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Abstract: Since the serendipitous discovery of ferrocene by Pauson and Kealy in 1951, it 

has become one of the most important structures in Organic Chemistry. Lately, kinetic 

resolution has emerged as a useful tool for the synthesis of planar chiral ferrocenes. This 

review aims to cover and discuss the development of this topic. 
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1. Introduction 

Chiral ferrocenes are of interest in several areas. Their main use is in asymmetric catalysis as chiral 

ligands of transition-metal complexes [1]. Applications have been found in asymmetric hydrogenation 

[2], hydrosilylation [3,4], aldolization [5,6], Michael additions [7], cross coupling reactions [8], and 

asymmetric additions of diethyl zinc to aldehydes [9]. 

Chiral ferrocenes have also been used as modular units in materials science, e.g. in ferroelectric 

liquid crystals or in non-linear optics [10]. Finally, chiral ferrocenes could be of importance as 

structural unit of products with biological or biochemical activities [11]. In this review, we intend to 

present the various ways to prepare enantiopure chiral planar ferrocenes via kinetic resolution. 

Enantiopure 1,2-disubstituted ferrocenes with both planar and central chirality can be obtained with 

the procedure described by Ugi et al.: diastereoselective ortho-lithiation with n-BuLi of homochiral (α-

dimethylamino)ethylferrocene followed by reaction with a suitable electrophile [12]. In addition to this 

method, a chiral acetal of ferrocenecarboxaldehyde can be used as substrate for ortho-lithiation [13]. 
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Electrophilic quenching of the metallated compound and subsequent removal of the chiral moiety 

affords enantiopure ortho-substituted ferrocenecarboxaldehydes with planar chirality. Other ortho-

directing auxiliary groups which allow metallation of enantiopure ferrocenes in order to attain planar 

chirality are oxazolines [14–16] or sulfoxides [17]. Snieckus’ enantioselective ortho-metallation of 

achiral ferrocene carboxamides by the butyllithium–sparteine system also gives access to planar-chiral 

ferrocenes [18]. 

Enzymatic resolution of 1,2-disubstituted ferrocenes is, on the other hand, a different approach for 

the preparation of enantiopure 1,2-disubstituted ferrocenyl compounds to be used as starting materials 

in the synthesis of different types of enantiopure ferrocenes of established planar chirality. These 

procedures avoid the need of stoichiometric sources of chirality. Furthermore, as it is still much easier 

and less expensive to access racemates, so resolution strategies must always be carefully evaluated 

against any asymmetric process [19]. 

2. Enzymatic Kinetic Resolutions 

In 1990, Yamazaki et al. oxidized 1,2-bis(methylthiomethyl)ferrocene (1) with Corynebacterium 

equi IFO 3730 to give monosulfoxide 2 (see Scheme 1) in two diastereomeric forms (4:1) [20]. This 

constituted a desymmetrization of a prochiral ferrocene. Two diastereomers which shared the same 

planar chirality were obtained as a result; that is, the bacterial monooxygenase generated specific 

planar chirality, even if it was not very stereoselective in forming a chiral center about the sulphur 

atom. Anyway, its enantiotopic differentiation between two side chains was considerable. 

 

Scheme 1. Desymmetrization of 1,2-bis(methylthiomethyl)ferrocene (1) 
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Until early the 90s, most of the reported studies using enzymes to effect selective transformations 

were concerned with central chirality. In 1992, Izumi and co-workers reported the enzymatic kinetic 

resolution of [4](1,2)ferrocenophane derivatives [21]. 

In order to perform the resolution of (±)-[4](1,2)ferrocenophan-1-one (3), they had to subject enol 

acetate derivative 4 to hydrolysis by commercial lipases, because bakers’ yeast did not effect the 

reduction of 3. When enol acetate 4 was incubated with the lipase of Pseudomonas fluorescens (7) in 

phosphate buffer, the hydrolysis proceeded rapidly to afford optically active (+)-(R)-3, with 24% ee, 

and recovered enol acetate (+)-(S)-4 with very high enantiomeric excess (> 99%). 
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Scheme 2. Kinetic resolution of (±)-[4](1,2)ferrocenophan-1-one (3). 

 
 

In a related substance, racemic acetate 8, Porcine pancreatic lipase, Candida cylindracea lipase and 

lipase 7 did not give satisfactory results. Lipase-MY (Candida cylindracea, 9) in diisopropyl ether, on 

the other hand, allowed hydrolysis of substrate (±)-8 to (+)-(1R)-1-hydroxy-(R)-[4](1,2)-

ferrocenophane (+)-(1R,pR)-10 with 99% ee at 19% yield, and recovery of (-)-(1S)-1-acetoxy-(S)-

[4](1,2)ferrocenophane (-)-(1S,pS)-8, with 30% ee at 40% yield, which represents a selectivity value 

of 400. 

 

Scheme 3. Kinetic resolution of (±)-1-acetoxy-[4](1,2)ferrocenophane (8). 

 
 

On the other hand, the lipase-catalyzed transesterification of (+)-10 was performed, affording (+)-

(1R,pR)-8 with vinyl acetate (or the related product with vinyl butyrate) and (-)-(1S,pS)-10, obtaining 

selectivity values up to 430 when lipase PS (7) and vinyl butyrate were used. The order of the effect of 

the acyl donors on the enantioselectivity was found to be vinyl butyrate > vinyl acetate (the rate of 

esterification was about 2-10 times slower than that using vinyl butyrate). The addition of molecular 

sieves had a dramatic effect on the reaction rate, by adsorbing the acetaldehyde that is released in  

the reaction. 

Nicolosi and co-workers prepared enantiopure ferrocenyl sulfides possessing planar chirality by 

means of lipase-assisted resolutions in 1996-1997 [22,23]. This was of special importance given that 

the few enantiopure sulfur-containing ferrocenes reported in the literature had been mainly prepared by 

modifying substituents in enantiopure ferrocenes or by diastereoselective synthesis. Nicolosi’s group 

resolved racemic ferrocenyl sulfides 11 with lipases from Candida antartica (Novozym® 435, 13) or 

Mucor miehei (Lipozyme® IM, 14) and vinyl acetate (15) or vinyl propionate (16), with selectivity 

values up to 34. In the case of phenyl thioether, the reaction with vinyl acetate gave unsatisfactory 

enantioselectivities, for this reason, a vinyl ester with a bulkier acyl group, namely vinyl propionate 

(16), was chosen, with a significant increase in enantioselectivity when Novozym® 435 (13) was used. 

On the other hand, for the tert-butyl thioether, Lipozyme 14 gave better results in terms of reaction rate 

and enantioselectivities. 
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Scheme 4. Kinetic resolution of ferrocenyl sulfides (±)-11. 
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With ferrocenyl sulfides 11 in hand (all of them with S planar chirality and high ee), the 

corresponding ferrocenyl sulfoxides were obtained by oxidation with sodium metaperiodate. These 

sulfoxides were obtained as mixture of diastereomers from methyl and phenyl thioethers, while tert-

butyl thioether yielded a single product (1S,pS-isomer). 

Although lipases from different sources had been found to catalyze the kinetic resolution of various 

ortho-substituted hydroxymethylferrocenes, when the substituent is a halogen atom, low enantiomeric 

excesses had been obtained. The first efficient resolution of such structures appeared in 1998 [24]. 

Nicolosi and co-workers used a lipase from Candida Antarctica (Novozym® 435, 13) to resolve  

2-hydroxymethyl-1-iodoferrocene (±)-17, which is the same lipase successfully employed in the above 

mentioned resolution of ferrocenyl sulfides. 

 

Scheme 5. Kinetic resolution of 2-hydroxymethyl-1-iodoferrocene (±)-17. 

 
 

The iodoferrocene 17 was subjected to transesterification with vinyl acetate 15 in dichloromethane 

in the presence of a lipase from Candida antarctica (13), which shows 2S-stereopreference. The 

resolution reached satisfying levels for preparative uses (E = 67)., and the reaction could be carried out 

in a multigram scale until substrate conversion of 52%, which afforded unreacted alcohol (+)-17 with 

96% ee and ester (-)-18 with 89% ee. The enantiomers of 2-hydroxymethyl-1-iodoferrocene could be 

subjected to copper-assisted substitution reactions to give new enantiopure 1,2-disubstituted 

ferrocenes, as well as to coupling to afford 2,2’-disubstituted-1,1’-biferrocenes. 

Studies on the influence of additives on the outcome of enzymatic reactions are not frequent in the 

literature. Until 2008, few efforts have been made in order to improve an enzymatic kinetic resolution 

of a ferrocene-substrate with planar chirality. In that year, Aribi-Zouioueche, Riant and co-workers 

studied the effects of various additives on the transesterification enzymatic resolution of (±)-11 using 

Candida rugosa lipase as a catalyst [25]. 
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Scheme 6. Kinetic resolution of ferrocenyl sulfides (±)-11. 

 
 

The first thing they noticed was that molecular sieves had beneficial effects on the reaction rate and 

a slight improvement in the selectivity factor, while the addition of water or ethylene glycol 

completely inhibited the reaction, concluding that the quantity of residual water in the reaction media 

had a strong influence on both the activity and the selectivity of the process. 

Then, they examined the effect of the addition of commercially available O-(4-

chlorobenzoyl)hydroquinine (20), which meant a large enhancement of the reactivity and selectivity of 

the lipase: an E-value of 143 could be reached at 53% conversion with vinyl acetate as the acylating 

agent in toluene. In tert-butyl methyl ether, cinchonidine (21) gave the best selectivity. With 

isopropenyl acetate as acylating agent, on the other hand, the best selectivities were reached with 

quinine (22) and cinchonine (23) in toluene. No reaction took place when the experiments were carried 

out in the presence of an additive, an acylating agent and without any addition of the enzyme. Thus, 

the interaction of the additive and the lipase was responsible for both reactivity and enantioselectivity 

of the catalytic system. It was noticed that the rationalization of the impact of the structure of the 

alkaloid derivatives on the selectivity of the reaction constituted a severe difficulty. 

 

Figure 1. Additives studied in the kinetic resolution of 2-hydroxymethyl-1-phenylthioferrocene (11). 

 
 

Simple organic bases were also selected as additives in order to check the influence of a simple 

Lewis base on the reactivity of the system. Triethylamine and pyridine gave very little differences with 

the reference reactions. Stronger Lewis bases such as DMAP completely inhibited the reaction. 

DABCO significantly increased the enantioselectivity; it could be postulated that this fragment of the 

alkaloid might intervene in the catalytic cycle to facilitate the access of the substrate to the active site 

of the enzyme. 

In 2009, the same group further optimized the kinetic resolution of 2-hydroxymethyl ferrocenyl 

sulfides (±)-11 (see Schemes 4 and 6) in order to offer a simple and scalable protocol for the 
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production of both enantiomers. This kinetic resolution had been studied by Nicolosi et al., albeit with 

modest selectivities (E < 40) [26]. 

The Candida cylindracea lipase 24 gave an excellent selectivity of E = 267, albeit with very low 

reactivity. Immobilized Candida antarctica lipase (13, 40 mg per mmol of substrate) allowed to reach 

a 48% conversion of the starting alcohol after 72 h and a selectivity of E = 152. This result represents a 

significant improvement over previously published data. It was also found that a high concentration of 

the acylating agent is susceptible to induce the reversibility of the enzymatic reaction; therefore, a 

lesser amount of vinyl acetate with an increased amount of the lipase effected an increase in both 

conversion and selectivity. Screening of the acylating agent and solvent allowed them to conclude that 

isopropenyl acetate in TBME gave the best results, reaching an optimized conversion after 24 hours 

with a selectivity value of 168. 

When tests were conducted in order to find out the feasibility of recovering the lipase, they 

concluded that, even if recovered by filtration, lipase always showed high selectivities, but a decrease 

of reactivity was always observed, thus preventing its effective reuse in successive acylation reactions. 

Both enantiomers of sulfide 11 were oxidized to the corresponding sulfoxides 25 with an 

equimolecular amount of m-CPBA (26), giving only one diastereomer in each case. The obtained 

sulfoxides 25 were then used in a trans-metallation-electrophilic sequence to prepare the 2-substituted 

ferrocenyl alcohols 27. 

 

Scheme 7. Synthesis of 1,2-disubstituted ferrocenes with planar chirality 27. 

 

3. Non-Enzimatic Kinetic Resolutions 

The first non-enzymatic kinetic resolution of a ferrocene with planar chirality was reported, to the 

best of our knowledge, in 2003, when Uemura and co-workers prepared C2-symmetric cyclic selenides 

29 and 30 having an optically active binaphthyl skeleton and converted them into the corresponding 

selenoxides 31 and 32, by sequential use of selenium (35) and lithium triethylborohydride (36), and 

meta-chloroperbenzoic acid (26) and potassium carbonate (37) [27]. 

With these selenoxides in hand, they firstly investigated the kinetic resolution of 2-oxazolin-2-

ylferrocenylphosphine 38 using the selenoxide 31. Reactions were carried out in CCl4 at rt for 24 h. the 

addition of phenol slightly improved the process, with a selectivity factor of 2.3. When selenoxide 32 

was used, no asymmetric induction occurred. 
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Scheme 8. Synthesis of cyclic selenoxides 31 and 32. 

 
 

Scheme 9. Kinetic resolution of 2-oxazolin-2-ylferrocenylphosphine (38). 

 

Other racemic oxazolinylferrocenylphosphines and N,N-dimethylaminomethylferrocenylphosphine 

were investigated for this kinetic resolution using 31 or 32. Even with the addition of phenol, worse 

results than with substrate 38 were obtained. 

The first example of a highly enantioselective metal-catalyzed kinetic resolution of planar-chiral 

ferrocene substrates had to wait until 2006. Moyano and co-workers published a kinetic resolution of 

2-substituted 1-vinylferrocenes 40 via asymmetric dihydroxylation (AD) [28]. Theoretical calculations 

on the AD of styrene show that in the transition state the phenyl and the alkene moieties present a 

coplanar geometry. They reasoned that a similar coplanarity requirement should be operative in the 

AD of 2-substituted vinyl ferrocenes. If this was the case, the presence of a bulky substituent adjacent 

to the vinyl group would strongly destabilize one of the two limiting planar conformations of the 

molecule, so that for a given enantiomer of a 2-substituted-1-vinylferrocene one face of the olefin 

would be much more reactive than the other. 

Scheme 10. Kinetic resolution of 2-substituted 1-vinylferrocenes 40 via AD. 
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Indeed, the resolution of compounds 40 took place with good enantioselectivity factors (up to 62,3). 

Clear-cut kinetic resolutions were achieved in all instances, although the E values were dependent both 

on the nature of the 2-substituents and on the AD ligand. The (DHQD)2PYR ligand 42 was more 

selective for a given olefin than the (DHQ)2PYR 43. The enantioselectivity factor of the kinetic 

resolution was clearly affected by the bulkiness of the 2-substituent, ferrocenylethenes with bulkier 

substituents (CON(iPr)2, 4,4-dimethyl-1,3-oxazolin-2-yl) showing higher enantioselectivity factors 

than the less bulky ones (TMS, I). 

The same year, Ogasawara et al. reported the kinetic resolution of planar-chiral 1,1’-

diallylferrocene derivatives 44 by Mo-catalyzed asymmetric ring-closing metathesis (ARCM) [29, 30]. 

The ferrocene substrates chosen for this study possess a trisubstituted η5-(C5H2-1-allyl-2,4-R1
2) ligand, 

which constructs a planar-chiral environment in the ferrocenes, and a monosubstituted η5-

cyclopentadienyl ligand with an allylic side chain. A readily available chiral molybdenum species (45) 

was chosen as an asymmetric metathesis catalyst. 

 

Scheme 11. ARCM kinetic resolution of planar-chiral ferrocenes 44 and metathesis 

catalysts 45 and 48. 
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Enantioselectivity in the ARCM kinetic resolution was strongly dependent on the structure of the 

allylic group in the monosubstituted cyclopentadienyl moiety. When this group was not substituted 

(R2=R3=R4=H, 44a), the selectivity of the reaction was very low. The RCM reaction of 44b, which had 

a crotyl group, showed slightly better enantioselectivity. With a cinnamyl group (44c), 

enantioselectivity was further improved, although diluted conditions were required to suppress 

formation of metathesized homodimer 47. E was estimated to be 6.4. 

The enantioselectivity was dramatically improved by introducing a methallyl moiety (R2=R3=H, 

R4=Me, 44d). The bridged ferrocene 46d was obtained in nearly enantiomerically pure form (>99.5% 

ee) in 23% yield, which represented a selectivity value of >500. However, diluted conditions were 
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needed in order to minimize the dimer 47 formation. Somewhat higher temperature (50 ºC) was 

required to gain a reasonable reaction time, being the enantioselectivity still excellent (E = 183). 

Unreacted enantioenriched 44 could be transformed into 46 with the second-generation  

Grubbs catalyst. 

In 2009, the first organocatalytic kinetic resolution of a planar-chiral ferrocenecarbaldehyde was 

reported. Rios, Moyano and co-workers described the resolution of 2-(2-pyrimidyl)-

ferrocenecarbaldehyde 49 [31]. When the racemic aldehyde 49 was reacted with acetone in DMSO as 

a solvent and L-proline (52) as a catalyst, they obtained enantioenriched starting material, together 

with two different optically active reaction products: the crotonized adduct 50 and aldol 51, which was 

obtained in a highly diastereopure fashion. They found (pR)-stereochemistry for the recovered starting 

material and an (R,pS) configuration for the aldol.  

 

Scheme 12. Organocatalytic kinetic resolution of 2-(2-pyrimidyl)ferrocenecarbaldehyde (49). 

 
 

The selectivity factor for this resolution was E = 9.2. The kinetic resolution took place, therefore, 

with moderate selectivity. The observed stereochemical outcome of the resolution fit reasonably well 

within the mechanistic model commonly accepted for proline-catalyzed aldol reactions. 

4. Conclusions 

In summary, we have described a whole set of methodologies for the synthesis of planar chiral 

ferrocenes via kinetic resolution. These resolutions can be made via enzymatic resolution in a classical 

way, or via chemical kinetic resolution. In both cases, the final planar chiral ferrocenes can be obtained 

with excellent selectivities. In any case, this field remains open, as the importance of planar chiral 

ferrocenes in chemistry as catalysts and/or building blocks is increasing. This fact has encouraged 

different groups to focus their research efforts in the development of new and improved 

methodologies.  
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