Synthesis of Novel N-Sulfonyl Monocyclic β-Lactams as Potential Antibacterial Agents

Aliasghar Jarrahpour * and Maaroof Zarei

Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran. Tel.: (+98) 711 2284822; Fax: (+98) 711 2280926;

* Author to whom correspondence should be addressed; e-mail: jarrah@chem.susc.ac.ir or aliasghar6683@yahoo.com

Abstract—New cis monocyclic β-lactams were synthesized by [2+2] Staudinger cycloaddition reactions of the imine (3,4-dimethoxybenzylidene)-(4-methoxyphenyl)-amine and ketenes derived from different acyl chlorides and Et3N. These monocyclic β-lactams were then cleaved by ceric ammonium nitrate (CAN) to give NH-monocyclic β-lactams, which in turn were converted to N-sulfonyl monocyclic β-lactams by treatment with four different sulfonyl chlorides in the presence of Et3N and 4,4-dimethyl-aminopyridine (DMAP).

Keywords: 2-Azetidinones, N-Sulfonyl β-lactams, Ketene, Imine, CAN, DMAP

Introduction

Even more than 70 years after the discovery of penicillin, β-lactam antibiotics remain as one of the most important contributions of science to Humanity [1]. The β-lactam skeleton is the common structural element of the widely used penicillins, cephalosporins, thienamycines, nocardicins, aztreonam and carumonam [2]. The first member of this class of compounds was synthesized by Staudinger in 1907 [3], but until the discovery of penicillin by Fleming in 1929, the importance of β-lactams as antibiotics was not recognized [4]. Widespread use of β-lactam antibiotics exerts selective pressure on bacteria and permits the proliferation of resistant organisms [5]. A comparison of current antibiograms with those from previous decades shows an alarming increase in bacterial resistance to
β-lactam antibiotics [6]. Consequently, because of the growing resistance of bacteria towards β-lactam antibiotics and the need for medicines with a more specific antibacterial activity several synthetic and semi-synthetic β-lactam antibiotics have been developed by the pharmaceutical industry [7]. An interesting group of β-lactams are the monocyclic β-lactams, which are molecules that do not contain another ring fused to the β-lactam one. In the late 1970s and early 1980s, the first classes of monocyclic β-lactams antibacterial agents were isolated from natural sources [8]. The discovery of the nocardicins, 1, and monobactams, 2, demonstrated for the first time that β-lactams do not require a conformationally constrained bicyclic structure to have antibacterial properties [9], suggesting that the biological activity was strictly correlated to the presence of a suitably functionalized 2-azetidinone ring [10]. In addition to the monobactams and nocardicins, some other monocyclic β-lactams such as compounds 3 [11], 4 [12], and 5 [13] have also shown good antibacterial activity. Cyclic sulfonamides have been shown to be highly useful heterocycles in medicinal chemistry [13]. The sulfonamido group, in addition to its antibacterial activity, shows potent anti-HIV and latent leishmanicidal activities [15]. Numerous articles can be found throughout the literature describing the preparation and use of N-sulfonyl β-lactams as intermediates in synthesis [16]. About 600 N-sulfonyl β-lactams have been examined for biological properties [17]. Turos and coworkers [18] synthesized the N-sulfonyl monocyclic β-lactams 6 and have tested them against some bacteria. Recently, it has been reported that monocyclic β-lactams have novel biological activities such as cytomegalovirus protease inhibitors [19], thrombin and tryptase inhibitors [20], cholesterol absorption inhibitors [21], human leukocyte elastase (HLE) inhibitors [22], porcine pancreatic elastase (PPE) inhibitors [23] and anticancer activities [24]. Besides their biological activities, the importance of β-lactams as synthetic intermediates has been widely recognized in organic synthesis [25] for example in the semisynthesis of Taxol [26].

The β-lactam moiety is accessible by several synthetic methods and the topic has been reviewed several times [27]. Stereoselection at positions 3 and 4 of the 2-azetidinone ring is obviously of utmost importance with the perspective of its participation in biologically or pharmacologically-active molecules [28]. The most popular method for the preparation of the β-lactam ring involves the classical ketene-imine (Staudinger) reaction [29] that leads to β-lactams with cis selectivity [30]. In this paper, we describe the synthesis of some new monocyclic β-lactams bearing different sulfonyl groups at their N1-positions.
Results and Discussion

Aldimine 7 was prepared in quantitative yield by condensation of \(p\)-methoxyaniline and 3,4-dimethoxybenzaldehyde in refluxing ethanol. The formation of the Schiff base 7 was readily established from its spectral data. Treatment of 7 with ketenes derived from the acyl chlorides 3-nitrophthaloylglycyl chloride (8), 3-nitrophthaloylalaninyl chloride (9) and phenoxycetyl chloride in the presence of triethylamine afforded cis-2-azetidinones 10-12 (Scheme 1). The presence of these new compounds was confirmed by t.l.c. monitoring. The IR spectra showed the \(\beta\)-lactam carbonyl at 1755.0-1786.6 cm\(^{-1}\). The indicated \(cis\) stereochemistry for these monocyclic \(\beta\)-lactams was deduced from analysis of their \(^1\)H-NMR spectra. The coupling constant of H-3 and H-4 is \(J = 5.2-5.3\) Hz for \(\beta\)-lactam 10 and \(J = 5.6-5.8\) Hz for \(\beta\)-lactam 12, which are indicative of their \(cis\) stereochemistry. In addition, \(^{13}\)C-NMR spectroscopic data of \(\beta\)-lactams 10-12 definitely showed the lactam CO (C2) signal at 161.8-166.8 ppm, whereas C-3 resonated at around 63.2-70.2 ppm and C-4 at 59.8-63.8 ppm.

Scheme 1

Monocyclic \(\beta\)-lactams 10-12 were then converted to \(N\)-unsubstituted \(\beta\)-lactams 13-15 by reaction with ceric ammonium nitrate (CAN) at \(-10^\circ\)C. In this reaction, the quinone released was removed by forming the corresponding bisulfite adduct, which can be washed out with water after workup with aqueous NaHSO\(_3\) solution [31]. The IR spectra of the \(N\)-unsubstituted \(\beta\)-lactams 13-15 exhibited the characteristic NH absorption at 3290.3-3380.0 cm\(^{-1}\) and the 2-azetidinone carbonyl at 1762.5-1785.0 cm\(^{-1}\). Furthermore, the \(^1\)H-NMR spectra showed the NH peaks at 6.55-6.60 ppm and H-4 as a doublet of doublet peak at 5.04 ppm for 13, 4.77 ppm for 15 and a doublet peak at 4.6 ppm for 14, that confirmed the NH-\(\beta\)-lactam structures for 13-15. \(N\)-Sulfonyl monocyclic \(\beta\)-lactams 16-27 were obtained by reaction of \(N\)-unsubstituted \(\beta\)-lactams 13-15 with methanesulfonyl chloride, benzene-sulfonyl chloride, \(p\)-tolouenesulfonyl chloride and 2-naphthalenesulfonyl chloride, respectively, in the presence of 4,4-dimethylaminopyridine (DMAP) and Et\(_3\)N (see Table 1). The IR spectra showed the \(\beta\)-lactam carbonyls at 1766.4-1788.1 cm\(^{-1}\), S=O absorptions (strong peaks) at 1328.5-1336.2 cm\(^{-1}\) and the
disappearance of the NH peaks. Other spectroscopic and analytical data were consistent with the indicated structures of the N-sulfonyl monocyclic β-lactams 16-27.

Conclusions

In summary, new cis-monocyclic β-lactams 10-12 bearing N1- p-methoxyphenyl (PMP) groups were obtained with high stereoselectivity using classical Staudinger methodology. These β-lactams were oxidatively cleaved to NH-β-lactams 13-15 by reaction with ceric ammonium nitrate. A novel series of monocyclic β-lactams containing sulfonamidos groups at N1 were then synthesized from the NH-β-lactams 13-15 and the appropriate sulfonyl chlorides. The coexistence of a β-lactam ring and a sulfonamido group may make these valuable compounds for study of antimicrobial activities.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>Yield%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3-NO$_2$Phth</td>
<td>H</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>3-NO$_2$Phth</td>
<td>Me</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>PhO</td>
<td>H</td>
<td>-</td>
<td>97</td>
</tr>
<tr>
<td>13</td>
<td>3-NO$_2$Phth</td>
<td>H</td>
<td>-</td>
<td>79</td>
</tr>
<tr>
<td>14</td>
<td>3-NO$_2$Phth</td>
<td>Me</td>
<td>-</td>
<td>88</td>
</tr>
<tr>
<td>15</td>
<td>PhO</td>
<td>H</td>
<td>-</td>
<td>83</td>
</tr>
<tr>
<td>16</td>
<td>3-NO$_2$Phth</td>
<td>H</td>
<td>Me</td>
<td>78</td>
</tr>
<tr>
<td>17</td>
<td>3-NO$_2$Phth</td>
<td>H</td>
<td>Ph</td>
<td>85</td>
</tr>
<tr>
<td>18</td>
<td>3-NO$_2$Phth</td>
<td>H</td>
<td>4-MeAr</td>
<td>88</td>
</tr>
<tr>
<td>19</td>
<td>3-NO$_2$Phth</td>
<td>H</td>
<td>2-naphthalene</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>3-NO$_2$Phth</td>
<td>Me</td>
<td>Me</td>
<td>79</td>
</tr>
<tr>
<td>21</td>
<td>3-NO$_2$Phth</td>
<td>Me</td>
<td>Ph</td>
<td>76</td>
</tr>
<tr>
<td>22</td>
<td>3-NO$_2$Phth</td>
<td>Me</td>
<td>4-MeAr</td>
<td>83</td>
</tr>
<tr>
<td>23</td>
<td>3-NO$_2$Phth</td>
<td>Me</td>
<td>2-naphthalene</td>
<td>82</td>
</tr>
<tr>
<td>24</td>
<td>PhO</td>
<td>H</td>
<td>Me</td>
<td>83</td>
</tr>
<tr>
<td>25</td>
<td>PhO</td>
<td>H</td>
<td>Ph</td>
<td>86</td>
</tr>
<tr>
<td>26</td>
<td>PhO</td>
<td>H</td>
<td>4-MeAr</td>
<td>74</td>
</tr>
<tr>
<td>27</td>
<td>PhO</td>
<td>H</td>
<td>2-naphthalene</td>
<td>72</td>
</tr>
</tbody>
</table>

Acknowledgments

The authors thank the Shiraz University Research Council for financial support (Grant No. 83-GR-SC-31).

Experimental

General

All required chemicals were purchased from the Merck and Fluka chemical companies. Dichloromethane and triethylamine were dried by distillation over CaH$_2$ and then stored over 4Å
molecular sieves. IR spectra were run on a Shimadzu FT-IR 8300 spectrophotometer. 1H-NMR and 13C-NMR spectra were recorded in CDCl$_3$ (compounds 7, 10-15) or DMSO-d$_6$ (compounds 16-27) using a Bruker Avance DPX instrument (operating at 250 MHz for 1H and 62.9 MHz for 13C). Chemical shifts were reported in ppm (δ) downfield from TMS. All of the coupling constants (J) are in Hertz. The mass spectra were recorded on a Shimadzu GC-MS QP 1000 EX instrument. Melting points were determined in open capillaries with a Buchi 510 melting point apparatus and are not corrected. Thin-layer chromatography (t.l.c.) was carried out on silica gel 254 analytical sheets obtained from Fluka. Column chromatography was performed on Merck Kieselgel (230-270 mesh).

Synthesis of (3,4-dimethoxybenzylidene)-(4-methoxyphenyl)amine (7):

A mixture of p-methoxyaniline (5.00 g, 40.71 mmol) and 3,4-dimethoxybenzaldehyde (6.80 g, 40.71 mmol) was refluxed in ethanol for 4 hours. After cooling the solution the precipitate formed was filtered off and washed with ethanol to give pure Schiff base 7 as a yellow solid (10.46 g, 95%). m.p. 128-130 °C; IR (KBr, cm$^{-1}$) 1620.1 (C=N); 1H-NMR δ 3.85, 4.01, 4.02 (3 OMe, 3 s, 9H), 6.87-7.72 (ArH, m, 7H), 8.40 (HC=N, s, 1H); 13C-NMR δ 64.59, 65.11 (OMe), 117.90-160.88 (aromatic carbons), 167.15 (C=N); MS (m/e) 272, 271 (M$^+$), 257, 256, 240, 154, 134, 115, 77.

Synthesis of 3-nitrophthaloylglycyl chloride (8):

3-Nitrophthaloylglycine was prepared by a reported method [32]. 3-Nitrophthaloylglycyl chloride was obtained by heating 3-nitrophthaloyl glycine (10.0 g, 39.9 mmol) and thionyl chloride (20 mL, 275 mmol) for 2 hours, the excess of thionyl chloride was removed by distillation and the residue was crystallized from light petroleum to give acyl chloride 8 as a light yellow crystalline solid (10.65 g, 93 %). It was stable for long periods when stored in a dessicator over CaCl$_2$; m.p. 116-118 °C; IR (KBr, cm$^{-1}$) 1735, 1775 (phthalimido, CO), 1810 (COCl).

Synthesis of 3-nitrophthaloylalaninyl chloride (9):

3-Nitrophthaloylalanine was prepared by a reported method [32]. 3-Nitrophthaloylalaninyl chloride (9) was prepared by the same method as compound 8. Yield 90 %; m.p. 108-110 °C; IR (KBr, cm$^{-1}$) 1740, 1785 (phthalimido, CO), 1810 (COCl).

General procedure for synthesis of monocyclic β-lactams 10-12:

A solution of the corresponding acyl chloride (1.50 mmol) in dry CH$_2$Cl$_2$ (10 mL) was slowly added to a solution of (3,4-dimethoxybenzylidene)-(4-methoxyphenyl) amine (7, 1.00 mmol) and triethylamine (3.00 mmol) in CH$_2$Cl$_2$ (15 mL) at –10 °C. The reaction mixture was then allowed to warm to room temperature, stirred overnight and then it was washed with saturated sodium bicarbonate solution (20 mL), brine (20 mL), dried (Na$_2$SO$_4$) and the solvent was evaporated to give the crude product which was then purified by column chromatography over silica gel.
2-[2-(3,4-Dimethoxyphenyl)-1-(4-methoxyphenyl)-4-oxoazetidin-3-yl]-4-nitroisoindole-1,3-dione (10). β-Lactam 10 was obtained as a light brown solid from Schiff base 7 and acyl chloride 8. Yield 60 % (eluent hexane/EtOAc 5:5); m.p. 198-200 °C; IR (KBr, cm⁻¹) 1735.0, 1770.0 (phth. CO), 1778.0 (CO β-lactam); ¹H-NMR δ 3.65, 3.74, 3.78 (3 OMe, 3 s, 9H), 5.33 (H-4, d, 1H, J=5.2), 5.53 (H-3, d, 1H, J=5.3), 6.64-8.01 (ArH, m, 10H); ¹³C-NMR δ 55.80, 56.10, 56.39 (OMe), 61.16 (C-4), 63.29 (C-3), 109.12-156.96 (aromatic carbons), 161.20 (CO), 163.52 (CO, β-lactam).

2-[2-(3,4-Dimethoxyphenyl)-1-(4-methoxyphenyl)-3-methyl-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (11). β-Lactam 11 was obtained as a light brown solid from Schiff base 7 and acyl chloride 9. Yield 58 % (eluent hexane/EtOAc 4:6); m.p. 181-183 °C; IR (KBr, cm⁻¹) 1735.0, 1775.7 (phth. CO), 1786.6 (CO β-lactam); ¹H-NMR δ 1.82 (Me, s, 3H), 3.73, 3.75, 3.82 (3 OMe, 3 s, 9H), 5.69 (H-4, s, 1H), 6.74-8.07 (ArH, m, 10H); ¹³C-NMR δ 20.41 (Me), 56.51, 56.81, 61.85 (OMe), 70.20 (C-3), 113.81-157.45 (aromatic carbons), 166.01 (CO), 166.82 (CO, β-lactam).

4-(3,4-Dimethoxyphenyl)-1-(4-methoxyphenyl)-3-phenoxy-2-azetidinone (12). β-Lactam 12 was obtained as a light yellow solid from Schiff base 7 and phenoxyacetyl chloride. Yield 97 %; m.p. 158-160 °C; IR (KBr, cm⁻¹) 1755.0 (CO, β-lactam); ¹H-NMR δ 3.62, 3.72, 3.76 (3 OMe, 3 s, 9H), 5.44 (H-4, d, 1H, J=5.8), 5.71 (H-3, d, 1H, J=5.6), 6.68-7.37 (ArH, m, 12H); ¹³C-NMR δ 54.36, 54.72, 55.09 (OMe), 66.50 (C-3), 113.65-156.25 (aromatic carbons), 161.87(CO, β-lactam).

General procedure for synthesis of N-unsubstituted β-lactams 13-15:

A solution of (NH₄)₂Ce(NO₃)₆ (CAN).(3.00 mmol) in water (15 mL) was added dropwise to a solution of each of the β-lactams 10-12 (1.00 mmol) in CH₃CN (25mL) at –10 °C. The mixture was stirred at this temperature for 45 minutes, then water (30 mL) was added and the mixture was extracted with EtOAc (3 × 20 mL) and washed with a saturated solution of NaHCO₃ (40 mL). The aqueous layer of NaHCO₃ was extracted again with EtOAc (15 mL), and all organic layers were combined and washed successively with 10 % NaHSO₃ (2 × 30 mL), NaHCO₃ (20 mL), brine (20 mL) and then dried over sodium sulfate. After filtration and evaporation of the solvent in vacuo, the crude product was purified by recrystallization from 4:6 hexane-EtOAc to afford the products 13-15, respectively.

2-[2-(3,4-Dimethoxyphenyl)-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (13). β-Lactam 13 was prepared by deprotection of β-lactam 10. Brown solid (79 %); m.p. 117-119 °C; IR (KBr, cm⁻¹) 1735.0, 1770.2 (phth., CO), 1785.0 (CO, β-lactam), 3380.5 (NH); ¹H-NMR δ 3.61, 3.75 (2 OMe, 2 s, 6H), 5.04 (H-4, dd, 1H, J=12.2, 3.5), 5.53 (H-3, d, 1H, J=5.5), 6.55 (NH, br s, 1H), 6.97-8.63 (ArH, m, 6H); ¹³C-NMR δ 55.44, 55.85 (OMe), 60.81 (C-4), 63.16 (C-3), 110.08-150.07 (aromatic carbons), 163.36 (CO), 164.49 (CO, β-lactam).

2-[2-(3,4-Dimethoxyphenyl)-3-methyl-4-oxazetidin-3-yl]-4-nitroisoindole-1,3-dione (14). β-Lactam 14 was prepared by deprotection of β-lactam 11. Brown solid (88 %); m.p. 113-115 °C; IR (KBr, cm⁻¹) 1735.0, 1775.0 (phth., CO), 1790.0 (CO, β-lactam), 3310.0 (NH); ¹H-NMR δ 1.63 (Me, s, 3H), 3.22, 3.83 (2 OMe, 2 s, 6H), 4.69 (H-4, d, 1H, J=7.3), 6.57 (NH, br s, 1H), 7.23-8.63 (ArH, m, 6H);
13C-NMR δ 16.51 (Me), 49.72, 50.02 (OMe), 64.52 (C-4), 69.88 (C-3), 117.20-164.45 (aromatic carbons), 167.05 (CO), 171.85 (CO, β-lactam).

4-(3,4-Dimethoxyphenyl)-3-phenoxy-2-azetidinone (15). β-Lactam 15 was prepared by deprotection of β-lactam 12. Red oil (83 %); IR (neat, cm$^{-1}$) 1762.5 (CO, β-lactam), 3290.3 (NH); 1H-NMR δ 3.67, 3.79 (2 OMe, 2 s, 6H), 4.77 (H-4, dd, 1H, J=13.5, 5.2), 5.27 (H-3, d, 1H, J=8.2), 6.60 (NH, br s, 1H), 6.67-7.88 (ArH, m, 8H); 13C-NMR δ 56.80, 60.80 (OMe), 81.68 (C-4), 82.95 (C-3), 111.25-157.16 (aromatic carbons), 167.81 (CO, β-lactam).

Typical procedure for synthesis of N-sulfonyl-β-lactams 16-27:

To a solution of N-unsubstituted β-lactams 13-15 (1.00 mmol), separately, in dry CH$_2$Cl$_2$ (10 mL) cooled to –10 °C was added triethylamine (1.5 mmol) and 4-N,N-dimethylaminopyridine (DMAP) (0.1 mmol). A solution of corresponding sulfonyl chloride (1.5 mmol) in dry CH$_2$Cl$_2$ (5 mL) was slowly added to the resulting mixture. After stirring at –10 °C for one hour, the reaction mixture was allowed to warm to room temperature and stirred overnight. The mixture was washed with brine (10 mL) and dried over sodium sulfate; the solvent was evaporated in reduced pressure to give the N-sulfonyl β-lactams 16-27.

2-[2-(3,4-Dimethoxyphenyl)-1-methanesulfonyl-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (16). β-Lactam 16 was obtained by reaction of β-lactam 13 and methanesulfonyl chloride as a red oil (78 %); IR (neat, cm$^{-1}$) 1331.7 (S=O), 1735.0, 1776.2 (phth., CO), 1785.0 (CO, β-lactam); 1H-NMR δ 3.54 (SO$_2$Me, s, 3H), 4.48, 4.55 (2 OMe, 2 s, 6H), 5.14 (H-4, d, 1H, J=5.5), 5.60 (H-3, d, 1H, J=5.0), 6.88-8.13 (ArH, m, 6H); 13C-NMR δ 31.82 (Me), 56.03, 59.12 (OMe), 60.26 (C-4), 61.65 (C-3), 106.92-151.61 (aromatic carbons), 161.81(CO), 164.73 (CO, β-lactam).

2-[1-Benzensulfonyl-2-(3,4-dimethoxyphenyl)-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (17). β-Lactam 17 was obtained by reaction of β-lactam 13 and benzenesulfonyl chloride as a red oil (85 %); IR (neat, cm$^{-1}$) 1331.7 (S=O), 1735.0, 1776.2 (phth., CO), 1785 (CO, β-lactam); 1H-NMR δ 3.77, 3.78 (2 OMe, 2 s, 6H), 5.39 (H-4, d, 1H, J=5.2), 5.48 (H-3, d, 1H, J=5.6), 6.87-8.10 (ArH, m, 11H); 13C-NMR δ 55.13, 55.89 (OMe), 59.91 (C-4), 61.59 (C-3), 107.88-152.72 (aromatic carbons), 161.47(CO), 164.71 (CO, β-lactam).

2-[2-(3,4-Dimethoxyphenyl)-1-(toluene-4-sulfonyl)-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (18). β-Lactam 18 was obtained by reaction of β-lactam 13 and 4-toluenesulfonyl chloride as a red oil (88 %); IR (neat, cm$^{-1}$) 1330.9 (S=O), 1737.5, 1777.3 (phth., CO), 1787.2 (CO, β-lactam); 1H-NMR δ 2.16 (MePh, s, 3H), 3.21, 3.37 (2 OMe, 2 s, 6H), 5.02 (H-4, d, 1H, J=5.1), 5.48(H-3, d, 1H, J=5.0), 6.48-8.08 (ArH, m, 10H); 13C-NMR δ 23.20 (MePh), 46.47, 52.56 (OMe), 56.22 (C-4), 60.09 (C-3), 108.04-156.12 (aromatic carbons), 161.85 (CO), 164.75 (CO, β-lactam).

2-[2-(3,4-Dimethoxyphenyl)-1-(naphthalene-2-sulfonyl)-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (19). β-Lactam 19 was obtained by reaction of β-lactam 13 and naphthalene-2-sulfonyl chloride as a red oil (73 %); IR (neat, cm$^{-1}$) 1336.2 (S=O), 1741.2, 1775.6 (phth., CO), 1784.9 (CO, β-lactam);
2-[2-(3,4-Dimethoxyphenyl)-1-methanesulfonyl-3-methyl-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (20). β-Lactam 20 was obtained by reaction of β-lactam 14 and methanesulfonyl chloride as a red oil (79%). IR (neat, cm⁻¹) 1331.9 (S=O), 1736.9, 1777.0 (phth., CO), 1788.1 (CO, β-lactam); ¹H-NMR δ 1.49 (Me, s, 3H), 2.63 (SO₂Me, s, 3H), 3.73, 3.80 (2 OMe, 2 s, 6H), 5.22 (H-4, s, 1H), 6.76-8.11 (ArH, m, 6H); ¹³C-NMR δ 19.16 (Me), 32.46 (SO₂Me), 59.66, 59.97 (OMe), 67.64 (C-4), 70.33 (C-3), 73.33 (C-4), 73.33 (C-3), 114.99-165.27 (aromatic carbons), 167.51 (CO), 171.35 (CO, β-lactam).

2-[1-Benzenesulfonyl-2-(3,4-dimethoxyphenyl)-3-methyl-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (21). β-Lactam 21 was obtained as a red oil (76%) by reaction of β-lactam 14 and benzene-sulfonyl chloride. IR (neat, cm⁻¹) 1329.2 (S=O), 1739.1, 1778.1 (phth., CO), 1786.3 (CO, β-lactam); ¹H-NMR δ 1.72 (Me, s, 3H), 3.73, 3.80 (2 OMe, 2 s, 6H), 5.19 (H-4, s, 1H), 6.58-8.03 (ArH, m, 11H); ¹³C-NMR δ 20.74 (Me), 55.97, 58.15 (OMe), 67.64 (C-4), 70.03 (C-3), 108.14-152.97 (aromatic carbons), 161.22 (CO), 165.85 (CO, β-lactam).

2-[2-(3,4-Dimethoxyphenyl)-3-methyl-1-(toluene-4-sulfonyl)-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (22). β-Lactam 22 was obtained by reaction of β-lactam 14 and 4-toluenesulfonyl chloride as a red oil (83%). IR (neat, cm⁻¹) 1335.1 (S=O), 1740.0, 1777.0 (phth., CO), 1788.1 (CO, β-lactam); ¹H-NMR δ 1.58 (Me, s, 3H), 2.36 (MePh, s, 3H), 3.48, 3.55 (2 OMe, 2 s, 6H), 5.70 (H-4, s, 1H), 6.88-8.16 (ArH, m, 10H); ¹³C-NMR δ 18.98 (Me), 20.48 (MePh), 55.18, 55.86 (OMe), 60.57 (C-4), 70.03 (C-3), 108.14-152.97 (aromatic carbons), 165.32 (CO), 167.66 (CO, β-lactam).

2-[2-(3,4-Dimethoxyphenyl)-3-methyl-1-(naphthalene-2-sulfonyl)-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione (23). β-Lactam 23 was obtained by reaction of β-lactam 14 and naphthalene-2-sulfonyl chloride as a red oil (82%). IR (neat, cm⁻¹) 1333.1 (S=O), 1738.4, 1776.9 (phth., CO), 1787.1 (CO, β-lactam); ¹H-NMR δ 2.15 (Me, s, 3H), 3.06, 3.19 (2 OMe, 2 s, 6H), 5.62 (H-4, s, 1H), 6.74-8.75 (ArH, m, 13H); ¹³C-NMR δ 30.55 (Me), 56.13, 56.88 (OMe), 57.35 (C-4), 60.42 (C-3), 107.32-156.00 (aromatic carbons), 165.32 (CO), 167.66 (CO, β-lactam).

4-(3,4-Dimethoxyphenyl)-1-methanesulfonyl-3-phenoxy-azetidin-2-one (24). β-Lactam 24 was obtained by reaction of β-lactam 15 and methanesulfonyl chloride as a red oil (83%). IR (neat, cm⁻¹): 1332.2 (S=O), 1766.4 (CO, β-lactam); ¹H-NMR δ 2.15 (SO₂Me, s, 3H), 3.83, 3.98 (2 OMe, 2 s, 6H), 5.35 (H-4, d, 1H, J=5.8), 5.60 (H-3, d, 1H, J=4.1), 6.72-7.87 (ArH, m, 8H); ¹³C-NMR δ 26.83 (SO₂Me), 59.62, 59.87 (OMe), 81.32 (C-4), 82.52 (C-3), 107.14-163.31 (aromatic carbons), 165.83 (CO, β-lactam).

1-Benzenesulfonyl-4-(3,4-dimethoxyphenyl)-3-phenoxy-azetidin-2-one (25). β-Lactam 25 was obtained by reaction of β-lactam 15 and benzenesulfonyl chloride as a red oil (86%). IR (neat, cm⁻¹): 1328.5 (S=O), 1772.0 (CO, β-lactam); ¹H-NMR δ 3.60, 3.69 (2 OMe, 2 s, 6H), 5.17 (H-4, d, 1H, J=6.5), 5.46
(H-3, d, 1H, J=4.8), 6.55-7.75 (ArH, m, 13H); 13C-NMR δ 59.30, 60.21 (OMe), 78.49 (C-4), 82.43 (C-3), 108.15-156.75 (aromatic carbons), 157.52 (CO, β-lactam).

4-(3,4-Dimethoxyphenyl)-3-phenoxy-1-(toluene-4-sulfonyl)-azetidin-2-one (26). β-Lactam 26 was obtained by reaction of β-lactam 15 and 4-toluenesulfonyl chloride as a red oil (74 %); IR (neat, cm$^{-1}$) 1329.8 (S=O), 1769.3 (CO, β-lactam); 1H-NMR δ 2.14 (MePh, s, 3H), 3.68, 3.80 (2 OMe, 2 s, 6H), 5.74 (H-4, d, 1H, J=6.0), 5.90 (H-3, d, 1H, J=5.5), 6.62-7.65 (ArH, m, 12H); 13C-NMR δ 22.06 (MePh), 56.10, 56.72 (OMe), 61.43 (C-4), 61.65 (C-3), 108.24-157.77 (aromatic carbons), 165.06 (CO, β-lactam).

4-(3,4-Dimethoxyphenyl)-1-(naphthalene-2-sulfonyl)-3-phenoxy-azetidin-2-one (27). β-Lactam 27 was obtained by reaction of β-lactam 15 and naphthalene-2-sulfonyl chloride as a red oil (72 %); IR (neat, cm$^{-1}$) 1332.1 (S=O), 1770.1 (CO, β-lactam); 1H-NMR δ 3.29, 3.64 (2 OMe, 2 s, 6H), 5.18 (H-4, d, 1H, J=5.0), 5.85 (H-3, d, 1H, J=5.6), 6.85-8.65 (ArH, m, 15H); 13C-NMR δ 55.89, 57.06 (OMe), 65.60 (C-4), 68.11 (C-3), 118.34-158.84 (aromatic carbons), 166.79 (CO, β-lactam).

References

Sample availability: Contact the authors or MDPI

© 2006 by MDPI (http:www.mdpi.org). Reproduction is permitted for noncommercial purposes