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Abstract: Notion of Effective size of support (Ess) of a random variable is introduced. A small

set of natural requirements that a measure of Ess should satisfy is presented. The measure with

prescribed properties is in a direct (exp-) relationship to the family of Rényi’s α-entropies which

includes also Shannon’s entropy H. Considerations of choice of the value of α imply that exp(H)

appears to be the most appropriate measure of Ess.

Entropy and Ess can be viewed thanks to their log / exp relationship as two aspects of the same

thing. In Probability and Statistics the Ess aspect could appear more basic than the entropic one.
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1 Introduction

Interpretation of Shannon’s entropy H(p) is usually developed in context of an experiment where

the entropy is described as a measure of uncertainty; cf. [6], [5], [7]. Motivated by a simple (and

well-known) observation that exp(H(p)) is equal to the size of support of the underlying random

variable for the uniform distribution, in this short note we introduce concept of Effective size of

support (Ess). Measure of Ess should satisfy a small set of natural requirements. The class of

Ess measures S(·, α) = (
∑m

i=1 pα
i )

1
1−α which satisfy the requirements is in a direct relationship to

the family of Rényi’s α-entropies which includes as its special case also Shannon’s entropy. We

address the issue of selecting the value of α such that the corresponding S(·, α) would be the most

appropriate measure of Ess. Unlike to entropy, Ess has an obvious meaning. From the point of

view of Probability or Statistics, Ess can be seen as a more natural concept than entropy.

2 Effective size of support

Let X be a discrete random variable which can take on values from a finite set X of m elements,

with probabilities specified by the probability mass function (pmf) p. The support of X is a set

S(p(X)) , {p : pi > 0, i = 1, 2, . . . ,m}. Let |S(p(X))| denote the size of the support.

While pmf p = [0.5, 0.5] makes both outcomes equally likely, the following pmf q = [0.999, 0.001]

characterizes a random variable that can take on almost exclusively only one of two values. How-

ever, both p and q have the same size of support. This motivates a need for a quantity that could

measure size of support of the random variable in a different way, so that the random variable

can be placed in the range [1, m] according to its pmf. We will call the new quantity/measure

the effective support size (Ess), and denote it by S(p(X)); S(p) or S(X), for short. The example

makes it obvious that S(·) should be such that S(q) will be close to 1, while to p it should assign

value S(p) = 2.

3 Properties of Ess

Ess should have certain properties, dictated by common sense.

P1) S(p) should be continuous, symmetric function (i.e., invariant under exchange of pi, pj,

i, j = 1, . . . ,m).

P2) S(δm) = 1 ≤ S(pm) ≤ S(um) = m; where um denotes the uniform pmf on m-element

support, δm denotes an m-element pmf with probability concentrated at one point, pm denotes a

pmf1 with |S(p)| = m.

P3) S([pm, 0]) = S(pm).

P4) S(p(X, Y )) = S(p(X))S(p(Y )), if X and Y are independent random variables.

The first two properties are obvious. The third one states that extending support by an

impossible outcome should leave Ess unchanged. Only the fourth property needs, perhaps, some

little discussion. Or, better, an example. Let p(X) = [1, 1, 1]/3 and p(Y ) = [1, 1]/2 and let X be

1A note on notation: pm denotes a pmf with m-element support; pi is i-th component of the pmf.
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independent of Y . Then p(X, Y ) = [1, 1, 1, 1, 1, 1]/6. According to P2), S(p(X)) = 3, S(p(Y )) = 2

and S(p(X,Y )) = 6 = S(p(X))S(p(Y )). It is reasonable to require the product relationship to

hold for independent random variables with arbitrary distributions.

The properties P1-P4 are satisfied by S(p, α) = (
∑m

i=1 pα
i )

1
1−α , where α is a positive real number,

different than 1. Note that S(·) of this form is exp of Rényi’s entropy. For α → 1, S(p, α) also

satisfies P1-P4 and takes the form of exp(H(p)), where H(p) , −
∑m

i=1 pi log pi is Shannon’s

entropy2; cf. [1]. It is thus reasonable to define S(p, α) for α = 1 this way (with the convention

0 log 0 = 0), so that S(·) then becomes a continuous function of α.

4 Selecting α

The requirements P1-P4 define entire class of measures of effective support size. This opens a

problem of selecting α.

It is instructive to begin addressing the problem with a consideration of behavior of S(p(X), α)

at the limit values of α. It can be easily seen that as α → 0, S(p(X), α) → |S(p(X))|, i.e., the size

of the support. Thus, the closer the α to zero, the more S(·, α) behaves like the standard support

size |S(p(X))|.
For α →∞, S(p(X), α) = 1

p̂(X)
, where p̂(X) = supi=1,2,...,m pi. Thus, the higher the α, the more

S(·, α) judges a pmf solely by its component with the highest value of probability. At the limit,

all pmf’s with the same p̂(X) are seen as entirely equivalent.

For the sake of illustration, in Table 1, S(p, α) is given for various two-element pmf’s, and

α = 0.001, 0.1, 0.5, 0.9, 1.0, 1.5, 2.0, 10, ∞.

Table 1: S(p, α) for α = 0.001, 0.1, 0.5, 0.9, 1.0, 1.5, 2.0, 10, ∞ and different p’s.

S(p, α)

α [0.5, 0.5] [0.6, 0.4] [0.7, 0.3] [0.8, 0.2] [0.9, 0.1] [1.0, 0.0]

0.001 2.000000 1.999959 1.999826 1.999554 1.998979 1.000000

0.1 2.000000 1.995925 1.982696 1.956233 1.902332 1.000000

0.5 2.000000 1.979796 1.916515 1.800000 1.600000 1.000000

0.9 2.000000 1.964013 1.856116 1.675654 1.416403 1.000000

1.0 2.000000 1.960132 1.842023 1.649385 1.384145 1.000000

1.5 2.000000 1.941178 1.777878 1.543210 1.275510 1.000000

2.0 2.000000 1.923077 1.724138 1.470588 1.219512 1.000000

10.0 2.000000 1.760634 1.486289 1.281379 1.124195 1.000000

∞ 2.000000 1.666666 1.428571 1.250000 1.111111 1.000000

Based on the table, in this simplest case of two-valued random variable we would opt for S(·,∞)

as the good measure of Ess. However, for larger |S| this choice becomes less attractive. As it was

already noted, S(·,∞) = 1/p̂ and all pmf’s with the same p̂ are seen to have the same Ess. For

2In this paper, log denotes the natural logarithm.
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instance, p = [0.95, 0.05] and q = [0.95, x] where x stands for the other remaining 99 components

with the value 0.05/99 = 0.0005, are by S(·,∞) judged to have the same Ess, equal to 1.053.

Just for a comparison, S(p, 1) = 1.220, while S(q, 1) = 1.535. This undesirable feature of S(·,∞)

manifests itself even more sharply in the case of continuous random variables.

5 Ess in the continuous case

The continuous-case analogue3 of S(p, α) = (
∑m

i=1 pα
i )

1
1−α is Sc(f(x), α) , (

∫
fα(x)dx)

1
1−α , where

f(x) denotes a density with respect to Lebesgue measure. The continuous-case Sc, though always

positive, can – naturally – be smaller than one. And the discrete-case upper bound m is now

replaced by∞. It is worth stressing that Sc behaves with respect to shift and scale transformations

in the desired manner. Indeed, if Y = X + a, then Sc(Y, α) = Sc(X,α); if Y = aX, then

Sc(Y, α) = a Sc(X, α).

For the Gaussian n(µ, σ2) distribution, S(·, α) =
√

2πσ2

α
1

2(1−α)
; cf. [8]. This for α →∞ converges to

√
2πσ2, so that for σ2 = 1 it becomes

√
2π = 2.5067. It is worth comparing with S(·, 1) =

√
2eπσ2

(cf. [9]), which reduces in the case of σ2 = 1 to 4.1327. This makes much more sense.

That S(·,∞) is not the appropriate measure of Ess can be even more clearly seen in the case

of the Exponential distribution. For βe−βx with β = 1, S(·,∞) = 1 while S(·, 1) = e.

6 Adding another property

The above considerations suggest that S(·, 1) might be the most appropriate of the Ess measures

which satisfy the requirements P1-P4. The question is whether there is some other requirement

that is reasonable to add to the already employed properties, such that it could narrow down the

set of S(·, α) to S(·, 1).

To this end, let us consider two random variables X, Y that, in general, might be dependent.

It is natural, to extend requirement P4 to the more general setting, by requiring that4

P4∗) S(p(X)) S(p(Y )) ≥ S(p(X, Y )),

with the equality if and only if X and Y are independent.

For α 6= 1, it might be in some cases that instead of ≥ the opposite relation < holds true.

Indeed, consider for instance the following bivariate discrete random variable with pmf p(X, Y )

0.2 0.05 0.05 0.3

0.3 0.2 0.2 0.7

0.5 0.25 0.25 X�Y

3The relationship between discrete and continuous S(·) is analogous to that of discrete and differential entropies;
cf. [6], [2], [7].

4In an earlier version [3] of the paper we considered a different property which involved a notion of Ess for a
mean of conditional distributions.
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Marginal pmf p(X) has S(X,∞) = 2, and S(Y,∞) = 10
7
. Hence, S(X,∞) S(Y,∞) = 2.86,

which is smaller than S(p(X, Y ),∞) = 10
3
. After a minor change in the joint pmf, such that the

marginals remain unchanged, it is possible to satisfy P4∗. It is known (cf. [1]) that solely S(·, 1)

always satisfies the natural requirement P4∗.

7 Summary

Shannon’s entropy is a key concept of Communication Theory. In Probability and Statistics the

entropy is usually interpreted as a measure of uncertainty about realization of a random variable,

or as a measure of complexity or uniformness of a probability distribution. Though the entropy

is within Probability and Statistics from time to time (and from area to area) blamed for failing

to be measure of all the fancy and intangible things, it remains to be a valuable tool.

In this note we introduced5 concept of the Effective support size (Ess) of a random variable.

There are a few requirements that the measure S(p(X)) of Ess of a probability distribution p(X)

should satisfy. The requirements turn to be direct analogues of those placed on entropy; cf. [5],

[1]. It thus should not be surprising that they are satisfied6 by S(p, α) = (
∑m

i=1 pα
i )

1
1−α which is

the exponential of Rényi’s entropy.

Since S(·, α) is in fact a continuum of measures of Ess, it is necessary to find out which of them

would be the most appropriate measure(s) of Ess. It seems that S(·, 1) = exp(H(·)), where H(·)
is Shannon’s entropy, is the best choice; cf. Sect. 4 and 5. We also argued for expanding the

key requirement P4 into a more general requirement P4∗. The enhanced set of requirements is

satisfied solely by S(·, 1).

We maintain that from the point of view of Probability and Statistics, Ess is more basic concept

than entropy. The two concepts are related together by the exp / log link. Without the link thus

for instance knowing that Shannon’s entropy of the Gaussian variable is H(·) = log
√

2eπσ2 does

not say much. Figuratively speaking, thanks to Ess entropy itself becomes more informative.

Ess adds also a new meaning to the Maximum Entropy method [4]. For instance the classic

finding [6] that the Gaussian distribution has the maximal value of Shannon’s entropy among all

distributions with prescribed second moment can be rephrased as stating that among all such

distributions the one with the biggest effective support is the Gaussian distribution.
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5It is unlikely that something like Ess has not been already spotted. Yet, we are aware only that Cover and
Thomas [2] interpret exp of Shannon’s entropy of a random sequence as an effective volume of random variable, in
the context of their discussion of the Asymptotic Equipartition Property.

6In the discrete case. For a discussion of the case of a continuous random variable see Section 5.
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