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Abstract: 2-Acetylcyclopentanone undergoes a smooth reaction with triphenylphosphine 
and dialkyl acetylenedicarboxylates to produce dialkyl 2-(1-acetyl-2-oxocyclopentyl)-3-
(1,1,1-triphenyl-λ5-phosphanylidene)succinates. These compounds undergo intra-
molecular Wittig reactions in boiling benzene to produce highly strained spirocyclobutene 
derivatives, which spontaneously undergo ring-opening reactions to produce dialkyl (E)-2-
[1-(2-oxocyclopentyliden)ethyl]-2-butenedioates. 
 
Keywords: 2-Acetylcyclopentanone, phosphorus ylides, spirocompounds, intramolecular 
Wittig reaction. 

 
 
Introduction  

 
Phosphorus ylides are reactive compounds which participate in many valuable syntheses of 

organic products [1-4]. Phosphorus ylides are interesting synthetic targets because of their importance 
in a variety of industrial, biological and chemical synthetic usages [5-9]. These ylides are usually 
prepared by treatment of a phosphonium salt with a base, and the phosphonium salts are usually 
obtained from the phosphine and an alkyl halide and also Michael addition of phosphorus nucleophiles 
to activated olefins. 
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In recent years the three-component reactions of triphenylphosphine, electron-deficient derivatives 
and ZH-acids (Z=C, O, N, S) that leads to phosphorus ylides have been reported by Yavari et al. [10-
15]. We here report the reaction of 2-acetylcyclopentanone (2, acting as a CH-acid) and dialkyl 
acetylenedicarboxylates 1 in the presence of triphenylphosphine. These reactions lead to 
diastereomeric phosphorus ylides 3. These compounds undergo intramolecular Wittig reactions in 
boiling benzene to produce spirocompounds 4, which spontaneously undergo ring-opening reactions to 
produce dialkyl (E)-2-[1-(2-oxopentyliden)ethyl]-2-butenedioates 5 (Scheme1). 
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Results and Discussion 

 
We have not established a mechanism for the formation of 5a-c experimentally, but a reasonable 

possibility is indicated in Scheme 2. On the basis of the well established chemistry of trivalent 
phosphorus nucleophiles [1, 5, 6], it is reasonable to assume that the initial addition of 
triphenylphosphine to the acetylenic ester and subsequently the protonation of the 1:1 adduct was 
followed by attack of the carbon moiety of the enolate of CH-acid to the vinylphosphonium cation 6 to 
generate ylide 3.  

Phosphorus ylides 3a-c then undergo smooth reactions in boiling benzene to produce 
triphenylphosphine oxide and spirocompounds 4a-c. These compounds were unstable and were not 
isolated, but rather they are spontaneously converted to functionalized 1,3-dienes 5a-c. (Scheme 2). 

Compounds 3a-c possess two stereogenic centers, and two diastereomers are expected (I and II) to 
form (Scheme 3), and indeed two diastereomers were isolated from the reaction mixtures. It should be 
pointed out that both diastereomeric ylides (I and II) were converted to 1,3-dienes with the same 
geometry, indicating that the ring opening reactions did not take place as a concerted reaction. 
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Scheme 2. 
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Scheme 3. 
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The structures of the compounds 3a-c were deduced from their elemental analyses, high field 1H- 
and 13C-NMR as well as IR spectra data. The 1H- and 13C-NMR spectra of diastereomeric ylides 3a-c 
were consistent with the presence of two geometric isomers. The ylide moiety of these compounds is 
strongly conjugated to the adjacent carbonyl group and a rotation around the partial double bond in the 
3-(E) and 3-(Z) geometric isomers (Figure 1) is relatively slow on the NMR time scale at ambient 
temperature. 

 
Figure 1. 
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The geometries of the double bonds in compound 5 were established using 1H-NMR data. For the 
double bond bearing two ester groups, we considered the chemical shift of the vinylic proton. If the 
vinylic proton is in a cis position relative to the ester group on the adjacent carbon atom, an anisotropy 
effect is imposed by the carbonyl of the cis ester group which causes a deshielding effect on this 
proton, so this proton usually appears at a frequency higher than 6.5 ppm [16], as it was clearly 
observed in our 1H-NMR spectra of compounds 5a-c. Therefore, it can be concluded that the vinylic 
proton is located in the cis position with respect to the vicinal esteric group. We also investigated the 
stereochemistry of the compound 5 by using a NOE experiment. In the decoupling process of the 
methyl protons, the NOE difference spectrum did not show a nuclear Overhauser enhancement of the 
CH2 protons of the cyclopentanone moiety nor the vinylic proton. The irradiation of the CH2 protons  
also the vinylic proton lead to no enhancement of the intensity of the CH3 protons. On the basis of 
these results, the geometry for the compound 5 is as indicated in Scheme 3. 
 
Conclusions 
 

In conclusion, the present method may be considered as a practical route for the synthesis of the 
stable phosphorus ylides and electron deficient 1,3-butadienes. This procedure has advantages of high 
yeild, mild reaction conditions, and simple experimental and work-up conditions. 
 
Experimental  
 
General 
 

Triphenylphosphine, dialkyl acetylenedicarboxylate and 2-acetyl cyclopentanone were obtained 
from Fluka (Buchs, Switzerland) and were used without further purification. Melting points were 
measured on an Electrotermal 9100 apparatus and are uncorrected. 1H- and 13C-NMR spectra were 
measured with a Bruker DRX-500 AVANCE spectrometer at 500 and 125.8 MHz, respectively. 
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Elemental analyses were performed using a Heraeus CHN-O-Rapid analyzer.  IR spectra were 
recorded on a Shimadzu IR-470 spectrometer.   

 
General procedure for preparation of 
dialkyl 2-(1-acetyl-2-oxocyclopentyl)-3-[1,1,1-triphenyl-λ5-phosphanylidene]succinates (exemplified 
by 3a) 
 

A mixture of dimethyl acetylenedicarboxylate (0.245 mL, 2 mmol) in CH2Cl2 (4 mL) was added 
dropwise at -10 ºC over 10 min. to a magnetically stirred solution of 2-acetylcyclopentanone (2, 0.252 
g, 2 mmol) and triphenyl phosphine (0.524 g, 2 mmol) in CH2Cl2 (10 mL). The mixture was allowed to 
stand at room temperature along with stirring for 24 hours. The solvent was removed under reduced 
pressure and the residue was purified by silica gel column chromatography (Merck silica gel 60, 230-
400 mesh) using ethyl acetate-hexane (30:70) as eluent. Two diastereomers were isolated. The solvents 
were removed under reduced pressure to give ylides 3a-I and 3a-II as white powders. 
 
Dimethyl 2-(1-acetyl-2-oxocyclopentyl)-3-[1,1,1-triphenyl- λ5-phosphanylidene] succinate (3a) 
 
First diastereomer (3a-I): M.p. 126-128.5 ºC; yield 50 %; IR (KBr, νmax, cm-1): 1755, 1730 and 1705 
(C=O), 1629 (C=C); MS m/z (%): 530 (M+, 10), 499 (M+-OCH3, 14), 471 (M+-CO2Me, 25), 487 (M+-
CH3CO, 18), 268 (M+- PPh3, 25), 209 [M+- (PPh3+CO2Me), 37], 43 (CH3CO+, 100); Anal. calcd. for 
C31H31O6P (530.56); C, 70.18; H, 5.89%. Found: C 70.06; H, 5.83%; 1H-NMR (CDCl3) 3a-I (Z):  δH 

1.42-1.50 (2H, m, CH2), 1.60 (3H, s, CH3), 1.97-2.13 (2H, m, CH2), 2.58-2.82 (2H, m, CH2), 2.92 and 
3.70 (6H, 2s, 2OCH3), 3.56 (1H, d, 3JPH=18.4 Hz, CH), 7.4-7.7 (15H, m, -Ph); 13C-NMR (CDCl3): δC 
20.12 (CH2), 27.64 (CH3), 29.81 (CH2), 37.31 (CH2), 39.38 (d, 1JPC = 122.5 Hz, P=C), 40.09 (d, 2JPC = 
13.4 Hz, CH), 48.71 and 51.83 (2OCH3), 73.94 (cyclopentanone quaternary carbon), 127.61 (d, 1JPC = 
91.4 Hz, Cipso), 128.58 (d, 3JPC = 11.7 Hz, Cmeta), 131.9 (Cpara), 133.97 (d, 2JPC = 9.4 Hz, Cortho), 169.94 
(d, 2JPC = 13.1 Hz, C=O ester), 174.24 (d, 3JPC = 5.3 Hz, C=O ester), 203.70 and 216.22 (2C=O, 
ketones). 3a-I (E) (31 %) 1H-NMR (CDCl3): δH 1.55 (3H, s, CH3), 1.62-1.65 (2H, m, CH2), 2.2-2.40 
(2H, m, CH2), 2.48-2.53 (2H, m, CH2), 3.43 and 3.68 (2OCH3), 3.59 (1H, d, 3JPH = 18.5 Hz, CH), 7.4-
7.67 (15H, m, -Ph); 13C-NMR (CDCl3): δC 21.5 (CH2), 25.44 (CH3), 29.14 (CH2), 37.5 (d, 1JPC = 127.5 
Hz, P=C), 38.70 (CH2), 48.12 (d, 2JPC = 13.2 Hz, CH), 49.65 and 52.34 (2OCH3), 73.26 (cyclo-
pentanone quaternary carbon), 126.7 (d, 1JPC = 91.7 Hz, Cipso), 128.2 (d, 3JPC = 11.5 Hz, Cmeta), 131.6 
(Cpara), 132.13 (d, 2JPC = 9.9 Hz, Cortho), 168.5 (d, 2JPC = 12.8 Hz, C=O ester), 174.8 (d, 3JPC = 5.2 Hz, 
C=O ester), 203.65 and 215.02 (2C=O, ketones). 
 
Second diastereomer (3a-II): M.p. 151-152 ºC; yield 45 %; IR (KBr, νmax, cm-1): 3059 and 2987 (CH), 
1751, 1726 and 1689 (C=O), 1629 (C=C); MS m/z (%): 530 (M+, 8), 471 (M+-CO2Me, 18), 487 (M+-
CH3CO, 30), 268 (M+- PPh3, 21), 209 (M+- (PPh3+CO2Me), 28), 43 (CH3CO+, 100); Anal. calcd. for 
C31H31O6P (530.56); C, 70.18; H, 5.89%; Found C 70.05, H 5.78 %; 3a-II (Z) (68 %) 1H-NMR 
(CDCl3):  δH 1.64  (3H, s, CH3), 1.82-1.95 (2H, m, CH2), 2.09-2.18 (2H, m, CH2), 2.88-2.96 (2H, m, 
CH2), 2.80 and 3.69 (6H, 2s, 2OCH3), 3.49 (1H, d, 3JPH = 18.8 Hz, CH), 7.45-7.64 (15H, m, -Ph); 13C-
NMR (CDCl3): δC 20.33 (CH2), 25.45 (CH3), 29.12 (CH2), 39.84 (d, 1JPC = 121.9 Hz, CH), 40.07 
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(CH2), 48.37 (d, 2JPC = 13.4 Hz, CH), 51.82 and 52.22 (2OCH3), 73.97 (cyclopentanone quaternary 
carbon), 127.5 (d, 1JPC = 91.5 Hz, Cipso), 128.43 (d, 3JPC = 12.20 Hz, Cmeta), 131.92 (d, 4JPC = 2.9 Hz, 
Cpara), 134.02 (d, 2JPC = 9.5 Hz, Cortho), 170.39 (d, 2JPC = 13.3 Hz, C=O ester), 175 (d, 3JPC = 6.5 Hz, 
C=O ester), 202.8 and 215 (2C=O, ketones). 3a-II (E) (32 %) 1H-NMR (CDCl3): δH 1.65 (3H, s, CH3), 
1.82-1.95 (2H, m, CH2), 2.09-2.18 (2H, m, CH2), 2.88-2.96 (2H, m, CH2), 3.47 and 3.69 (6H, 2s, 
2OCH3), 3.64 (1H, d, 3JPH = 19.5 Hz, CH), 7.45-7.64 (15H, m, -Ph); 13C-NMR (CDCl3): δC 21.07 
(CH2), 25.84 (CH3), 28.55 (CH2), 39.71 (CH2), 40.58 (d, 1JPC = 129.4 Hz, P=C), 48.37 (d, 2JPC = 13.4 
Hz, CH), 51.82 and 52.22 (2OCH3), 73.97 (cyclopentanone quaternary carbon), 127.3 (d, 1JPC = 90.8 
Hz, Cipso), 128.33 (d, 3JPC = 12.07 Hz, Cmeta), 131.97 (d, 4JPC = 2.83 Hz, Cpara), 132.12 (d, 2JPC = 9.3 Hz, 
Cortho), 171.07 (d, 2JPC = 13.5 Hz, C=O ester), 172.5 (d, 3JPC = 6.9 Hz, C=O ester), 202.3 and 214.8 
(2C=O, ketones).  

 
Diethyl 2-(1-acetyl-2-oxocyclopentyl)-3-[1,1,1-triphenyl- λ5-phosphanylidene] succinate (3b) 
 
First diastereomer (3b-I): M.p. 157.5-159 ºC; yield 53 %; IR (KBr, νmax, cm-1): 1745, 1730 and 1705 
(C=O), 1632 (C=C); MS m/z (%): 558 (M+, 7), 530 (M+-C2H5, 14), 515 (M+-CH3CO, 31), 485 (M+-
CO2Et, 18), 296 (M+- PPh3, 20), 223 [M+- (PPh3+CO2Et), 37], 43 (CH3CO+, 100); Anal. calcd. for 
C33H35O6P (530.56); C, 70.96; H, 6.32%; Found: C 70.88; H, 6.25%; 3b-I (Z) (64 %) 1H-NMR 
(CDCl3): δH 1.18 (3H, t, 3JHH = 7 Hz, CH3), 1.25 (3H, t, 3JHH = 7.2 Hz, CH3), 1.51-1.55 (2H, m, CH2), 
1.57 (3H, s, CH3), 1.85-1.97 (2H, m, CH2), 2.75-2.78 (2H, m, CH2), 3.56 (1H, d, 3JPH = 18.5 Hz, CH), 
3.66-3.68 (2H, m, OCH2), 4.12-4.15 (2H, m, OCH2), 7.46-7.81 (15H, m, -Ph); 13C-NMR (CDCl3): δC 
14.13 and 14.34 (2CH3), 20.17 and 27.70 (2CH2), 29.69 (CH3), 37.38 (d, 1JPC = 122.78 Hz, P=C), 
37.78 (CH2), 49.12 (d, 2JPC = 12.96 Hz, CH), 57.54 and 61.35 (2OCH2), 74.17 (cyclopentanone 
quaternary carbon), 128.16 (d, 1JPC = 92.98 Hz, Cipso), 128.53 (d, 3JPC = 11.82 Hz, Cmeta), 131.86 
(Cpara), 134.07 (d, 2JPC = 9.4 Hz, Cortho), 166.03 (d, 2JPC = 12.8 Hz, C=O ester), 173.87 (d, 3JPC = 6.3 
Hz, C=O ester), 204.51 and 216.40 (2C=O, ketones). 3b-I (E) (36 %); 1H-NMR (CDCl3): δH 1.21 (3H, 
t, 3JHH = 7.1 Hz, CH3), 1.25 (3H, t, 3JHH  = 7.2 Hz, CH3), 1.41-1.46 (2H, m, CH2), 1.62 (3H, s, CH3CO), 
2.07-2.12 (2H, m, CH2), 2.44-2.52 (2H, m, CH2), 3.37-3.39 (2H, m, OCH2), 3.47 (1H, d, 3JPH = 19.8 
Hz, CHCO2Et), 4.12-4.15 (2H, m, OCH2), 7.46-7.81 (15H, m, -Ph); 13C-NMR (CDCl3): δC 13.10 and 
13.60 (2CH3), 19.28 and 25.86 (2CH2), 29.05 (CH3CO), 37.1 (d, 1JPC = 125.8 Hz, P=C), 37.26 
(CH2CO), 48.5 (d, 2JPC = 12.6 Hz, CHCO2Et), 60.97 and 62.15 (2OCH2), 71.5 (cyclopentanone 
quaternary carbon), 127.8 (d, 1JPC = 90.8 Hz, Cipso), 129.89 (3JPC=12.4 Hz, Cmeta), 132.13 (2JPC=9.81 
Hz, Cortho), 134.83 (Cpara), 165.04 (d, 2JPC=13.1 Hz, C=O ester), 170.72 (d, 3JPC = 6.7 Hz, C=O ester), 
203.84 and 215.01 (2C=O, ketones).  

 
Di-tert-butyl 2-(1-acetyl-2-oxocyclopentyl)-3-[1,1,1-triphenyl- λ5-phosphanylidene] succinate (3c)  
 
First diastereomer (3c-I): M.p. 149-149.5 ºC; yield 53 %; IR (KBr, νmax, cm-1): 1752, 1733 and 1705 
(C=O), 1620 (C=C); MS m/z (%): 614 (M+, 5), 571 (M+-CH3CO, 25), 558 (M+-C4H8, 16), 513 (M+-
CO2

tBu, 28), 456 [M+-(CO2
tBu+C4H9), 38], 352 (M+- PPh3, 14), 251 [M+- (PPh3+CO2

tBu), 37], 43 
(CH3CO+, 100); Anal. calcd. for C37H43O6P (614.73): C 72.29, H 7.05 %; Found C 72.15, H 6.95 %; 
3c-I (Z) (59 %) 1H-NMR (CDCl3): δH 0.84 (9H, s, CMe3), 1.47 (9H, s, CMe3), 1.49 (3H, s, CH3), 1.87-
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1.88 (2H, m, CH2), 2.01-2.06 (2H, m, CH2), 2.78-2.83 (2H, m, CH2), 3.37 (1H, d, 3JPH = 16.8 Hz, CH), 
7.4-7.55 (15H, m, -Ph); 13C-NMR (CDCl3): δC 20.28 and 25.83 (2CH2), 28 and 28.44 (2CMe3), 28.21 
(CH3), 37.58 (d, 1JPC = 120.79 Hz, P=C), 38.76 (CH2), 44.92 (d, 2JPC = 14.28 Hz, CH), 74.49 
(cyclopentanone quaternary carbon), 80.65 and 81.67 (2CMe3), 125.8 (d, 1JPC = 85.6 Hz, Cipso), 128.52 
(d, 3JPC = 12.1 Hz, Cmeta), 131.96 (Cpara), 132.1 (d, 2JPC = 9.94 Hz, Cortho), 169.47 (d, 3JPC = 12.8 Hz, 
C=O ester), 175.73 (d, 3JPC = 6.5 Hz, C=O ester), 204.19 and 216.98 (2C=O, ketones). 3c-I (E) (41 %) 
1H-NMR (CDCl3): δH 1.36 (9H, s, CMe3), 1.40 (9H, s,  CMe3), 1.54 (CH3CO), 2.01-2.06 (2H, m, CH2), 
2.51-2.56 (2H, m, CH2), 2.90-2.94 (2H, m, CH2), 3.35 (1H, d, 3JPH = 16.8 Hz, CH), 7.65-7.78 (15H, m, 
-Ph); 13C-NMR (CDCl3): δC 20.28 and 25.16 (2CH2), 28 and 28.04 (2CMe3), 28.13 (CH3), 38.3 (d, 1JPC 

= 122 Hz, P=C), 38.29 (CH2), 49.1 (d, 2JPC = 14.1 Hz, CH), 74.11 (cyclopentanone quaternary carbon), 
81.18 and 81.79 (2CMe3), 126.2 (d, 1JPC = 84.5 Hz, Cipso), 128.30 (d, 3JPC = 11.95 Hz, Cmeta), 131.66 
(Cpara), 135.38 (d, 2JPC = 10.1 Hz, Cortho), 168.80 (d, 2JPC = 13  Hz, C=O ester), 172.56 (d, 3JPC = 6.5 
Hz, C=O ester), 202.41 and 212.82 (2C=O, ketones). 
 
Second diastereomer; (3c-II): M.p. 157.5-159ºC; yield 42 %; IR (KBr, νmax, cm-1): 1748, 1725 and 
1695 (C=O), 1612 (C=C); Anal. calcd. for C37H43O6P (614.72): C 72.29, H 7.05 %; Found C 72.18, H 
6.97 %. 3c-II (Z) (66 %) 1H-NMR (CDCl3): δH 0.85 and 1.50 (18H, 2s, 2CMe3), 1.56 (3H, s, CH3CO), 
1.87-1.92 (2H, m, CH2), 1.97-2.03 (2H, m, CH2), 3.10-3.16 (2H, m, CH2), 3.31 (1H, d, 3JPH = 20 Hz, 
CH), 7.40-7.52 (15H, m, -Ph); 13C-NMR (CDCl3): δC 20.25 and 25.03 (2CH2), 28.26 and 28.31 
(2CMe3), 28.80 (CH3CO), 38.47 (d, 1JPC = 122.3 Hz, P=C), 40.23 (CH2CO), 50.03 (d, 2JPC = 14.1 Hz, 
CH), 74.38 (d, 3JPC = 3.4 Hz, cyclopentanone quaternary carbon), 77.01 and 80.71 (2CMe3), 125.90 (d, 
1JPC = 84.8 Hz, Cipso), 128.1 (d, 3JPC = 11.8 Hz, Cmeta), 131.95 (Cpara), 132.10 (d, 2JPC = 9.4 Hz, Cortho), 
160.9 (d, 2JPC = 13.1 Hz, C=O ester), 173.66 (d, 3JPC = 6.8 Hz, C=O ester), 203.12 and 215.98 (2C=O, 
ketones). 3c-II (E) (34 %) 1H-NMR (CDCl3): δH 1.37 and 1.50 (18H, 2s, 2CMe3), 1.52 (3H, s, 
CH3CO), 2.05-2.19 (2H, m, CH2), 2.43-2.48 (2H, m, CH2), 2.89-2.98 (2H, m, CH2), 3.30 (1H, d, 3JPH = 
21.9 Hz, CH), 7.82-8.1 (15H, m, -Ph); 13C-NMR (CDCl3): δC 20.40 and 24.88 (2CH2), 27.91 and 28.48 
(2CMe3), 29.28 (CH3CO), 40.62 (d, 1JPC = 131.33 Hz, P=C), 39.42 (CH2CO), 49.39 (d, 2JPC = 13.8 Hz, 
CH), 74.02 (d, 3JPC = 3.5 Hz cyclopentanone quaternary carbon), 77.78 and 80.60 (2CMe3), 125.90 (d, 
1JPC = 84.8 Hz, Cipso), 128.52 (d, 3JPC = 12.1 Hz, Cmeta), 131.79 (Cpara), 135.36 (d, 2JPC = 9.9 Hz, Cortho), 
170.83 (d, 2JPC = 13.3 Hz, C=O ester), 173.42 (d, 3JPC = 7 Hz, C=O ester), 202.61 and 215.43 (2C=O, 
ketones). 
 
Preparation of Dimethyl (E)-2-[1-(2-oxocyclopentylidene)ethyl]-2-butenedioate (5a) 
 

Compound 3a (I or II) was refluxed in benzene for 24 hours. The solvent was removed under 
reduced pressure and the viscous residue was purified by silica gel column chromatography (Merck 
silica gel 60, 230-400 mesh) using ethyl acetate-hexane (30:70) as eluent. The solvents were removed 
under reduced pressure to give the product. White powder; m.p. 67-69 ºC, yield 85 %; IR (KBr, νmax, 
cm-1): 1745, 1735 and 1710 (C=O), 1627 (C=C); 1H-NMR (CDCl3): δH 1.94 (2H, t, 3JHH = 7.4 Hz, 
CH2), 1.98 (3H, s, CH3), 2.50 (2H, t, 3JHH = 7.3 Hz, CH2), 2.70 (2H, m, CH2), 3.66 (3H, s, OCH3), 3.73 
(3H, s, OCH3), 6.71 (1H, s, CH); 13C-NMR (CDCl3): δC 19.58 and 22.61 (2CH2), 28.42 (CH3), 39.06 
(CH2), 51.78 and 52.67 (2OCH3), 124.89, 134.74, 139.82 and 149.97 (olefinic carbons), 165.06 and 
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165.22 (2C=O, esters), 206.29 (C=O, ketone); MS m/z (%): 252 (M+, 21), 237 (M+- Me, 25), 221 (M+-
OMe, 34), 193 (M+-CO2Me, 42), 162 [M+-(CO2Me+OMe), 48], 110 (M+-MeO2CCCCO2Me, 100); 
Anal. calcd. for C13H16O5 (252.27): C 61.90, H 6.39 %; Found C 61.77, H 6.30 %. The following 
compounds were prepared similarly: 
Diethyl (E)-2-[1-(2-oxocyclopentylidene)ethyl]-2-butenedioate (5b). White powder; m.p. 66-68 ºC; 
yield 80 %; IR (KBr, νmax, cm-1): 1740, 1730 and 1710 (C=O), 1620 (C=C); 1H-NMR (CDCl3): δH 

1.25-1.44 (6H, m, 2CH3), 2 (2H, t, 3JHH = 7.8 Hz, CH2), 2.04 (3H, s, CH3), 2.30-2.40 (2H, t, 3JHH = 7.7 
Hz, CH2), 2.75-2.77 (2H, m, CH2), 4.17 (2H, q, 3JHH = 7.1 Hz, OCH2), 4.25 (2H, q, 3JHH = 7.1 Hz, 
OCH2), 6.77 (1H, s, CH); 13C-NMR (CDCl3): δC 14.12 and 14.14 (2CH3), 19.62 and 22.16 (2CH2), 
28.45 (CH3CO), 39.08 (CH2), 60.07 and 61.60 (2OCH2), 125.18, 134.55, 140.1 and 149.92 (olefinic 
carbons), 164.57 and 164.9 (2C=O, esters), 203.5 (C=O, ketone); ); MS m/z (%): 280 (M+, 16), 265 
(M+-Me, 22), 207 (M+-CO2Et, 28), 162 [M+-(CO2Et+OEt), 48], 110 (M+-EtO2CCCCO2Et, 100); Anal. 
calcd. for C15H20O5 (280.32): C 64.27, H 7.19 %; Found C 64.15, H 7.08 %. 

 
Di-tert-butyl (E)-2-[1-(2-oxocyclopentylidene)ethyl]-2-butenedioate (5c). White powder; m.p. 64-67 
ºC; yield 87 %; IR (KBr, νmax, cm-1): 1738, 1730 and 1715 (C=O), 1618 (C=C); 1H-NMR (CDCl3): δH 

1.40 and 1.47 (2CMe3), 1.92 (2H, t, 3JHH = 7.4 Hz, CH2), 1.95 (3H, s, CH3CO), 2.22-2.27 (2H, t, 3JHH = 
7.3 Hz, CH2), 2.65-2.70 (2H, m, CH2), 6.54 (1H, s, CH); 13C-NMR (CDCl3): δC 19.62 and 22.44 
(2CH2), 27.92 and 27.98 (2CMe3), 28.48 (CH3), 39.10 (CH2), 81.02 and 81.82 (2CMe3), 126.60, 
133.94, 140.63 and 149.52 (olefinic carbons), 163.86 and 164.43 (2C=O, esters), 205.71 (C=O, 
ketone); MS m/z (%): 336 (M+, 8), 280 (M+- C4H8, 22), 263 (M+-OtBu, 28), 235 (M+-CO2

tBu, 20), 179 
[M+-(CO2

tBu+C4H8), 35], 162 [M+-(CO2
tBu+OtBu), 42], 110 (M+-tBuO2CCCCO2

tBu, 54); Anal. calcd. 
for C19H28O5 (336.43): C 67.83, H 8.38 %; Found C 67.70, H 8.26 %. 
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