneration. Conversely, enhancing the maintenance and stress response capacity will 

increase neurons’ tolerance to internal or external insults. Recent findings that increased neuronal 

levels of specific chaperones have neuroprotective capacity in several neurodegenerative disease 

models further underscore the importance of understanding the regulatory mechanisms of chaperones. 

As exemplified by the HSF1 pathway, where the neuroprotective properties of several compounds and 

small molecules have only been revealed after the elucidation of the regulatory mechanisms of HSF1 

(Figure 1), future studies on dissecting the intricate regulatory network in neuronal chaperones and 

stress response will be fruitful and will not only contribute to the understanding of neuroprotection but 

also serve as a stepping stone towards therapeutic design for neurodegenerative diseases. 
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