Next Article in Journal
Synthesis of New L-Ascorbic Ferulic Acid Hybrids
Previous Article in Journal
Synthesis and Molecular Structure of Ethyl [N-tosyl-(R)-prolyloxy]-2(S)-[4-cyano-8,8-ethylenedioxy-5-oxo-5,6,7,8-tetrahydroindolizin-3-yl] Acetate, a Key Intermediate in the Total Synthesis of (20S)-Camptothecins
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Comparative Study of Regioselective Synthesis of β-Aminoalcohols under Solventless Conditions Catalyzed by Sulfated Zirconia and SZ/MCM-41

by
Guillermo Negrón-Silva
1,*,
C. Xochitl Hernández-Reyes
1,
Deyanira Angeles-Beltrán
1,
Leticia Lomas-Romero
2,
Eduardo González-Zamora
2 and
Juan Méndez-Vivar
2
1
Departamento de Ciencias Básicas UAM, Av. San Pablo No 180. C. P. 02200, México D. F., México
2
Departamento de Química, UAM, Av. San Pablo No 180. C. P. 02200, México D. F., México
*
Author to whom correspondence should be addressed.
Molecules 2007, 12(11), 2515-2532; https://doi.org/10.3390/12112515
Submission received: 29 September 2007 / Revised: 13 November 2007 / Accepted: 13 November 2007 / Published: 15 November 2007

Abstract

:
Sulfated zirconia and SZ/MCM-41 were used as catalysts for the synthesis of β-aminoalcohols via epoxide aminolysis. Sulfated zirconia was prepared by sol-gel and SZ/MCM-41 was obtained by impregnation. Solid catalysts were characterized by XRD, SEM-EDS, UV-Vis, FT-IR pyridine desorption and Nitrogen physisorption. Both acid materials were useful as catalysts, even when they were recycled several times. The β-aminoalcohols were characterized by FT-IR, 1H- and 13C-NMR and GC-MS.

Introduction

Since the discovery that sulfated zirconia (SZ) has a high catalytic activity in organic reactions under mild conditions, it has been the subject of numerous studies on its synthesis, characterization and applications [1]. The strength, nature and structure of sulfated zirconia have been studied for a long time, starting with Arata and Hino [2], who reported that zirconia, upon proper treatment with sulfuric acid or ammonium sulfate, exhibits 104 times stronger acidity than that of 100% sulfuric acid. It is known that sulfated zirconia belongs to the solid superacids family and that the stability, structure and acidity type are directly related to the preparation and sulfation processes. [3] Some authors mention that the strong acidity of sulfated zirconia is due to a combination of Lewis and Brønsted acid sites. Sulfated species with covalent bonds as S=O on the surface of SZ are needed for acidity. Other authors have suggested that water absorption in SZ generates both types of acid sites. In this context, some acid models have been proposed to explain the acid features of SZ [4]. Sulfated zirconia acidity has proven to be useful in organic transformations such as n-butane isomerization, [5] Friedel-Craft acylations, [6,7] fine chemical organic transformations, [8] alcohol dehydrations, [9] and polymerizations [10].
Typically, the surface area of solid catalysts is an important factor that directly influences their catalytic performance. Sulfated zirconia exhibits an area of close to 100 m2g-1. New reports have shown that sulfated zirconia supported on MCM-41 shows an increased surface area, generating a good catalyst for cumene cracking, [11] isomerization of n-butane [12] or n-pentane, [13] and veratrole acylation [14].
β-Aminoalcohols are present in several biologically active natural and synthetic products; unnatural amino acids, chiral auxiliaries, as chiral catalysts in asymmetric synthesis [15], and their existence is fundamental because of their biological and chemical reactivity. One of the most common synthesis methods for β-aminoalcohols is the opening of oxiranes with heteronucleophiles with nitrogen or oxygen. The classical approach for the synthesis of β-aminoalcohols, involving nucleophilic opening of epoxides by amines requires heat treatment and requires an excess of amine. Several catalysts have been utilized in these reactions: montmorillonite [16], Ti(o-i-Pr)4 [17], SmI2, [18] basic metal amides, [19] SmCl3 [20], metal triflates such as Sn(OTf)2, Cu(OTf)2, LiOTf and Yb(OTf)3 [21], ammonium decatungstocerate (IV) [22], RuCl3 [23], zirconium (IV) chloride [24], cyclodextrins [25] and also CeCl3 [26], silica-gel [27], alumina [28], ionic liquids [29], water [30], LiClO4·3H2O [31], and heteropolyacids, for example H3PW12O40 [32, 33] and K5CoW12O40·3H2O [34].
We have successfully used sulfated zirconia for Biginelli condensation reactions, [35] for the Paal Knorr reaction in the synthesis of tetrahydroindolone derivatives [36] and for the acylal protection and deprotection reactions [37]. In this paper we have synthesized, characterized and evaluated sulfated zirconia and SZ/MCM-41 in the oxirane opening with amines to obtain β-aminoalcohols under mild, solventless conditions.

Results and Discussion

Figure 1 corresponds to the sulfated zirconia (SZ) tetragonal phase, in correspondence with ICSD collection code: 066787, given by reflections in 2θ = 30.18° (relative intensity is 100) as well as peaks at 34.616°, 35.283°, 50.214°, 50.770°, 59.291°, 60.187° and 63.724° [38].
Figure 1. XRD of sulfated zirconia.
Figure 1. XRD of sulfated zirconia.
Molecules 12 02515 g001
Figure 2. Nitrogen adsorption-desorption plot of SZ.
Figure 2. Nitrogen adsorption-desorption plot of SZ.
Molecules 12 02515 g002
Figure 2 shows the adsorption-desorption plot that gave an isotherm plot type IV in the BET (Brunauer, Emett and Teller) classification; the isotherm hysteresis loop indicated a uniform pore size distribution [39]. The surface area calculated by BET was 86.15 m²g-1, the pore size measured 41.623 Å and the pore volume value was 0.089 cm³g-1. The UV-vis spectrum of sulfated zirconia displays a broad signal centered in 210 nm that is assigned to the tetragonal phase of sulfated zirconia [40]; a similar spectrum is observed for SZ/MCM-41 (Figure 3).
Figure 3. UV-vis spectra of SZ and SZ/MCM-41.
Figure 3. UV-vis spectra of SZ and SZ/MCM-41.
Molecules 12 02515 g003
Figure 4. XRD of SZ/MCM-41 dried 4 and 6 days.
Figure 4. XRD of SZ/MCM-41 dried 4 and 6 days.
Molecules 12 02515 g004
The powder XRD pattern of SZ/MCM-41 shows an intense diffraction peak due to the (100) reflection of MCM-41 at low 2θ ranges, in addition to (110) and (200) in 2θ = 4.5° and 2θ = 5° respectively, which are characteristic of mesoporous materials (Figure 4). When sulfated zirconia is supported in siliceous MCM-41, we observed that the structure of the mesoporous molecular sieve is maintained after loading the SZ, the (100) reflection intensity can be observed, as well as the (110) reflection. We also noted that sulfated zirconia was formed on the support in two phases; monoclinic (2θ =28°) and tetragonal (2θ = 30°, 35°, 50°, 60°). This is ascribed to the transformation from the metaestable tetragonal phase to the monoclinic phase that is retarded in the presence of promoters. However, an increase of the monoclinic phase was observed when the drying time decreased from 6 to 4 days. The BET surface calculated for SZ/MCM-41 dried for 6 days was 314.92 m²g-1.
The IR spectra of the sulfated zirconia indicated that pyridine adsorbed in the 1350–1600 cm−1 region, as shown in Figure 5, where two strong bands near 1490 and 1450 cm−1 and a weak band at 1540 cm−1 can be observed when desorption temperature was 50°C. When the temperature was increased, the bands became weaker. The IR pyridine desorption spectra of SZ/MCM-41 showed broad bands at 1490 and 1450 cm−1 and a slight and broad band at 1540 cm−1. In general, the band at 1445 cm−1 is assigned to the adsorption of pyridine on Lewis acidic sites, and the band at 1545 cm−1 is associated to the adsorption on Brønsted acidic sites [11].
Figure 5. IR spectra of desorption of pyridine from SZ.
Figure 5. IR spectra of desorption of pyridine from SZ.
Molecules 12 02515 g005
Figure 6. IR spectra of desorption of pyridine from SZ/MCM-41.
Figure 6. IR spectra of desorption of pyridine from SZ/MCM-41.
Molecules 12 02515 g006
These results indicate that the acidic sites over sulfated zirconia and SZ/MCM-41correspond mainly to Lewis species. The calculated amounts of pyridine adsorbed on both types of acid sites at different desorption temperatures are reported in Table 1.
Table 1. Acidity measurement results for SZ and SZ/MCM-41.
Table 1. Acidity measurement results for SZ and SZ/MCM-41.
Temperature (°C)Sulfated Zirconia (µmol pyg-1)SZ/MCM-41 (µmol py g-1)
BrønstedLewisTotalBrønstedLewisTotal
5010117928018224242
10069741433071101
200335285181735
3001427415510
The SEM-EDS technique was used to observe and quantify SZ dispersion on MCM-41. Figure 7 shows thin layers of SZ crystallized and dispersed on the support. The semi-quantitative analysis of the sample performed by EDS and the corresponding emission spectra of SZ/MCM-41 are shown in Figure 8.
Figure 7. SEM image of SZ/MCM-41.
Figure 7. SEM image of SZ/MCM-41.
Molecules 12 02515 g007
Figure 8. Composition of SZ/MCM-41.
Figure 8. Composition of SZ/MCM-41.
Molecules 12 02515 g008
The results of the experiments related to Scheme 1 are presented and compared in the Table 2.
Scheme 1. Aminolysis of oxiranes.
Scheme 1. Aminolysis of oxiranes.
Molecules 12 02515 g011
Recycling tests were performed for SZ and SZ/MCM-41. Once the catalysts were used, recovered, and reactivated at 550°C for 1 h, they were utilized in the reaction again. Entry 15 (2, 3-Epoxy-3-phenoxy propane) and benzylamine were employed as reagents. When the recycled catalysts were tested no significant changes in yield were observed, neither with SZ nor with SZ/MCM-41. XRD analysis was performed in order to notice that an increase of the monoclinic phase (2θ = 28°), after the SZ sample was reactivated three times (Figure 9). SZ/MCM-41 is predominantly monoclinic after three recycling periods as shown in Figure 10.
Figure 9. XRD patterns of reactivated SZ.
Figure 9. XRD patterns of reactivated SZ.
Molecules 12 02515 g009
Figure 10. XRD patterns of reactivated SZ/MCM-41.
Figure 10. XRD patterns of reactivated SZ/MCM-41.
Molecules 12 02515 g010
Table 2. SZ and SZ/MCM-41 as catalysts.
Table 2. SZ and SZ/MCM-41 as catalysts.
Entry12Time (h)3/4 Yield (%)
Cat. = SZ
3/4 Yield (%)
Cat. = SZ/MCM-41
1 Molecules 12 02515 i0012a0.574/023/0
2 [41,42]* Molecules 12 02515 i0022a561/2063/0
3 [43] Molecules 12 02515 i0022b682/035/0
4* Molecules 12 02515 i0032a563/1355/0
5 Molecules 12 02515 i0032b581/054/0
6 [44,45(b,c)] Molecules 12 02515 i0042a597/084/0
7 Molecules 12 02515 i0042b571/014/0
8 [45] Molecules 12 02515 i0052a593/099/0
9 Molecules 12 02515 i0052b583/045/0
10 [46](d), 45(c), 42]* Molecules 12 02515 i0062a10/965/91
11 [41,47] Molecules 12 02515 i0062b653/3155/25
12 [41] Molecules 12 02515 i0072a581/083/0
13 Molecules 12 02515 i0072b587/081/0
14 [41, 46] Molecules 12 02515 i0082a0.586/081/0
15 [41] Molecules 12 02515 i0082b0.587/052/0
16 Molecules 12 02515 i0092a176/057/0
17 Molecules 12 02515 i0092b177/051/0
18 Molecules 12 02515 i0102a176/059/0
19 [48] Molecules 12 02515 i0102b185/082/0
Yields of the isolated possible products 3 or 4 shown in Scheme 1; the regioselectivity was evaluated by GC-MS; * the structures of the minor products in entries 2, 4 and 10 were determined by CI mode GC-MS.
Sulfated zirconia and SZ/MCM-41 were used as catalysts in the β-aminoalcohols synthesis in agreement with Scheme 1. The specific area increase of the SZ/MCM-41 compared to that of the SZ does not reflect in a better yield in the epoxide aminolysis reactions, which may be attributed to an overall greater acid strength of the former; at the same time a better regioselectivity was noticed in entries 2 and 4. Thus, the surface properties seem to play a secondary role in catalytic activity in comparison to other factors, such as acidity [49].

Conclusions

In summary, we have described a simple procedure for the synthesis of β-aminoalcohols using SZ and SZ/MCM-41. The catalysts were recovered and reused without any appreciable loss of their activity.

Experimental

General

Powder X-ray diffraction (XRD) patterns were obtained with an X´Pert instrument using Cu Kα radiation. Nitrogen adsorption/desorption isotherms were plotted at -196 °C on a Micromeritics ASAP 2020 equipment. IR spectra were recorded on a Perkin-Elmer FT-IR system/GX spectrometer. SEM-EDS analysis was performed using a SEM XL30 ESEM microscopy. The reaction products were analyzed by means of a Hewlett Packard 6890/5973 GC/MS system equipped with an HP-5 column, with the oven program 70-200°C (10°C/min) for 4 min then, 200-280°C (10°C/min) for 3 min, inj. 250 ºC, det. 280 °C; the detector was set in the Chemical Ionization mode using methane as reactive gas. 1H-NMR and 13C-NMR spectra were measured at 500 and 125 MHz, respectively, on a Bruker Avance DMX-500 spectrometer using CDCl3 as solvent and tetramethylsilane as internal standard. Pyridine adsorption infrared spectra test was carried out in a Nicolet 750 spectrometer.

Sulfated zirconia synthesis

Zirconium n-propoxide (20 mL, 70 % n-propanol) were mixed with 2-propanol (30 mL) and stirred with a magnetic bar. Then, distilled water (3.2 mL) was mixed with sulfuric acid (1 mL, 98%) and this solution was added dropwise in order to carry out the hydrolysis and gelation of the zirconium n-propoxide. The solid was dried at 80°C until complete alcohol evaporation and then calcined in air at 600°C for 6 h.

MCM-41 synthesis

Pure siliceous MCM-41 was prepared from a gel described elsewhere [50]. Mixing cetyltrimetylammonium bromide (7.289 g) with deionized water (200 mL) at 30°C gave a clear solution, and then triethylamine (3.34 mL) was added. After stirring for a few minutes, TMAOH (18 mL, 10 wt %) and finally TEOS (22.35 mL) were added. The resulting gel, with molar composition 1 TEOS : 0.2 CTMABr : 0.6 EA : 0.2 TMAOH : 150 H2O, was placed in glass bottles and sonicated for 4 h. The precipitated solid was recovered by filtration and washed with deionized water, dried at 60 °C overnight and calcinated at 540 °C for 6 h under air flow.

Synthesis of sulfated zirconia supported on MCM-41

Preparation of the sulfated zirconia supported in MCM-41 (SZ/MCM-41) has been already described [13]. In a first procedure, siliceous MCM-41 (300 g) were mixed with zirconium sulfate (15 mL) in methanol (1 wt %), the heterogeneous mixture was stirred 14 h. Then, the impregnated solid was dried for 6 days at 50 °C and finally calcinaed at 660 °C for 3 h in air flow.

β-Aminoalcohol synthesis

In a general procedure oxirane 1 (1 mmol) and nucleophile (aniline or benzylamine, 2, 1.1 mmol) were placed in a vial equipped with a magnetic stirrer and plastic cap. The mixture was heated at 60 °C in the presence of sulfated zirconia or sulfated zirconia on MCM-41 (50 mg) without solvent (Scheme 1). After the reaction, the mixture was left at room temperature, the catalyst was recovered by filtration and the organic product was dried in a rotavapor under reduced pressure and the products were purified by silica gel or alumina column chromatography. All products were identified by FR-IR, 1H-NMR, 13C-NMR and by comparison with the previously described physical and spectroscopic data of the β-aminoalcohols.
1-Chloro-3-(phenylamino)propan-2-ol (Entry 1). GC-MSD for C9H12NOCl (mw: 185.66 g/mol): [M+1]+ = 186, [M+29]+ = 214, [M+41]+ = 226, [M-17]+ = 168; IR (cm-1): 3396, 1602, 1499, 1419, 1314, 1261, 1161, 1156, 1088, 1075, 958, 851, 823, 748, 692; 1H-NMR: δ (ppm) 7.16-7.21 (m, 2H, Ar-H), 6.75 (tt, 1H, J1= 1.0, J2= 7.3 Hz, Ar-H), 6.65 (dd, 2H, J1= 1.0, J2= 8.6 Hz, Ar-H), 4.01-4.06 (m, 1H, -CH-OH), 3.63 (dd, 1H, J1= 4.5, J2= 11.3 Hz, -CH-Cl), 3.58 (dd, 1H, J1= 6.0, J2= 11.3 Hz , -CH-Cl), 3.46 (bs, 2H, -OH, -NH), 3.33 (dd, 1H, J1= 4.3, J2= 13.3 Hz, -NH-CH-CH-OH), 3.17 (dd, 1H, J1= 7.4, J2= 13.3 Hz, -NH-CH-CH-OH); 13C-NMR: δ (ppm) 147.42, 129.32, 118.36, 113.39, 69.65, 47.52, 47.15.
1-(Phenylamino)hexan-2-ol (Entry 2). m.p.: 51-52 °C; GC-MSD for C12H12NO (mw: 193.29 g/mol): [M+1]+ = 194, [M+29]+ = 222, [M+41]+ = 234, [M-17]+ = 176, IR (cm-1): 3273, 2969, 2929, 2831, 1602, 1499, 1460, 1436, 1380, 1309, 1251, 1222, 1139, 1084, 1009, 984, 886, 844;1H-NMR: δ (ppm) 7.16-7.20 (m, 2H, Ar-H), 6.72 (tt, 1H, J1= 1.0, J2= 7.3 Hz, Ar-H), 6.63-6.66 (m, 2H, Ar-H), 3.94 (bs, 1H, -OH or NH), 3.80-3.85 (m, 1H, -CH-OH), 3.26 (dd, 1H, J1= 3.2, J2= 12.8 Hz -NH-CH-CH-OH), 2.99 (dd, 1H, J1= 8.6, J2= 12.8 Hz -NH-CH-CH-OH), 1.98 (bs, 1H, -OH or NH), 1.49-1.56 (m, 2H, -CH2-CH-OH), 1.31-1.48 (m, 4H, - CH2-CH2-CH3), 0.92 (t, 3H, J= 7.3 Hz, -CH2-CH3); 13C-NMR: δ (ppm) 148.30, 129.29, 117.87, 113.26, 70.41, 50.33, 34.82, 27.80, 22.74, 14.04.
1-(Benzylamino)hexan-2-ol (Entry 3). GC-MSD for C13H21NO (mw: 207.32 g/mol): [M+1]+ = 208, [M+29]+ = 236 [M+41]+ = 248, [M-17]+ = 190; IR (cm-1): 2927, 1635, 1453, 1026, 735, 696; 1H-NMR: δ (ppm) 7.24-7.27 (m, 2H, Ar-H), 7.30-7.35 (m, 3H, Ar-H), 3.83 (d, 1H, J= 13.2 Hz, -NH-CH-Ar), 3.78 (d, 1H, J= 13.2 Hz -NH-CH-Ar), 3.60-3.67 (m, 1H, -CH-OH), 2.75 (dd, 1H, J1= 3.0, J2= 12.0 Hz -NH-CH-CH-OH), 2.47 (dd, 1H, J1= 9.4, J2= 12.0 Hz -NH-CH-CH-OH), 2.36 (bs, 2H, -OH, NH), 1.25-1.46 (m, 6H, -CH2-CH3), 0.89 (t, 3H, J= 7.2 Hz, -CH2-CH3); 13C-NMR: δ (ppm) 139.79, 128.49, 128.13, 69.53, 54.72, 53.59, 34.73, 27.80, 22.77, 14.01.
1-(Phenylamino)hex-5-en-2-ol (Entry 4). m.p.: 32-33 °C; GC-MSD for C12H17NO (mw: 191.27 g/mol): [M+1]+ = 192, [M+29]+ = 220, [M+41]+ = 232. IR (cm-1): 3282, 2936, 2933, 2912, 2833, 1640, 1603, 1496, 1463, 1434, 1414, 1300, 1250, 1221, 1182, 1108, 1072, 1022, 997, 912; 1H-NMR: δ (ppm) 7.15-7.20 (m, 2H, Ar-H), 6.73 (tt, 1H, , J1= 1.0, J2= 7.3 Hz, Ar-H), 6.63-6.66 (m, 2H, Ar-H), 5.81-5.89 (m, 1H, -CH=CH2), 5.07 (ddd, 1H, J1= 1.6, J2= 3.5, J3= 17.1 Hz, -CH2-CH=CH), 4.98-5.01 (m, 1H, -CH2-CH=CH), 3.98 (bs, 1H, -OH or NH), 3.83-3.88 (m, 1H, -CH-OH), 3.26 (dd, 1H, J1= 3.3, J2= 12.9 Hz, -NH-CH-CH-OH), 3.01 (dd, 1H, J1= 8.5, J2= 12.9 Hz, -NH-CH-CH-OH), 2.14-2.30 (m, 2H, -CH2-CH=CH2), 2.10 (bs, 1H, -OH or -NH), 1.63 (ddd, 2H, J1= 6.4, J2= 7.7, J3= 7.7 Hz, -CH2-CH2-CH-OH); 13C-NMR: δ (ppm) 148.20, 138.12, 129.27, 117.92, 115.14, 113.28, 69.82, 50.22, 34.05, 29.92.
1-(Benzylamino)hex-5-en-2-ol (Entry 5). GC-MSD for C13H19NO (mw: 205.3 g/mol): [M+1]+ = 206, [M+29]+ = 234, [M+41]+ = 246, [M-17]+ = 188. IR (cm-1): 2918, 2836, 1700, 1638, 1444, 1134, 1043, 988, 906, 852, 727, 693; 1H-NMR: δ (ppm) 7.29-7.35 (m, 4H, Ar-H), 7.25-7.28 (m, 1H, Ar-H), 5.78-5.86 (m, 1H, -CH=CH2), 4.94-5.05 (m, 2H, -CH=CH2), 3.83 (d, 1H, J= 13.2 Hz, -NH-CH-Ar), 3.77 (d, 1H, J= 13.2 Hz -NH-CH-Ar), 3.63-3.68 (m, 1H, -CH-OH), 2.75 (dd, 1H, J1= 3.0, J2= 12.0 Hz, -NH-CH-CH-OH), 2.48 (dd, 1H, J1= 9.4, J2= 12.0 Hz, -NH-CH-CH-OH), 2.38 (bs, 2H, -OH, -NH), 2.06-2.26 (m, 2H, -CH2-CH=CH2), 1.43-1.57 (m, 2H, -CH2-CH2-CH-OH); 13C-NMR: δ (ppm) 139.73, 138.39, 128.47, 128.11, 127.16, 114.74, 68.89, 54.55, 53.54, 34.07, 29.92.
2-(Phenylamino)cyclopentanol (Entry 6). m.p.: 56-57 °C; GC-MSD for C11H15NO (mw: 177.25 g/mol): [M+1]+ = 178, [M+29]+ = 206, [M+41]+ = 218, [M-17]+ = 160; IR (cm-1): 3397, 2957, 1599, 1506, 1482, 1436, 1316, 1259, 1182, 1154, 1112, 1033, 973, 752, 694; 1H-NMR: δ (ppm) 7.20-7.24 (m, 2H, Ar-H), 6.69-6.77 (m, 3H, Ar-H), 4.06-4.09 (m, 1H, -CH-OH), 3.62-3.65 (m, 1H, NH-CH), 3.23 (bs, 2H, -OH, -NH), 2.27-2.33 (m, 1H, CH2-CH-OH), 2.01 (ddd, 1H, J1= 1.9, J2= 6.5, J 3= 13.1 Hz, CH2-CH-OH), 1.73-1.90 (m, 2H, CH2-CH-NH), 1.63-1.70 (m, 1H, CH2-CH), 1.39-1.46 (m, 1H, CH2-CH); 13C-NMR: δ (ppm) 147.71, 129.24, 117.49, 113.31, 78.18, 62.06, 32.82, 31.15, 20.98.
2-(Benzylamino)cyclopentanol (Entry 7). m.p.: 42-42 °C; GC-MSD for C12H17NO (mw: 191.28 g/mol): [M+1]+ = 192, [M+29]+ = 220, [M+41]+ = 232, [M-17]+ = 174. IR (cm-1): 2941, 1452, 1062, 734, 696; 1H-NMR: δ (ppm) 7.30-7.32 (m, 4H, Ar-H), 7.22-7.27 (m, 1H, Ar-H), 3.89 (dd, 1H, J1= 6.4, J 2= 12.6 Hz, -CH-OH), 3.83 (d, 1H, J= 13.0 Hz, -NH-CH-Ar), 3.74 (d, 1H, J= 13.0 Hz, -NH-CH-Ar), 2.88 (ddd, 1H, J1= 5.8, J2= 7.4, J 3= 7.5 Hz, HO-CH-CH-NH-), 2.34 (bs, 2H, -OH, -NH), 1.92-2.05 (m, 2H, CH2-CH-OH), 1.61-1.74 (m, 2H, CH2-CH-NH), 1.48-1.55 (m, 1H, CH2-CH), 1.30-1.38 (m, 1H, CH2-CH); 13C-NMR: δ (ppm) 139.94, 128.25, 128.25, 128.46, 127.09, 66.29, 52.53, 32.63, 30.12, 20.39.
2-(Phenylamino)cyclohexanol (Entry 8). m.p.: 52-53 °C; GC-MSD for C12HN17O (mw: 191.28 g/mol): [M+1]+ = 192, [M+29]+ = 220, [M+41]+ = 232, [M-17]+ = 174; IR (cm-1): 3395, 2939, 2923, 2856, 1599, 1513, 1497, 1450, 1436, 1321, 1306, 1259, 1241, 1182, 1152, 1101, 1055, 1048, 1037, 992, 932, 864, 849, 740, 688; 1H-NMR: δ (ppm) 7.17 (t, 2H, J= 7.4 Hz, Ar-H), 6.73 (t, 1H, J= 7.3 Hz, Ar-H), 6.69 (dd, 2H, J1= 0.9, J2= 8.5 Hz, Ar-H), 3.32 (ddd, 1H, J1= 4.3, J2= 9.4, J 3= 10.2 Hz, -CH-OH), 3.11 (ddd, 1H, J1= 4.0, J2= 9.3, J 3= 11.3 Hz, -CH-NH), 3.07 (bs, 2H, -OH, -NH), 2.08-2.11 (m, 2H, CH2-CH-OH), 1.65-1.69 (m, 1H, CH2-CH-NH), 1.23-1.41 (m, 3H), 0.97-1.05 (m, 1H); 13C-NMR: δ (ppm) 147.75, 129.23, 118.18, 114.24, 74.35, 33.08, 31.50, 24.90, 24.20.
2-(Benzylamino)cyclohexanol (Entry 9). m.p.: 64-65 °C; GC-MSD for C13H19NO (mw: 205.31 g/mol): [M+1]+ = 206, [M+29]+ = 234, [M+41]+ = 246, [M-17]+ = 188. IR (cm-1): 3294, 3060, 2925, 2852, 1603, 1499, 1449, 1429, 1351, 1339, 1224, 1198, 1153, 1099, 1076, 1060, 1029, 972, 920, 893, 880, 845, 830, 747; 1H-NMR: δ (ppm) 7.28-7.33 (m, 4H, Ar-H), 7.21-7.25 (m, 1H, Ar-H), 3.93 (d, 1H, J= 12.9 Hz, -NH-CH-Ar), 3.67 (d, 1H, J= 12.9 Hz, -NH-CH-Ar), 3.18-3.23 (m, 1H, -CH-OH), 2.83 (bs, 2H, -OH, -NH), 2.30 (ddd, 1H, J1= 2.3, J2= 7.4, J 3= 9.3 Hz, HO-CH-CH-NH-CH2-Ar), 2.10-2.15 (m, 1H), 1.93-2.02 (m, 1H), 1.64-1.74 (m, 2H), 1.14-1.29 (m, 3H), 0.96-1.04 (m, 1H); 13C-NMR: δ (ppm) 140.05, 128.36, 128.08, 126.95, 73.45, 62.95, 50.62, 33.37, 30.20, 24.92, 24.25.
2-Phenyl-2-(phenylamino)ethanol (Entry 10). GC-MSD for C12H15NO (mw: 213.28 g/mol): [M+1]+ = 214, [M+29]+ = 242, [M+41]+ = 254, [M-17]+ = [M-17]+ = 196, [M-31]+ = 182; IR (cm-1): 3388, 1600, 1503, 1452, 1429, 1352, 1314, 1266, 1180, 1154, 1065, 1025, 993; 1H-NMR: δ (ppm) 7.31-7.37 (m, 4H, Ar-H), 7.26 (tt, 1H, J1= 1.6, J2= 7.1 Hz, Ar-H), 7.07-7.11 (m, 2H, Ar-H), 6.68 (tt, 1H, , J1= 1.0, J2= 7.3 Hz, Ar-H), 6.55-6.58 (m, 2H, Ar-H), 4.50 (dd, 1H, J1= 4.2, J2= 7.0 Hz, -CH-NH), 4.47 (bs, 1H, -OH or -NH), 3.93 (dd, 1H, J1= 4.2, J2= 11.1 Hz, CH-CH-OH), 3.75 (dd, 1H, J1= 7.0, J2= 11.1 Hz, CH-CH-OH), 1.74 (bs, 1H, -OH or -NH); 13C-NMR: δ (ppm) 147.20, 140.09, 129.17, 128.83, 127.61, 126.72, 117.87, 113.84, 67.36, 59.85.
2-(Benzylamino)-2-phenylethanol (Entry 11). m.p.: 97-99 °C; GC-MSD for C15H17NO (mw: 227.31 g/mol): [M+1]+ = 228, [M+29]+ = 256 [M+41]+ = 268, [M-17]+ = 210, [M-31]+ = 196; IR (cm-1): 3058, 3025, 1599, 1494, 1452, 1351, 1196, 1116, 1067, 1047, 1027, 911, 850; 1H-NMR: δ (ppm) 7.35-7.38 (m, 2H, Ar-H), 7.27-7.33 (m, 7H, Ar-H), 7.23-7.26 (m, 1H, Ar-H), 3.81 (dd, 1H, J1= 4.4, J2= 8.7 Hz, Ar-CH-NH), 3.76 (d, 1H, J= 13.0 Hz, Ar-CH-NH), 3.70 (dd, 1H, J1= 4.5, J2= 10.8 Hz, CH-CH-OH), 3.60 (d, 1H, J= 13.0 Hz, Ar-CH-NH), 3.55 (dd, 1H, J1= 8.7, J2= 10.8 Hz, CH-CH-OH), 2.15 (bs, 2H, -OH and -NH); 13C-NMR: δ (ppm) 140.42, 139.99, 128.70, 128.43, 128.21, 127.69, 127.27, 127.08, 66.74, 63.75, 51.18.
2-(Benzylamino)-1-phenylethanol (Entry 11). GC-MSD for C15H17NO (mw: 227.31 g/mol): [M+1]+ = 228, [M+29]+ = 256 [M+41]+ = 268, [M-17]+ = 210; IR (cm-1): 3062, 2924, 2835, 1600, 1490, 1453, 1433, 1346, 1334, 1207, 1182, 1099, 1064, 1037, 1024, 978, 917, 875, 853; 1H-NMR: δ (ppm) 7.29-7.37 (m, 8H, Ar-H), 7.24-7.28 (m, 2H, Ar-H), 4.73 (dd, 1H, J1= 3.6, J2= 8.9 Hz, -CH-OH), 3.86 (d, 1H, J= 13.3 Hz, Ar-CH-NH), 3.81 (d, 1H, J= 13.3 Hz, Ar-CH-NH), 2.94 (dd, 1H, J1= 3.6, J2= 12.2 Hz, CH-CH-Ar), 2.75 (dd, 1H, J1= 8.9, J2= 12.2 Hz, CH-CH-Ar), 2.24 (bs, 2H, -OH and -NH); 13C-NMR: δ (ppm) 142.38, 128.49, 128.37, 128.10, 127.52, 127.18, 125.81, 71.76, 56.49, 53.50.
1-Phenyl-3-(phenylamino)propan-2-ol (Entry 12). m.p.: 63-64 °C; GC-MSD for C15H17NO (mw: 227.31 g/mol): [M+1]+ = 228, [M+29]+ = 256, [M+41]+ = 268, [M-17]+ = 210; IR (cm-1): 3342, 2927, 1600, 1559, 1557, 1494, 1454, 1433, 1411, 1314, 1272, 1249, 1179, 1079, 1063, 1027, 830, 741, 687; 1H-NMR: δ (ppm) 7.30-7.35 (m, 2H, Ar-H), 7.23-7.28 (m, 4H, -NH, Ar-H), 7.15-7.19 (m, 2H, Ar-H), 6.71-6.75 (m, 1H, Ar-H), 6.61-6.64 (m, 2H, Ar-H), 4.00-4.10 (m, 1H, -CH-OH), 3.30 (dd, 1H, J1= 3.4, J2= 12.9 Hz, -NH-CH-CH-OH), 3.08 (dd, 1H, J1= 8.1, J2= 12.9 Hz, -NH-CH-CH-OH), 2.88 (dd, 1H, J1= 5.2, J2= 13.6 Hz, Ar-CH-CH-OH), 2.82 (dd, 1H, J1= 7.8, J2= 13.6 Hz, Ar-CH-CH-OH), 2.24 (bs, 1H, -OH or -NH), 1.72 (bs, 1H, -OH or-NH); 13C-NMR: δ (ppm) 148.15, 137.74, 129.35, 129.23, 128.65, 126.66, 117.84, 113.30, 71.14, 49.44, 41.63.
1-(Benzylamino)-3-phenylpropan-2-ol (Entry 13). m.p.: 58-61°C; GC-MSD for C16H19NO (mw: 241.34 g/mol): [M+1]+ = 242, [M+29]+ = 270, [M+41]+ = 282, [M-17]+= 224; IR (cm-1): 3149, 3061, 3027, 2842, 1602, 1493, 1452, 1425, 1359, 1342, 1178, 1113, 1103, 1080, 1029, 1014, 896, 861, 792, 748, 697; 1H-NMR: δ (ppm) 7.17-7.33 (m, 10H, Ar-H), 3.83-3.87 (m, 1H, -CH-OH), 3.75 (d, 1H, J= 13.2 Hz, -NH-CH-Ar), 3.68 (d, 1H, J= 13.2 Hz, -NH-CH2-Ar), 2.62-2.76 (m, 5H, -NH-CH2-CH-OH, -NH, -OH, HO-CH-CH-Ar), 2.52 (dd, 1H, J1= 9.0, J2= 12.0 Hz, HO-CH-CH-Ar); 13C-NMR: δ (ppm) 139.65, 138.31, 129.27, 128.36, 128.11, 127.05, 126.25, 70.55, 54.01, 53.49, 41.58.
1-Phenoxy-3-(phenylamino)propan-2-ol (Entry 14). m.p.: 52-53 °C; GC-MSD for C15H17NO2 (mw: 243.31 g/mol): [M+1]+ = 244, [M+29]+ = 272, [M+41]+ = 284, [M-17]+ = 226. IR (cm-1): 3333, 1600, 1588, 1508, 1496, 1467, 1437, 1303, 1242, 1160, 1080, 1046, 995, 942, 884, 815, 750; 1H-NMR: δ (ppm) 7.28 (dd, 2H, J1= 7.4, J2= 8.7 Hz, Ar-H), 7.17 (dd, 2H, J1= 7.3, J2= 8.6 Hz, Ar-H), 6.97 (t, 1H, J= 7.4 Hz, Ar-H), 6.90 (dd, 2H, J1= 1.0, J2= 8.8 Hz, Ar-H), 6.77 (t, 1H, J= 7.3 Hz, Ar-H), 6.65 (dd, 2H, J1= 1.0, J2= 8.6 Hz, Ar-H), 4.20-4.24 (m, 1H, -CH-OH), 4.04 (dd, 1H, J1= 4.1, J2= 9.5 Hz, HO-CH-CH-O-Ar), 4.00 (dd, 1H, J1= 6.1, J2= 9.5 Hz, HO-CH-CH-O-Ar), 3.94 (bs, 1H, -OH or -NH), 3.40 (dd, 1H, J1= 4.3, J2= 13.0 Hz, –NH-CH-CH-OH), 3.26 (dd, 1H, J1= 7.2, J2= 13.0 Hz, –NH-CH-CH-OH), 2.76 (bs, 1H, -OH, or -NH); 13C-NMR: δ (ppm) 158.38, 148.03, 129.56, 129.29, 121.26, 118.03, 114.52, 113.26, 70.02, 68.76, 46.61.
1-(Benzylamino)-3-phenoxypropan-2-ol (Entry 15). m.p.: 71-72 °C; GC-MSD for C16H19NO2 (mw: 257.34 g/mol): [M+1]+ = 258, [M+29]+ = 286, [M+41]+ = 298, [M-17]+ = 240; IR (cm-1): 3266, 3003, 2938, 2853, 2716, 1600, 1586, 1497, 1464, 1454, 1363, 1339, 1304, 1294, 1247, 1211, 1158, 1115, 1068, 1043, 1022, 897, 882, 791, 749; 1H-NMR: δ (ppm) 7.22-7.32 (m, 7H, Ar-H), 6.93 (t, 1H, J= 7.3 Hz, Ar-H), 6.88 (d, 2H, J= 7.9 Hz, Ar-H), 4.04-4.08 (m, 1H, -CH-OH), 3.95 (d, 1H, J= 9.9 Hz, HO-CH-CH-O-Ar), 3.92 (d, 1H, J= 9.9 Hz, HO-CH-CH-O-Ar), 3.82 (d, 1H, J= 13.2Hz, Ar-CH-NH), 3.78 (d, 1H, J= 13.2 Hz, Ar-CH-NH), 2.84 (dd, 1H, J1= 3.9, J2= 12.1 Hz, -NH-CH-CH-OH), 2.75 (dd, 1H, J1= 7.9, J2= 12.1 Hz, -NH-CH-CH-OH), 2.68 (bs, 2H, -NH, -OH); 13C-NMR: δ (ppm) 158.56, 139.82, 129.43, 128.41, 128.07, 127.06, 120.96, 114.49, 70.38, 68.37, 53.78, 51.27.
1-(Phenylamino)-3-(o-tolyloxy)propan-2-ol (Entry 16). m.p.: 51-52 °C; GC-MSD for C12H19NO2 (mw: 257.33 g/mol): [M+1]+ = 258, [M+29]+ = 286, [M+41]+ = 298, [M-17]+ = 240. IR (cm-1): 3328, 2932, 1604, 1496, 1464, 1436, 1368, 1306, 1288, 1245, 1196, 1123, 1070, 1051, 1043, 842, 745; 1H-NMR: δ (ppm) 7.12-7.20 (m, 4H, Ar-H), 6.88 (t, 1H, J= 6.9 Hz, Ar-H), 6.80 (d, 1H, J= 8.3 Hz, Ar-H), 6.73 (t, 1H, J= 7.3 Hz, Ar-H), 6.66 (d, 2H, J= 7.6 Hz, Ar-H), 4.22-4.28 (m, 1H, -CH-OH), 4.04 (dd, 2H, J1= 4.5, J2= 5.7 Hz, CH2-O-Ar), 4.00 (bs, 1H, , -OH or -NH), 3.45 (dd, 1H, J1= 4.3, J2= 13.0 Hz, NH-CH-CH-OH), 3.29 (dd, 1H, J1= 7.2, J2= 13.0 Hz, NH-CH-CH-OH), 2.59 (bs, 1H, -OH or -NH), 2.25 (s, 3H, Ar-CH3); 13C-NMR: δ (ppm) 156.41, 148.04, 130.83, 129.30, 126.92, 126.62, 121.00, 118.01, 113.25, 111.11, 70.06, 68.87, 46.77, 16.28.
1-(Benzylamino)-3-(o-tolyloxy)propan-2-ol (Entry 17). m.p.: 76-77 °C; GC-MSD for C17H21NO2 (mw: 271.36 g/mol): [M+1]+ = 272, [M+29]+ = 300, [M+41]+ = 312, [M-17]+ = 255. IR (cm-1): 3277, 3026, 2858, 2822, 1603, 1592, 1495, 1377, 1341, 1306, 1289, 1245, 1191, 1154, 1121, 1098, 1073, 1050, 1037, 1029, 995, 982, 935, 915, 888, 838, 767, 745, 737, 693; 1H-NMR: δ (ppm) 7.29-7.33 (m, 4H, Ar-H), 7.22-7.27 (m, 1H, Ar-H), 7.10-7.14 (m, 2H, Ar-H), 6.85 (t, 1H, J= 7.3 Hz, Ar-H), 6.78 (d, 1H, J= 7.8 Hz, Ar-H), 4.06-4.10 (m, 1H, -CH-OH), 3.97 (dd, 1H, , J1= 5.5, J2= 9.5 Hz, CH-O-Ar), 3.93 (dd, 1H, J1= 5.0, J2= 9.5 Hz, CH-O-Ar), 3.84 (d, 1H, J= 13.2 Hz, Ar-CH-NH), 3.79 (d, 1H, J= 13.2 Hz, Ar-CH-NH, 2.89 (dd, 1H, J1= 4.0, J2= 12.2 Hz, NH-CH-CH-OH), 2.80 (dd, 1H, J1= 7.6, J2= 12.2 Hz, NH-CH-CH-OH), 2.56 (bs, 2H, -OH, -NH)), 2.19 (s, 3H, Ar-CH3); 13C-NMR: δ (ppm) 156.62, 139.86, 130.65, 128.42, 128.08, 127.08, 126.77, 120.67, 111.08, 70.43, 68.47, 53.82, 51.38, 16.22.
1-(4-Methoxyphenoxy)-3-(phenylamino)propan-2-ol (Entry 18). m.p.: 69-71 °C; GC-MSD for C16H19NO3 (mw: 273.33 g/mol): [M+1]+ = 274, [M+29]+ = 302, [M+41]+ = 314, [M-17]+ = 256; IR (cm-1): 3377, 2998, 2926, 2830, 1607, 1526, 1503, 1459, 1438, 1292, 1264, 1228, 1218, 1180, 1153, 1125, 1113, 1036, 918, 878, 823, 749, 741; 1H-NMR: δ (ppm) 7.17 (dd, 2H, J1= 7.3, J2= 8.6 Hz, Ar-H), 6.80-6.85 (m, 4H, Ar-H), 6.72 (t, 1H, J= 8.3 Hz, Ar-H), 6.64 (d, 2H, J= 8.6 Hz, Ar-H), 4.17-4.21 (m, 1H, -CH-OH), 3.99 (dd, 2H, J1= 4.1, J2= 9.5 Hz, HO-CH-CH-O-Ar and -OH or -NH), 3.95 (dd, 1H, J1= 8.1, J2= 9.5 Hz, HO-CH-CH-O-Ar), 3.73 (s, 3H, -OCH3), 3.38 (dd, 1H, J1= 4.3, J2= 12.9 Hz, –NH-CH-CH-OH), 3.24 (dd, 1H, J1= 7.2, J2= 12.9 Hz, –NH-CH-CH-OH), 2.80 (bs, 1H, -OH or -NH); 13C-NMR: δ (ppm) 154.16, 152.54, 148.05, 129.28, 117.96, 115.52, 114.69, 113.23, 70.83, 68.82, 55.69, 46.57.
1-(Benzylamino)-3-(4-methoxyphenoxy)propan-2-ol (Entry 19). m.p.: 94-95 °C; GC-MSD for C12H21NO3 (mw: 287.36 g/mol): [M+1]+ = 288, [M+29]+ = 316, [M+41]+ = 328, [M-17]+ = 270; IR (cm-1): 3288, 2905, 2828, 1509, 1506, 1466, 1455, 1444, 1345, 1291, 1232, 1107, 1077, 1068, 1049, 1013, 949, 906, 874, 836, 815, 753, 743, 699; 1H-NMR: δ (ppm) 7.27-7.33 (m, 4H, Ar-H), 7.22-7.26 (m, 1H, Ar-H), 6.78-6.84 (m, 4H, Ar-H), 4.02-4.06 (m, 1H, -CH-OH), 3.90 (d, 2H, J= 5.2 Hz, CH2-O-Ar), 3.83 (d, 1H, J= 13.2 Hz, Ar-CH-NH), 3.79 (d, 1H, J= 13.2 Hz, Ar-CH-NH), 3.74 (s, 3H, -OCH3), 2.84 (dd, 1H, J1= 3.9, J2= 12.2 Hz, NH-CH-CH-OH), 2.75 (dd, 1H, J1= 7.8, J2= 12.2 Hz, NH-CH-CH-OH), 2.59 (bs, 2H, -OH, -NH); 13C-NMR: δ (ppm) 153.97, 152.75, 139.84, 128.43, 128.06, 127.05, 115.48, 114.60, 71.20, 68.48, 55.66, 53.77, 51.24.
In view of the difficulties associated with the purification process, the minority products from entries 2, 4 and 10 were identified through gas chromatography coupled to a mass detector in the chemical ionization mode, which displayed different retention times, with the same molecular ions, and fragmentation patterns that were different respect to those of the majority products.
1-(Phenylamino)hexan-2-ol (Entry 2). [M+1]+ = 194, [M+29]+ = 222, [M+41]+ = 234 m/z [M- OH]+ = 176, [M- CH2OH ]+ = 162.
1-(Pphenylamino)hex-5-en-2-ol (Entry 4). [M+1]+ = 192, [M+29]+ = 220, [M+41]+ = 232. m/z [M- OH]+ = 174, [M- CH2OH ]+ = 160.
2-Phenyl-2-(phenylamino)ethanol (Entry 10). [M+1]+ = 214, [M+29]+ = 242, [M+41]+ = 254. m/z [M- OH]+ = 196. The [M-31]+ = [M-CH2OH]+ = 182 fragment was not observed.

Acknowledgments

The authors are grateful to Dr. Eduardo Terrés Rojas and Dr. Juan Navarrete Bolaños from Instituto Mexicano del Petróleo for MEB-EDS and Pyridine FT-IR characterization of the catalytic materials, respectively.

References and Notes

  1. Mejri, I.; Younes, M. K.; Ghorbel, A. Comparative study of the textural and structural properties of the aerogel and xerogel sulphated zirconia. J Sol-Gel Sci. Techn. 2006, 40, 3–8. [Google Scholar] Pârvulescu, V.; Coman, S.; Grange, P.; Pârvulescu, V. I. Preparation and characterization of sulfated zirconia catalysts obtained via various procedures. Appl. Catal. A. 1999, 17, 27–43. [Google Scholar]
  2. Arata, K.; Matsuhashi, H.; Hino, M.; Nakamura, H. Synthesis of solid superacids and their activities for reactions of alkanes. Catal. Today 2003, 81, 17–30. [Google Scholar] [CrossRef]
  3. Chen, W. H.; Ko, H. H.; Sakthivel, A.; Huang, S. J.; Liu, S. H.; Lo, A. Y.; Tsai, T. C.; Liu, S. B. A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catal. Today 2006, 116, 111–120. [Google Scholar] [CrossRef]
  4. Li, X.; Nagaoka, K.; Lercher, J. A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. J. Catal. 2004, 227, 130–137. [Google Scholar] [CrossRef]
  5. Marcus, R.; Diebold, U.; Gonzalez, R. D. The locus of sulfate sites on sulfated zirconia. Catal. Letts. 2003, 86, 151–156. [Google Scholar] [CrossRef]
  6. Biró, K.; Figueras, F.; Békássy, S. Acylation of B15C5 crown ether by acetic anhydride in the absence of solvent, on sulfated zirconias prepared in different conditions. Appl. Catal. A. 2002, 229, 235–243. [Google Scholar] [CrossRef]
  7. Deutsch, J.; Prescott, H. A.; Müller, D.; Kemnitz, E.; Lieskea, H. Acylation of naphthalenes and anthracene on sulfated zirconia. J. Catal. 2005, 231, 269–278. [Google Scholar] [CrossRef]
  8. Reddy, B. M.; Sreekanth, P. M.; Lakshmanan, P. Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. J. Mol. Catal. 2005, 237, 93–100. [Google Scholar] [CrossRef]
  9. Zhuang, Q.; Miller, J. M. One-pot sol-gel synthesis of sulfated ZrO2-SiO2 catalysts for alcohol dehydration. Can. J. Chem. 2001, 79(8), 1220–1223. [Google Scholar] [CrossRef]
  10. Escalona-Platero, E.; Penarroya-Mentruit, M. Acetylene polymerization on sulfated zirconia: detection of intermediates by infrared spectroscopy. Catal. Letts. 1997, 45(1,2), 59–63. [Google Scholar] [CrossRef]
  11. Sun, Y.; Zhu, L.; Lu, H.; Wang, R.; Lin, S.; Jiang, D.; Xiao, F. S. Sulfated zirconia supported in mesoporous materials. Appl. Catal. A. 2002, 237, 21–31. [Google Scholar] [CrossRef] Yurdakoc, M.; Akcay, M.; Tonbul, K.; Yurdakoc, K. Acidity of silica-alumina Catalysis by amine titration using Hammett indicators and FT-IR Study. Turk J. Chem. 1999, 23, 319–327. [Google Scholar] Morterra, C.; Garronet, E.; Bolis, V.; Fubini, B. An infrared spectroscopic characterization of the coordinative adsorption of carbon monoxide on TiO2. Spectrochim. Acta, Part A. 1987, 43, 1577–1581. [Google Scholar]
  12. Chen, C. L.; Cheng, S.; Lin, H. P.; Wong, S. T.; Mou, C. Y. Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve. Appl. Catal. A. 2001, 215, 21–30. [Google Scholar] [CrossRef]
  13. Wanga, W.; Wang, J. H.; Chena, C. L.; Xua, N. P.; Mou, C. Y. n-Pentane isomerization over promoted SZ/MCM-41 catalysts. Catal. Today 2004, 97, 307–313. [Google Scholar] [CrossRef]
  14. Breda, A.; Signoretto, M.; Ghedini, E.; Pinna, F.; Cruciani, G. Acylation of veratrole over promoted SZ/MCM-41 catalysts: Influence of metal promotion. Appl. Catal. A. 2006, 308, 216–222. [Google Scholar] [CrossRef]
  15. Scarpi, D.; Lo Galbo, F.; Occhiato, E. G.; Guarna, A. Enantioselective addition of diethylzinc to aldehydes using. 1,4-aminoalcohols as chiral ligands. Tetrahedron: Asymmetry 2004, 15, 1319–1324. [Google Scholar] [CrossRef]
  16. Mojtahedi, M. M.; Saidi, M. R.; Bolourtchian, M. Microwave-assisted Aminolysis of Epoxides Under Solvent-free Conditions Catalyzed by Montmorillonite Clay. J. Chem. Res. 1999, 128–129. [Google Scholar] [CrossRef]
  17. Sagawa, S.; Abe, H.; Hase, Y.; Inaba, T. Catalytic Asymmetric Aminolysis of 3,5,8-Trioxabicyclo[5.1.0]octane Providing an Optically Pure 2-Amino-1,3,4-butanetriol Equivalent. J. Org. Chem. 1999, 64, 4962–4965. [Google Scholar] [CrossRef]
  18. Van de Weghe, P.; Collin, J. Ring opening reactions of epoxides catalyzed by samarium iodides. Tetrahedron Lett. 1995, 36, 1649–1652. [Google Scholar] [CrossRef]
  19. Yamamoto, Y.; Asao, N.; Meguro, M.; Tsukada, N.; Nemoto, H.; Sadayori, N.; Wilson, J. G.; Nakamura, H. Regio- and stereo-selective ring opening of epoxides with amide cuprate reagents. J. Chem. Soc., Chem. Commun. 1993, 1201–1203. [Google Scholar]
  20. Fu, X. L.; Wu, S. H. A regio-and stereoselective synthesis of β-amino alcohols. Synth. Commun. 1997, 27, 1677–1683. [Google Scholar] [CrossRef]
  21. Mlynarski, J.; Jankowska, J.; Rakiel, B. Direct asymmetric aldol-Tishchenko reaction of aliphatic ketones catalyzed by syn-aminoalcohol-YB (III) complexes. Chem. Commun. 2005, 38, 4854–4856. [Google Scholar] [CrossRef]
  22. Mirkhania, V.; Tangestaninejad, S.; Yadollahi, B.; Alipanah, L. Ammonium decatungstocerate (IV): an efficient catalyst for ring opening of epoxides with aromatic amines. Catal. Letts. 2005, 101, 93–97. [Google Scholar] [CrossRef]
  23. De, S. K.; Gibbs, R. A. Ruthenium(III) Chloride–Catalyzed Ring Opening of Epoxides with Aromatic Amines. Synth. Commun. 2005, 35, 2675–2680. [Google Scholar] [CrossRef]
  24. Raghavendra, S. N.; Goud, T. V.; Reddy, S. M.; Krishnaiah, P.; Venkateswarlu, Y. Zirconium (IV) Chloride Catalyzed Ring Opening of Epoxides with Aromatic Amines. Synth. Commun. 2004, 34, 727–734. [Google Scholar] [CrossRef]
  25. Kamal, A.; Arifuddin, M.; Rao, M. V. Enantioselective ring opening of epoxides with trimethylsilyl azide (TMSN3) in the presence of β-cyclodextrin: an efficient route to 1,2-azido alcohols. Tetrahedron: Asymmetry 1999, 10, 4261–4264. [Google Scholar] [CrossRef]
  26. Reddy, L. R.; Reddy, M. A.; Bhanumathi, N.; Rao, K. R. Cerium Chloride-Catalysed Cleavage of Epoxides with Aromatic Amines. Synthesis 2001, 831–832. [Google Scholar]
  27. Chakraborti, A. K.; Rudrawar, S.; Kondaskar, Atul. An efficient synthesis of 2-amino alcohols by silica gel catalysed opening of epoxide rings by amines. Org. Biomol. Chem. 2004, 1277–1280. [Google Scholar] [CrossRef]
  28. Xue, W. M.; Kung, M. C.; Kozlov, A. I.; Popp, K. E.; Kung, H. H. Catalytic aminolysis of epoxide by alumina prepared from amine-protected Al precursor. Catal. Today 2003, 85, 219–224. [Google Scholar] [CrossRef]
  29. Horváth, A.; Skoda-Földes, R.; Mahó, S.; Berente, Z.; Kollár, L. Facile ring opening of 2,3-epoxy-steroids with aromatic amines in ionic liquids. Steroids 2006, 71, 706–711. [Google Scholar] [CrossRef]
  30. Azizi, N.; Saidi, M. R. Highly Chemoselective Addition of Amines to Epoxides in Water. Org. Lett. 2005, 7, 3649–3651. [Google Scholar] [CrossRef]
  31. Azizi, N.; Saidi, M. R. LiClO4.3H2O promoted highly regioselective ring-opening of epoxides with thiols under neutral conditions. Cat. Commun. 2006, 7, 224–227. [Google Scholar] [CrossRef]
  32. Babu, K. S.; Raju, B. C.; Kumar, S. P.; Mallur, Shanta G.; Reddy, S. V.; Rao, J. M. Tungstophosphoric Acid (H3PW12O40)-Catalyzed Regioselective Ring Opening of Epoxides with Amines. Synth. Commun. 2005, 35, 879–885. [Google Scholar] [CrossRef]
  33. Azizi, N.; Saidi, M. R. Highly efficient ring opening reactions of epoxides with deactivated aromatic amines catalyzed by heteropoly acids in water. Tetrahedron 2007, 63, 888–891. [Google Scholar] [CrossRef]
  34. Rafiee, E.; Tangestaninejad, S.; Habibi, M. H.; Mirkhani, V. Potassium Dodecatungstocobaltate Trihydrate (K5CoW12O40.3H2O) as an Efficient Catalyst for Aminolysis of Epoxides. Synth. Commun. 2004, 34, 3673–3681. [Google Scholar] [CrossRef]
  35. Angeles-Beltrán, D.; Lomas-Romero, L.; Lara-Corona, V. H.; González-Zamora, E.; Negrón-Silva, G. Sulfated Zirconia-Catalyzed Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones (DHPMs) under Solventless Conditions: Competitive Multicomponent Biginelli vs. Hantzsch Reactions. Molecules 2006, 11, 731–738. [Google Scholar] [CrossRef]
  36. Negrón, G.; Ángeles, D.; Lomas, L.; Martínez, Á.; Ramírez, M.; Martínez, Roberto. An Efficient Synthesis Of 6,6-Dimethyl-2-(4-Nitrophenyl)-1-(R-Phenyl)-4,5,6,7-Tetrahydro-1h-4-Indolones using a solid sulfated zirconia as catalyst. Heterocycles 2004, 63, 367–371. [Google Scholar] [CrossRef]
  37. Negrón, G. E.; Palacios, L. N.; Angeles, D.; Lomas, L.; Gaviño, R. A Mild and Efficient Method for the Chemoselec tive Synthesis of Acylals from Aromatic Aldehydes and their Deprotections Catalyzed by Sulfated Zirconia. J. Braz. Chem. Soc. 2005, 16, 490–494. [Google Scholar] [CrossRef]
  38. Klose, B. S.; Jentoft, R. E.; Hahn, A.; Ressler, T.; Kröhnert, J.; Wrabetz, S.; Yang, X.; Jentoft, F. C. Mechanical stress induced activity and phase composition changes in sulfated zirconia catalysts. J. Catal. 2003, 217, 487–490. [Google Scholar]
  39. Webb, P. A.; Orr, C. Analytical methods in fine particle technology; Micromeritics Instrument Corporation: Norcross, GA, USA, 1997. [Google Scholar]
  40. Du, Y.; Sun, Y.; Di, Y.; Zhao, L.; Liu, S.; Xiao, F. S. Ordered mesoporous sulfated silica-zirconia materials with high zirconium contents in the structure. J. Porous Mater. 2006, 13, 163–171. [Google Scholar] [CrossRef] Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, Can. J. Phys. Chem. B. 2001, 105, 8107–8111. [CrossRef]
  41. Cepanec, I.; Litvić, M.; Mikuldaš, H.; Bartolinčića, A.; Vinkovićb, V. Calcium trifluoromethanesulfonate-catalysed aminolysis of epoxides. Tetrahedron 2003, 59, 2435–2439. [Google Scholar] [CrossRef]
  42. De, S. K.; Gibbs, R. A. Ruthenium(III) Chloride–Catalyzed Ring Opening of Epoxides with Aromatic Amines. Synth. Commun. 2005, 35, 2675–2680. [Google Scholar] [CrossRef]
  43. Westermann, J.; Schneider, M.; Platzek, J.; Petrov, O. Practical Synthesis of a Heterocyclic Immunosuppressive Vitamin D Analogue. Org. Process Res. Dev. 2007, 11, 200–205. [Google Scholar] [CrossRef]
  44. Kondaskar, C.; Kondaskar, A. ZrCl4 as a new and efficient catalyst for the opening of epoxide rings by amines. Tetrahedron Lett. 2003, 44, 8315–8319. [Google Scholar] [CrossRef]
  45. Fujiwara, M.; Imada, M.; Bab, A.; Matsuda, H. Tetraphenylstibonium triflate as a regio- and chemoselective catalyst in the reaction of oxiranes with amines. Tetrahedron Lett. 1989, 30, 739–742. [Google Scholar] [CrossRef] Alam, M. M.; Varala, R.; Enugala, R.; Adapa, S. R. Synthesis of -Amino Alcohols by Regioselective Ring Opening of Epoxides with Aromatic Amines Catalyzed by Tin (II) Chloride. Lett. Org. Chem. 2006, 3, 187–190. [Google Scholar] Swamy, N. R.; Goud, T. V.; Reddy, S. M.; Krishnaiah, P.; Venkateswarlu, Y. Zirconium (IV) Chloride Catalyzed Ring Opening of Epoxides with Aromatic Amines. Synth. Commun. 2004, 34, 727–734. [Google Scholar]
  46. Gupta, R.; Paul, S.; Gupta, A. K.; Kachroo, P. L.; Dandia, A. Opening of oxirane ring with N-nucleophiles under microwave irradiation. Ind. J. Chem. Sect. B. 1997, 36B, 281–283. [Google Scholar] Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. [Bmim]BF4 ionic liquid. A novel reaction medium for the synthesis of β-amino alcohols. Tetrahedron Lett. 2003, 44, 1047–1050. [Google Scholar] Kumar, S. R.; Leelavathi, P. Cadmium chloride-catalyzed regioselective opening of oxiranes with aromatic amines–Animproved protocol for the synthesis of 2-amino alcohols. Can. J. Chem. 2007, 85, 37–41. [Google Scholar] Chakraborti, A. K.; Rudrawar, S.; Kondaskar, A. Lithium bromide, an inexpensive and efficient catalyst for opening of epoxide rings by amines at room temperature under solvent-free condition. Eur. J. Org. Chem. 2004, 17, 3597–3600. [Google Scholar]
  47. Chakraborti, A. K.; Kondaskar, A.; Rudrawar, S. Scope and limitations of montmorillonite K 10 catalysed opening of epoxide rings by amines. Tetrahedron 2004, 60, 9085–9091. [Google Scholar] [CrossRef]
  48. Greenwood, D. T.; Mallion, K. B.; Todd, A. H.; Turner, R. W. 2-Aryloxymethyl-2,3,5,6-tetrahydro-1,4-oxazines, a new class of antidepressants. J. Med. Chem. 1975, 18(6), 573–577. [Google Scholar]
  49. Matsuhashi, H.; Tanaka, M.; Nakamura, H.; Arata, K. Formation of acid sites in ordered pores of FSM-16 by modification with sulfated zirconia. Appl. Catal. A. 2001, 208, 1–5. [Google Scholar] [CrossRef]
  50. Luo, Y.; Lu, G. Z.; Guo, Y. L.; Wang, Y. S. Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: synthesis, characterization and catalysis. Catal. Commun. 2002, 3, 129–134. [Google Scholar]
  • Sample Availability: Samples of the compounds are available from the authors.

Share and Cite

MDPI and ACS Style

Negrón-Silva, G.; Hernández-Reyes, C.X.; Angeles-Beltrán, D.; Lomas-Romero, L.; González-Zamora, E.; Méndez-Vivar, J. Comparative Study of Regioselective Synthesis of β-Aminoalcohols under Solventless Conditions Catalyzed by Sulfated Zirconia and SZ/MCM-41. Molecules 2007, 12, 2515-2532. https://doi.org/10.3390/12112515

AMA Style

Negrón-Silva G, Hernández-Reyes CX, Angeles-Beltrán D, Lomas-Romero L, González-Zamora E, Méndez-Vivar J. Comparative Study of Regioselective Synthesis of β-Aminoalcohols under Solventless Conditions Catalyzed by Sulfated Zirconia and SZ/MCM-41. Molecules. 2007; 12(11):2515-2532. https://doi.org/10.3390/12112515

Chicago/Turabian Style

Negrón-Silva, Guillermo, C. Xochitl Hernández-Reyes, Deyanira Angeles-Beltrán, Leticia Lomas-Romero, Eduardo González-Zamora, and Juan Méndez-Vivar. 2007. "Comparative Study of Regioselective Synthesis of β-Aminoalcohols under Solventless Conditions Catalyzed by Sulfated Zirconia and SZ/MCM-41" Molecules 12, no. 11: 2515-2532. https://doi.org/10.3390/12112515

Article Metrics

Back to TopTop