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Abstract: Bacterial lipopolysaccharides (LPS), also known as endotoxins, are major 
structural components of the outer membrane of Gram-negative bacteria that serve as a 
barrier and protective shield between them and their surrounding environment. LPS is 
considered to be a major virulence factor as it strongly stimulates the secretion of pro-
inflammatory cytokines which mediate the host immune response and culminating in 
septic shock. Quantitative structure-activity relationship studies of the LPS neutralization 
activities of anti-endotoxins were performed using charge and quantum chemical 
descriptors. Artificial neural network implementing the back-propagation algorithm was 
selected for the multivariate analysis. The predicted activities from leave-one-out cross-
validation were well correlated with the experimental values as observed from the 
correlation coefficient and root mean square error of 0.930 and 0.162, respectively. 
Similarly, the external testing set also yielded good predictivity with correlation coefficient 
and root mean square error of 0.983 and 0.130. The model holds great potential for the 
rational design of novel and robust compounds with enhanced neutralization activity. 

Keywords: lipopolysaccharide; endotoxin; anti-endotoxin; artificial neural network; 
QSAR 
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Introduction  

Lipopolysaccharides (LPS) are major structural components of the outer membrane of Gram-
negative bacteria. LPS confers a net negative charge to the membrane and thereby serves as a 
protective shield against antibacterial agents, as well as playing a crucial role in maintaining the 
integrity of the overall membrane structure. LPS are endotoxins which when present in the systemic 
circulation lead to the development of septic shock. The endotoxins initiate such events by first 
binding to CD14/TLR4/MD2 receptor complex on phagocytic cells causing the release of pro-
inflammatory cytokines which consequently increase the releasing of other inflammatory mediators in 
many cell types (e.g. neutrophils, monocytes, vascular endothelial cell) as well as initiate the 
neuroendocrine response. Aside from this, LPS can also mediate the activation of plasma protein 
cascades (e.g. complement system) [1-4]. Among the mediators produced by activated macrophage, 
tumor necrosis factor (TNF) is the most important and the earliest to be released. TNF can amplify the 
response to endotoxins by further activating inflammatory cytokines (e.g. IL-1, IL-6, and IL-8) which 
consequently leads to the synthesis of other mediators such as arachidonic acid, platelet-activating 
factor (PAF), nitric oxide and reactive oxygen species [5, 6]. Such elevated levels of mediator decrease 
blood flow to vital organs (e.g. kidney, heart, and brain) by increasing vascular permeability as well as 
causing microvacular occlusion and damage thereby leading to multiple organ dysfunctions and 
eventually culminating in death [7].  

Among those susceptible to the development of sepsis are children, immunocompromised 
individuals, and the elderly. In fact, global incidences of septic shock have increased over the past 
decade as a result of the growing number of immunologically compromised patients. Furthermore, 
LPS is considered to be one of the leading causes of mortality in intensive care units worldwide [8-10]. 
Therapeutic strategies for increasing the chances of survival include: (i) modulating inflammatory 
mediator release via the use of anti-cytokine or anti-inflammatory agents, (ii) supporting major organ 
dysfunction by increasing blood flow and (iii) administrating early antibiotic or anti-endotoxin usage. 
Therefore, drugs or compounds able to combat LPS toxicity have been of great interest [11]. Potential 
therapeutic agents such as anti-endotoxin antibodies, short peptides and lipopolyamines, as well as 
other small molecules, have been found to display promising sequestering effect towards lipid A but 
the efficiency of those compounds needs to be improved [12-18].  

The toxic compartment of LPS is their structurally conserved glycolipid component called lipid A. 
Lipid A is a fatty acid chain bound to two phosphorylated glucosamine residues that is linked to the 
oligosaccharide core and the distal O-antigen polysaccharide chain. The O-polysaccharide chain is 
made of oligosaccharide repetitive units (O-units) while the oligosaccharide core is made of an inner 
core (ketodeoxyoctonic acid and heptose) and an outer core. The diversity in the composition and 
length of the O-antigen vary among different bacterial species.  

In order to investigate the molecular parameters of interaction between lipid A and anti-endotoxin 
agents, Guo et al. utilized molecular modeling analysis for elucidating the underlying mechanism 
governing such high binding affinity. Their results indicated that a correlation exists between the 
binding affinity and the electrostatic interaction of ligands with lipid A [19]. In parallel, our previous 
investigations have revealed that quantitative structure-activity/property relationship (QSAR/QSPR) 
are useful tools for establishing relationships between molecular structures with the respective 
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activities or properties of a wide array of biological and chemical systems [20-26]. Elucidations on the 
feasibility of potential ligands prior to performing actual experimentations are useful on the economic 
and time-saving view points. 

To the best of our knowledge, we present the first development of a quantitative structure-activity 
relationship model of LPS neutralization activity by anti-endotoxins as modeled by multivariate 
analysis. Molecular descriptors accounting for charge and electronic properties of anti-endotoxins were 
used as input variables for calculating the half-maximal effective displacement (ED50). 

Results and Discussion   

Structural considerations 

It has been reported that electrostatic and hydrophobic forces are necessary for LPS neutralization 
activity [27-30]. To eliminate the endotoxin, an agent would need to bind to lipid A.  This is achieved 
by small molecules that are capable of engaging in strong hydrogen bond formation with the cationic 
and phosphate groups of lipid A. Furthermore, hydrophobic moieties are also necessary in stabilizing 
and enhancing the affinity of the agent in binding to the endotoxin [31]. Therefore to account for the 
electrostatic and hydrophobic forces, descriptors derived from RECON and Spartan’04 software 
packages were used for QSAR model development. Descriptors from RECON, which is based on the 
TAE methodology, are suitable for this study as it directly accounts for the molecular recognition in 
terms of the electronic charge properties. Additional descriptors from Spartan’04 were selected to 
account for the aforementioned interaction forces. Particularly, the hydrophobic interaction was 
approximated by the water accessible hydrophobic surface area of the molecule (CPKArea). Molecular 
descriptors such as total energy (ETotal), atomic charge (QA) and total hydrogen atomic charge (QTH+) 
are important auxiliary variables that could also account for the electrostatic properties of the 
molecules. It was observed that the combination of both sets of descriptors exerted a dramatic 
enhancement of predictive power than solely relying on TAE descriptors (data not shown). 

Variable reduction 

Prior to performing the calculation of LPS neutralization activity, the redundant and multi-collinear 
descriptors present in the dataset were initially reduced by UFS in order to achieve a better efficiency 
of prediction. The subset of descriptors left after variable reduction was in the range of 3 and 20. The 
optimal number of descriptor to use was determined by making a plot of the number of selected 
descriptors as a function of RMS (Figure 1). It was observed that the optimal number was 10, which 
was selected for further investigations. 

Parameter optimization 

The network architecture was determined by a trial-and-error adjustment of various parameters for 
the purpose of obtaining an optimal configuration. The empirically determined parameters included the 
number of nodes in the hidden layer, the learning epoch size, and the learning rate and momentum. 
Parameter that exhibited the lowest RMS was chosen as optimum. The optimal number of hidden 
nodes was determined by varying the number of nodes from 1 to 25. 
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As represented in the plot of RMS versus hidden nodes (Figure 2), the optimal number of nodes 
was found to be seven. In order to ovoid overtraining of the network, the learning epoch size was 
subsequently optimized from 1 to 700 in increments of 50 and learning was stopped once a detectable 
rise in RMS for the leave-one-out cross-validated testing set was observed. The best learning time 
could be observed by making a plot of the RMS as a function of the learning epoch size (Figure 3). 
The optimal value was found to be 300. 

 
Figure 1. Plot of RMS as a function of the number of TAE molecular descriptors. 
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Figure 2. Plot of RMS as a function of the number of nodes in hidden layer. 
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Subsequently, the optimal learning rate and momentum was selected by making a contour plot of 
the RMS as function of the learning rate and momentum (Figure 4). The lines in the contour plot 
represented constant values of RMS, while shaded boxes designated RMS values that were obtained 
from the learning procedures and fitted onto the same surface model [32]. As shown on the contour 
plot, the best learning rate and momentum lies in the middle left region of the graph and was found to 
be 0.1 and 0.4, respectively.  
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Figure 3. Plot of RMS as a function of the number of learning epochs. The cross-validated 
test set is represented as a solid line while the training set is represented as a dotted line. 
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Figure 4.  Contour plot of RMS as function of learning rate and momentum for the cross-
validated testing set. 
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Prediction of LPS neutralization activity using artificial neural network 

The optimal configuration of the predictive model of LPS neutralization activity was identified to 
be 7, 300, 0.1 and 0.4 for the number of hidden nodes, learning epoch size, learning rate and 
momentum, respectively. The network was created by means of a leave-one-out cross validation [33-
35], by which one sample of the dataset was withdrawn for use as the test set while the rest served as 
the training set. This process was repeated iteratively until all samples of the dataset were used as the 
test set [32, 36-37]. It was observed that the predicted and experimental neutralization activities were 
moderately correlated as can be observed from the correlation coefficient of 0.781. To further refine 
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the model, identification of potential outliers present inherently in the predictive model was performed 
using standard statistical analysis where compounds with absolute standardized residuals exceeding 
the cut-off value of 2 were marked as outliers. This statistical analysis was reiterated to yield a final 
predictive model which was constructed using previously determined optimal set of network 
parameters. As indicated in Table 1, results yielded correlation coefficient and root mean square error 
of 0.980 and 0.124 for the training set, respectively, while 0.930 and 0.162 was observed for the 
testing set. A plot showing the experimental versus predicted LPS neutralization activity for model 6 is 
shown in Figure 5. 

 
Table 1. Summary of the predictive performance. 

Model 
 

N 
 

rTr 
 

RMSTr 
 

rCV 
 

RMSCV 
 

2R  
 

2
adjR  
 

F ratio 
 

Critical 
F value 

1 73 0.938 0.167 0.781 0.287 0.610 0.524 6.480 1.866a 
2 69 0.942 0.158 0.728 0.341 0.530 0.419 4.350 1.879b 
3 64 0.947 0.141 0.857 0.221 0.734 0.665 9.658 1.899c 
4 63 0.952 0.146 0.823 0.250 0.677 0.591 7.186 1.904d 
5 60 0.972 0.124 0.907 0.186 0.823 0.773 14.946 1.918e 
6 58 0.980 0.124 0.930 0.162 0.865 0.825 19.680 1.929f 

N, sample size of the data set; rTr, correlation coefficient of training set; RMSTr, root mean square error of 
training set; rCV, correlation coefficient of leave-one-out cross validation testing set; RMSCV, root mean 
square error of testing set; 2R , squared correlation coefficient of leave-one-out cross validation testing set, 

2
adjR , adjusted squared correlation coefficient of leave-one-out cross validation testing set; F ratio, calculated 

F ratio of cross validation testing set. Critical F values at the 95% confidence level with m and n – m – 1 
degrees of freedom ( )1,( −−mnmF ) as follows a 

)58,14(F , b 
)54,14(F , c 

)49,14(F ,  d 
)48,14(F , e 

)45,14(F , and 
 f )43,14(F [38]. 

 
Figure 5.  Plot of predicted versus experimental ED50 for training set (○; regression line is 
represented as a dotted line) and leave-one-out cross-validation testing set (●; regression 
line is represented as a solid line) of anti-endotoxins. 
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In order to evaluate the predictive power of the QSAR model discussed herein, an external testing 
set would be necessary. To achieve this, the data set from model 6 was further divided into two sets of 
data: (i) one portion for deriving the optimal network parameters by leave-one-out cross-validation and 
(ii) an external testing set for evaluating the extrapolation capability of the QSAR model. This was 
carried out by randomly selecting 10% of the data set as an external testing set which equates to 6 data 
samples while the remaining 52 data samples were used for performing leave-one-out cross-validation. 
Optimization of the network parameter was performed as previously discussed to give the optimal 
parameters as follows: 15 nodes in the hidden layer, 150 learning epochs, learning rate of 0.2 and 
momentum of 0.4. This set of parameter was used for deriving the predictive performance of the 
external test set. Results indicated that the proposed QSAR model could accurately predict the LPS 
neutralization activity as observed by the correlation coefficient of 0.983 and root mean square error of 
0.130 as shown in Figure 6. 

 
Figure 6. Plot of predicted versus experimental ED50 for the leave-one-out cross-validation 
testing set of anti-endotoxins. 
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Conclusions 

The LPS neutralization activities of anti-endotoxin agents were modeled using back-propagation 
neural network. The predicted neutralization activities were found to be in good agreement with the 
experimental values. Analysis of these results suggests that the use of charge-based descriptors and 
quantum chemical descriptors were useful and necessary in obtaining good prediction that is 
representative of the experimental values. Therefore, such methodology proposed in this study 
demonstrates a facile approach for the design of novel anti-endotoxin agents with robust properties. 

Experimental  

Data collection 

The half-maximal effective displacement (ED50) of 80 anti-endotoxins were collected from the 
literature [27, 31, 40] (Table 1). Seven compounds were identified as inactive and were removed due 
to their high level of ED50 >200. 
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Descriptor generation 

The two-dimensional structure of each compound was drawn in ChemAxon’s MarvinSketch [41] 
and exported as SMILES notation. The three-dimensional molecular structures were constructed using 
the molecular building module of Spartan’04 [42] and subsequently submitted for calculation of 
quantum chemical descriptors. Likewise, the SMILES notation served as input for the calculation of 
charge-based descriptors by RECON. 

RECON (version 5.5) was used for the generation of 248 transferable atom equivalent (TAE) 
molecular descriptors. The TAE methodology, based on Bader’s quantum theory of atoms in molecule, 
was developed by Brenemen and co-workers for the rapid reconstruction of molecular charge density 
and molecular electronic property via pre-computed ab initio atomic charge density fragment [42]. 
TAE descriptors were selected for the prediction of LPS neutralization activity as they could account 
for the electronic properties of molecules, which is crucial for modeling molecular interaction [25] of 
the anti-endotoxins with their respective LPS target. 

Aside from electronic properties, the involvement of hydrophobic and electrophilic forces has also 
been demonstrated to play a crucial role in the biological activity of the anti-endotoxins [11, 12]. 
Hence, Spartan’04 was employed for generation of the following quantum chemical descriptors: 
molecular weight (MW), water accessible hydrophobic surface area of the molecule (CPKArea), total 
energy (ETotal), and atomic charge (QA). The three-dimensional structures of each anti-endotoxin 
compound were initially optimized using the Merck Molecular Force Field (MMFF) in conjunction 
with Monte Carlo simulation or systematic conformational search to identify the lowest energy 
geometry. These pre-optimized structures were then calculated at the semi-empirical level using the 
Parameterization Method 3 (PM3) [42]. 

An additional descriptor, the total hydrogen atomic charge (QTH+) was calculated according to the 
following equation: 

( )∑
=

−=+

n

i
iiTH qZQ

1
      (1) 

where iZ , iq  and n represent the atomic numbers, the atomic electron populations and the number of 

hydrogen atoms, respectively. 

Descriptor reduction 

The molecular descriptors were subjected to variable reduction in order to reduce computational 
time, minimize multi-collinearity and eliminate redundancy of the descriptors. This was performed 
using UFS, version 1.8, which is a computer program based on the Unsupervised Forward Selection 
(UFS) algorithm [43]. Briefly, UFS removes variables when the standard deviation is less than the 
predefined sdevmin and terminates when the squared multiple correlation coefficients of the remaining 
variables exhibit values greater than the r-squared-max ( 2

maxR ). The standard deviation was left as 
default at 0.0005 while the 2

maxR  was varied between 0 and 0.99. Thus, 248 descriptors were reduced to 

a range of three to 20 descriptors. 
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Table 2. Data set of the anti-endotoxinsa. 

No. 
 

Compound Name 
 

Exp. 
ED50 

Exp. 
logED50 

Pred. 
logED50 

Residual
 

 

  1c 
 

N1-Acetyl-1,16-diamino-4,8,13triazahexadecane 
tetrakis(trifluoroacetic acid) 
 

107.450 2.031 1.395 0.636 

  2 N1-Nonanoyl-1,16-diamino-4,8,13-triazahexadecane 
tetrakis(trifluoroacetic acid) 
 

0.920 -0.036 0.254 -0.290 

  3 N1-Decanoyl-1,16-diamino-4,8,13-triazahexadecane 
tetrakis(trifluoroacetic acid) 
 

1.080 0.033 -0.210 0.243 

  4 N1-Pentadecanoyl-1,16-diamino-4,8,13-triazahexadecane 
tetrakis(trifluoroacetic acid) 
 

1.350 0.130 0.118 0.012 

  5 N1-Heptadecanoyl-1,16-diamino-4,8,13-triazahexadecane 
tetrakis(trifluoroacetic acid) 
 

1.370 0.137 0.335 -0.198 

  6 N1-Nonadecanoyl-1,16-diamino-4,8,13-triazahexadecane 
tetrakis(trifluoroacetic acid) 
 

2.440 0.387 0.306 0.081 

  7 N1,N20-Dinonanoyl-1,20-diamino-4,8,13,17-tetrazaicosane 
tetrakis(trifluoroacetic acid)  
 

0.330 -0.481 -0.203 -0.278 

  8 N1,N20-Didecanoyl-1,20-diamino-4,8,13,17-tetrazaicosane 
tetrakis(trifluoroacetic acid)  
 

0.760 -0.119 0.058 -0.177 

  9f N1,N20-Didodecanoyl-1,20-diamino-4,8,13,17-
tetrazaicosane tetrakis(trifluoroacetic acid) 
 

6.870 0.837 0.132 0.705 

10f N1,N20-Dipentdecanoyl-1,20-diamino-4,8,13,17-
tetrazaicosane tetrakis(trifluoroacetic acid)  
 

8.670 0.938 1.518 -0.580 

11 N1,N20-Diheptadecanoyl-1,20-diamino-4,8,13,17-
tetrazaicosane tetrakis (trifluoroacetic acid)  
 

52.530 1.72 1.806 -0.086 

12 N1,N20-Dinonadecanoyl-1,20-diamino-4,8,13,17-
tetrazaicosane tetrakis(trifluoroacetic acid)  
 

66.730 1.824 1.658 0.166 

13 (S)-1-(1-(2-(2-aminoethoxy)ethylamino)-1-oxo-3-
phenylpropan-2-yl)-3-octadecylurea 
 

12.400 1.093 0.871 0.222 

14 (S)-N-(2-(2-aminoethoxy)ethyl)-2-(2 
(octadecylamino)acetamido)-3-phenylpropanamide 
 

2.540 0.405 0.706 -0.301 

15 (S)-N-(2-(2-aminoethoxy)ethyl)-2-(3-
(octadecylamino)propanamido)-3-phenylpropanamide 
 

7.680 0.885 0.591 0.294 

16 (S)-1-(1-(2-(2-aminoethoxy)ethylamino)-3-(1H-imidazol-4-
yl)-1-oxopropan-2-yl)-3-octadecylurea 
 

13.100 1.117 0.881 0.236 

17 (S)-N-(2-(2-aminoethoxy)ethyl)-3-(1H-imidazol-4-yl)-2-(2-
(octadecylamino)acetamido)propanamide 
 

3.170 0.501 0.557 -0.056 

18 (S)-N-(2-(2-aminoethoxy)ethyl)-3-(1H-imidazol-4-yl)-2-(3-
(octadecylamino)propanamido)propanamide 
 

5.380 0.731 0.869 -0.138 

19 1-(2-(2-(2-aminoethoxy)ethylamino)-2-oxoethyl)-3-
octadecylurea 
 

14.000 1.146 0.980 0.166 

20 N-(2-(2-aminoethoxy)ethyl)-2-(2 
(octadecylamino)acetamido)acetamide 
 

14.200 1.152 1.187 -0.035 

21 N-(2-(2-(2-aminoethoxy)ethylamino)-2-oxoethyl)-3-
(nonadecylamino)propanamide 
 

10.800 1.033 1.025 0.009 
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Table 2. Cont. 

No. 
 

Compound Name 
 

Exp. 
ED50 

Exp. 
logED50 

Pred. 
logED50 

Residual
 

 

22 
 

(S)-1-(1-(3-aminopropylamino)-1-oxo-3-phenylpropan-2-
yl)-3-octadecylurea 
 

 

8.800 
 

0.944 
 

0.990 
 

-0.046 

23 (S)-N-(3-aminopropyl)-2-(2-(octadecylamino)acetamido)-
3-phenylpropanamide 
 

4.130 0.616 0.707 -0.091 

24 (S)-N-(3-aminopropyl)-2-(3-
(octadecylamino)propanamido)-3-phenylpropanamide 
 

5.750 0.760 0.666 0.094 

25 (S)-1-(1-(3-aminopropylamino)-3-(1H-imidazol-4-yl)-1-
oxopropan-2-yl)-3-octadecylurea 
 

4.870 0.688 0.814 -0.126 

26f (S)-N-(3-aminopropyl)-3-(1H-imidazol-4-yl)-2-(2-
(octadecylamino)acetamido)propanamide 
 

6.860 0.836 0.414 0.422 

27 (S)-N-(3-aminopropyl)-3-(1H-imidazol-4-yl)-2-(3-
(octadecylamino)propanamido)propanamide 
 

3.010 0.479 0.994 -0.515 

28c 1-(2-(3-aminopropylamino)-2-oxoethyl)-3-octadecylurea 
 

6.610 0.82 1.493 -0.673 
29b N-(3-aminopropyl)-2-(2-

(octadecylamino)acetamido)acetamide 
 

2420 3.384 - - 

30 N-(2-(3-aminopropylamino)-2-oxoethyl)-3-
(octadecylamino)propanamide 
 

6.140 0.788 0.961 -0.173 

31b (S)-N-(5-aminopentyl)-2-(2-(octadecylamino)acetamido)-
3-phenylpropanamide 
 

3850 3.585 - - 

32 (S)-N-(5-aminopentyl)-2-(3-
(octadecylamino)propanamido)-3-phenylpropanamide 
 

7.510 0.876 0.861 0.015 

33 (S)-1-(1-(5-aminopentylamino)-3-(1H-imidazol-4-yl)-1-
oxopropan-2-yl)-3-octadecylurea 
 

12.100 1.083 1.343 -0.260 

34g (S)-N-(5-aminopentyl)-3-(1H-imidazol-4-yl)-2-(3-
(octadecylamino)propanamido)propanamide 
 

18.700 1.272 0.702 0.570 

35 1-(2-(5-aminopentylamino)-2-oxoethyl)-3-octadecylurea 
 

28.200 1.450 0.944 0.506 
36 N-(5-aminopentyl)-2-(2-

(octadecylamino)acetamido)acetamide 
 

11.200 1.049 0.967 0.082 

37 N-(2-(5-aminopentylamino)-2-oxoethyl)-3-
(octadecylamino)propanamide 
 

9.770 0.990 0.900 0.090 

38g 1-(3-aminopropyl)-3-octadecylurea 
 

3.800 0.580 0.839 -0.259 
39 N-(3-aminopropyl)-2-(octadecylamino)acetamide 

 
9.920 0.997 0.652 0.346 

40 N-(3-aminopropyl)-3-(octadecylamino)propanamide 
 

6.210 0.793 0.794 -0.001 
41 1-(5-aminopentyl)-3-octadecylurea 

 
8.740 0.942 0.841 0.101 

42 1-(2-(2-aminoethoxy)ethyl)-3-octadecylurea 
 

12.150 1.085 1.032 0.053 
43 N-(5-aminopentyl)-2-(octadecylamino)acetamide 

 
4.030 0.605 0.908 -0.303 

44 N-(2-(2-aminoethoxy)ethyl)-2-(octadecylamino)acetamide 
 

9.160 0.962 0.797 0.165 
45 N-(5-aminopentyl)-3-(octadecylamino)propanamide 

 
7.610 0.881 0.895 -0.014 

46 N-(2-(2-aminoethoxy)ethyl)-3-
(octadecylamino)propanamide 
 

5.730 0.758 0.883 -0.125 

47 L-Lys-N1-spermine 
 

40.420 1.607 1.725 -0.118 
48 D-Lys-N1-spermine 

 
58.420 1.767 1.611 0.157 
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Table 2. Cont. 

No. 
 

Compound Name 
 

Exp. 
ED50 

Exp. 
logED50 

Pred. 
logED50 

Residual
 

 

49e 
 

L-Lys-ε-(eicosanoyl)-N1-spermine 
 

 

6.460 
 

 

0.810 
 

 

1.052 
 

 

-0.242 
 

50 D-Lys-ε-(stearoyl)-N1-spermine 
 

8.800 
 

0.944 
 

0.988 
 

-0.044 
 

51 L-Lys-ε-(stearoyl)-N1-spermine 
 

16.390 1.215 0.888 0.327 

52 L-Lys(ene-Δ11-stearoyl)-N1-spermine 
 

4.200 0.623 0.812 -0.189 

53 L-Lys-ε-(heptadecanoyl)-N1-spermine 
 

6.710 0.827 0.990 -0.163 

54c L-Lys-ε-(hexadecanesulfonamide)-N1-spermine 
 

5.930 0.773 1.277 -0.504 

55 D-Lys-ε-(palmitoyl)-N1-spermine 
 

9.940 0.997 0.926 0.071 

56 L-Lys(palmitoyl)-N1-spermine  
 

10.740 1.031 0.962 0.069 
57 L-Lys(ene-Δ9-palmitoyl)-N1-spermine 

 

3.820 0.582 0.494 0.088 

58 L-Lys-ε-(myristoyl)-N1-spermine 
 

5.630 0.751 0.986 -0.235 

59 L-Lys-ε-(octanoyl)-N1-spermine 
 

12.970 1.113 1.112 0.002 

60b D-Lys-ε-(isopropyl)-N1-spermine 
 

298.850 2.475 - - 

61b D-Lys-ε-(dimethylpropyl)-N1-spermine 
 

327.040 2.515 - - 

62 D-Lys-ε-(2-norbornaneacetoyl)-N1-spermine 
 

16.160 1.208 0.915 0.293 

63c D-Lys-ε-(4-biphenycarboxamide)-N1-spermine 
 

7.860 0.895 1.554 -0.659 

64 L-Lys-ε-(4-(1-pyrene)-butanoyl)-N1-spermine 
 

7.090 0.851 0.296 0.555 

65b L-Lys-ε-(methylpolyethyleneglycolpropionyl)-N1-
spermine 
 

310.950 2.493 - - 

66b L-Lys-ε-(2-[2-(2-methoxyethoxy)ethoxy]acetoyl)-N1-
spermine 
 

572.500 2.758 - - 

67b L-Lys-ε-(2-(2-methoxyethoxy)acetoyl)-N1-spermine 
 

495.190 2.695 - - 

68 L-Lys-ε-(hexadecyl)-N1-spermine 
 

5.560 0.745 0.619 0.126 

69 L-Lys-ε-(ene -Δ11-hexadecyl)-N1-spermine 
 

2.590 0.413 -0.049 0.462 

70 D-Lys-ε-(n-heptyl)-N1-spermine 
 

3.860 0.587 0.751 -0.164 

71 L-Lys-ε-(n-heptyl)-N1-spermine 
 

5.990 0.777 0.696 0.081 

72 L-Lys-ε-(bis-(n-heptyl))-N1-spermine 
 

2.140 0.330 0.355 -0.025 

73 L-Lys-ε-(n-hexyl)-N1-spermine 
 

7.130 0.853 0.877 -0.024 

74 D-(S)-Lys-ε-(ene-Δ6(3,7-dimethyl-1-octyl))-N1-spermine 
 

9.550 0.980 0.951 0.029 

75 L-Lys-ε-(3,3-dimethyl-1-butyl)-N1-spermine 
 

12.070 1.082 1.174 -0.092 

76d D-Lys-ε-(3,3-dimethyl-1-butyl)-N1-spermine 
 

10.930 1.039 1.244 -0.205 

77d D-Lys-ε-(3-methylpropyl)-N1-spermine 
 

100.580 2.003 1.385 0.618 

78d L-(R)-Lys-ε-((2-isoproply-5-methyl)cyclohexyl)-N1-
spermine 
 

16.080 1.206 1.280 -0.074 

79d L-Lys-ε-(bis-(cyclohexyl))-N1-spermine 
 

4.040 0.606 0.099 0.507 

80d D-Lys-ε-(4-phenylbenzyl)-N1-spermine 3.710 0.569 0.056 0.513 
 

a Compounds no. 1-12, 13-46 and 47-80 were derived from [39], [31] and [27], respectively; b Compounds 
identified as inactive and removed from data set; Compounds identified as outliers in Models c 1, d 2, e 3, f 4, 
and g 5 according to standardized residual cut-off of 2. 
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Figure 7. Chemical structures of the anti-endotoxin dataset. 
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Overview of artificial neural network 

Artificial neural network (ANN) is a computational model that mimics the learning process of the 
human brain. This is performed in a supervised manner where the model attempts to find a relationship 
between the independent and dependent variables. ANN is comprised of multiple layers of artificial 
neurons that are interconnected in a feed-forward manner where signals are relayed from the input 
layer through the hidden layer and finally to the output layer. The connections among the network of 
neurons are assigned numerical values known as weights which alter the signal flow through the neural 
network and governing its predictive performance. Particularly, the weights are adjusted adaptively to 
reduce the error by back-propagating signals from the output layer back to the input layer through the 
hidden layer. Readers are referred to the excellent book by Zupan and Gasteiger [32] for further 
methodological information. 

Prediction of LPS neutralization activity 

The predictive model of LPS neutralization activity was developed using back-propagation neural 
network as calculated by Weka, version 3.4.3 [44]. The independent variables, comprising of TAE 
descriptors and quantum chemical descriptors, of each compound were normalized to a range of 0 and 
1 according to the following equation:  

minmax

min

xx
xxx i

norm −
−

=       (2) 

where normx , ix , minx , maxx  represent the normalized data, the value of each instance, the minimum 

value, and the maximum value of the dataset, respectively.  
The optimal neural network parameters were obtained by an empirical trial-and-error search of the 

number of nodes in the hidden layer, the learning epoch size, the learning rate (η) and momentum (μ) 
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constant. A learning epoch refers to a complete cycle of data propagated through the layers of the 
network in a feed-forward manner. η controls the speed of weight adjustment, while μ prevents sudden 
changes in attaining the solution. Under an incremental tuning of such parameter, root mean square 
error (RMS) was simultaneously measured as an indicator of predictive error, which is calculated 
according to the following equation: 

( )

n

ap
RMS

n

i
ii∑

=

−
= 1       (3) 

where ip , ia , and n  represent the predicted output, the actual output and the number of compounds in 

the dataset, respectively. As each neural network calculation operates via random initialization of the 
weights, the averaged RMS of ten runs was used as a measure of predictive error by adjusting the 
random seed from 0 to 9. 

Internal validation procedure 

Generation of training and testing sets was made using leave-one-out cross-validation (LOO-CV). 
Briefly, LOO-CV involved the leaving out of one molecule as the testing set and using the remaining 
as training set. This is performed iteratively until all samples were given the chance to be left out as 
testing sets. 

Statistical analysis 

The adjusted R2 takes into consideration such information as the number of independent variables 
that are present in the predictive model. This is calculated according to the following equation: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅−−=
pn

nRRadj
1)1(1 22      (4) 

where n is the sample size and p is the number of independent variables. 
The F ratio measures the explained variance (R2) in relation to the unexplained variance (1 – R2) 

with m and 1−−mn  degrees of freedom: 

( ) ( ) ( )11 2

2

1, −−−
=−− mnR

mRF mnm     (5) 

where m is the number of independent variables and n is the number of compounds presented in the 
data set. 

Outlying molecules were identified by standardization of the residuals according to the following 
equation: 

∑
=

−

−
= N

i
jij

jij
ij

Nxx

xx
x

1

2

sin

)(
     (6) 

where sin
ijx  represents the standardized residual, ijx  represents the residual of each sample, jx  

represents the mean of the residual, and N  represents the sample size of the data set. The cut-off value 
for the absolute standardized residual was set to 2. 
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