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1 Introduction. Deformed Density Matrix in QMFL

Quantum entropy of a black hole is commonly considered as a formula for the communal entropy

representing a series, where the major term is coincident with Bekenstein-Hawking entropy in a

semiclassical approximation, whereas other terms are its quantum corrections. This paper presents

the development of a new approach to a quantum theory close to the singularity (Early Universe),

whose side product is the application to a quantum theory of black holes the calculations of entropy

including. The principal method of this paper is deformation of a quantum-mechanical density

matrix in the Early Universe. And a quantum mechanics of the Early Universe is considered as

Quantum Mechanics with Fundamental Length (QMFL), the associated deformed density matrix

being referred to as a density pro-matrix. The deformation is understood as an extension of a

particular theory by inclusion of one or several additional parameters in such a way that the initial

theory appears in the limiting transition. In Section 1 the formalism of the density pro-matrix

in QMFL is described in detail. In Section 2 the entropy density matrix on the unit minimum

area is introduced for different observers. Then it is used in a detailed study of the information

problem of the Universe, and in particular, for the information paradox problem. This problem is

reduced to comparison of the initial and final densities of entropy for one and the same observer.

It’s shown that according to the natural standpoint, there is no information loss at the closed

Universe. Based on the proposed approach, in Section 3 the quantity of the entropy for Planck’s

remainders of black holes is analyzed in case when the latter are incompletely evaporated, in an

effort to give an answer for the recent J.Bekenstein’s question. Besides, consideration is given to

the coordination between the obtained results and the holographic principle. The last Section is

devoted to the possibility for application of the proposed approach to calculation of the black hole

entropy.

Besides, in Section 1 the principal features of QMFL construction using the deformed density

matrix are briefly outlined [1]–[7]. It is suggested that in quantum gravitation, similar to a

quantum theory of the Early Universe, the introduction of the fundamental length lmin is a must,

as follows from the generalized uncertainty relations [8]–[12] and not only [13]. Then, as noted

earlier(e.g., see [2]), the fundamental length may be included into quantum mechanics by the use

of the density matrix deformation. Recall the main features of the associated construction. We

begin with the Generalized Uncertainty Relations (GUR) [8]:

△x ≥ ~

△p
+ α′L2

p

△p

~
. (1)

Here Lp is the Planck’s length: Lp =
√

G~

c3
≃ 1, 6 10−35 m and α′ > 0 is a constant. In [9]

it was shown that this constant may be chosen equal to 1. However, here we will use α′ as an

arbitrary constant without giving it any definite value. Equation (1) is identified as the Generalized

Uncertainty Relations in Quantum Mechanics.

The inequality (1) is quadratic in △p:

α′L2

p(△p)2 − ~△x△p + ~
2 ≤ 0, (2)
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from whence the fundamental length is

△xmin = 2
√

α
′

Lp. (3)

Since in what follows we proceed only from the existence of fundamental length, it should be noted

that this fact was established apart from GUR as well. For instance, from an ideal experiment

associated with Gravitational Field and Quantum Mechanics a lower bound on minimal length was

obtained in [14], [15] and improved in [16] without using GUR to an estimate of the form ∼ Lp. As

reviewed previously in [13], the fundamental length appears quite naturally at Planck scale, being

related to the quantum-gravitational effects.Let us consider equation (3) in some detail. Squaring

both its sides, we obtain

(∆X̂2) ≥ 4α′L2

p, (4)

Or in terms of density matrix

Sp[(ρX̂2) − Sp2(ρX̂)] ≥ 4α′L2

p = l2min > 0, (5)

where X̂ is the coordinate operator. Expression (5) gives the measuring rule used in well-known

quantum mechanics QM. As distinct from QM, however, in the are considered here the right-hand

side of (5) can not be brought arbitrary close to zero as it is limited by l2min > 0, where because

of GUR lmin ∼ Lp.

As demonstrated in [1],[2],[5], [7],QMFL may be considered as deformation of QM, the density

matrix being the principal object of this deformation and the deformation parameter being de-

pendent on the measuring scale. This means that in QMFL ρ = ρ(x), where x is the scale, and

for x → ∞ ρ(x) → ρ̂, where ρ̂ is the density matrix in QM. Since from [2],[5], [7] it follows that at

Planck’s scale Sp[ρ] < 1, then for such scales ρ = ρ(x), where x is the scale, is not a density matrix

as it is generally defined in QM. On Planck’s scale ρ(x) is referred to as ”density pro-matrix”. As

follows from the above, the density matrix ρ̂ appears in the limit [1],[2]:

lim
x→∞

ρ(x) → ρ̂, (6)

when QMFL turns to QM. Thus, on Planck’s scale the density matrix is inadequate to obtain all

information about the mean values of operators. A ”deformed” density matrix (or pro-matrix)

ρ(x) with Sp[ρ] < 1 has to be introduced because a missing part of information 1−Sp[ρ] is encoded

in the quantity l2min/a
2, whose specific weight decreases as the scale a expressed in units of lmin is

going up. In the notation system used for α = l2min/x
2, where x is the scale for the fundamental

deformation parameter.

Definition 1. (Quantum Mechanics with Fundamental Length)

Any system in QMFL is described by a density pro-matrix of the form ρ(α) =
∑

i ωi(α)|i >< i|,
where

1. 0 < α ≤ 1/4.

2. The vectors |i > form a full orthonormal system.
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3. ωi(α) ≥ 0, and for all i the finite limit lim
α→0

ωi(α) = ωi exists.

4. Sp[ρ(α)] =
∑

i ωi(α) < 1,
∑

i ωi = 1.

5. For every operator B and any α there is a mean operator B depending on α:

< B >α=
∑

i

ωi(α) < i|B|i > .

Finally, in order that our definition 1 be in agreement with the result of ([1], Section 2), the

following condition must be fulfilled:

Sp[ρ(α)] − Sp2[ρ(α)] ≈ α. (7)

Hence we can find the value for Sp[ρ(α)] satisfying the condition of definition 1:

Sp[ρ(α)] ≈ 1

2
+

√
1

4
− α. (8)

As regards Definition 1., some explanatory remarks are needed. Of course, any theory may

be associated with a number of deformations. In case under consideration the deformation is

”minimal” as only the probabilities are deformed rather than the state vectors. This is essential

for the external form of the density pro-matrix, and also for points 2 and 3 in Definition 1.. This

suggests point 5 of the Definition: deformation of the average values of the operators. And point

4 follows directly from point 3,(6) and remark before this limiting transition. Finally, limitation

on the parameter α = l2min/x
2 is inferred from the relation

Sp[ρx2] − Sp[ρa]Sp[ρx] ≃ l2min or Sp[ρ] − Sp2[ρ] ≃ l2min/x2,

that follows from (5) with the use of the R-procedure [1],[2].

According to point 5, < 1 >α= Sp[ρ(α)]. Therefore for any scalar quantity f we have < f >α=

fSp[ρ(α)]. In particular, the mean value < [xµ, pν ] >α is equal to

< [xµ, pν ] >α= i~δµ,νSp[ρ(α)]

We denote the limit lim
α→0

ρ(α) = ρ as the density matrix. Evidently, in the limit α → 0 we return

to QM.

It should be noted that:

I. The above limit covers both Quantum and Classical Mechanics. Indeed, since α ∼ L2

p/x
2 =

G~/c3x2, we obtain:

a. (~ 6= 0, x → ∞) ⇒ (α → 0) for QM;

b. (~ → 0, x → ∞) ⇒ (α → 0) for Classical Mechanics;
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II. As a matter of fact, the deformation parameter α should assume the value 0 < α ≤ 1. As

seen from (8), however, Sp[ρ(α)] is well defined only for 0 < α ≤ 1/4. That is if x = ilmin

and i ≥ 2, then there is no any problem. At the point of x = lmin there is a singularity

related to the complex values following from Sp[ρ(α)] , i.e. to the impossibility of obtaining

a diagonalized density pro-matrix at this point over the field of real numbers. For this reason

definition 1 has no sense at the point x = lmin.

III. We consider possible solutions for (7). For instance, one of the solutions of (7), at least to

the first order in α, is

ρ∗(α) =
∑

i

αiexp(−α)|i >< i|,

where all αi > 0 are independent of α and their sum is equal to 1. In this way Sp[ρ∗(α)] =

exp(−α). We can easily verify that

Sp[ρ∗(α)] − Sp2[ρ∗(α)] = α + O(α2). (9)

Note that in the momentum representation α ∼ p2/p2

pl, where ppl is the Planck momentum.

When present in the matrix elements, exp(−α) can damp the contribution of great momenta

in a perturbation theory.

2 Entropy Density Matrix and Information Loss Problem

In [2] the authors were too careful, when introducing for density pro-matrix ρ(α) the value Sα

generalizing the ordinary statistical entropy:

Sα = −Sp[ρ(α) ln(ρ(α))] = − < ln(ρ(α)) >α .

In [1],[2] it was noted that Sα means of the entropy density on a unit minimum area depending on

the scale. In fact a more general concept accepts the form of the entropy density matrix [4],[5],[7]:

Sα1

α2
= −Sp[ρ(α1) ln(ρ(α2))] = − < ln(ρ(α2)) >α1

, (10)

where 0 < α1, α2 ≤ 1/4.

Sα1

α2
has a clear physical meaning: the entropy density is computed on the scale associated with

the deformation parameter α2 by the observer who is at a scale corresponding to the deformation

parameter α1. Note that with this approach the diagonal element Sα = Sα
α ,of the described matrix

Sα1

α2
is the density of entropy measured by the observer who is at the same scale as the measured

object associated with the deformation parameter α. In [2] Section 6 such a construction was

used implicitly in derivation of the semiclassical Bekenstein-Hawking formula for the Black Hole

entropy:

a) For the initial (approximately pure) state

Sin = S0

0
= 0
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b) Using the exponential ansatz(9),we obtain:

Sout = S0
1

4

= − < ln[exp(−1/4)]ρpure >= − < ln(ρ(1/4)) >=
1

4
.

So increase in the entropy density for an external observer at the large-scale limit is 1/4. Note

that increase of the entropy density (information loss) for the observer that is crossing the horizon

of the black hole’s events and moving with the information flow to singularity will be smaller:

Sout = S
1

4

1

4

= −Sp(exp(−1/4)ln[exp(−1/4)]ρpure)

= − < ln(ρ(1/4)) > 1

4

≈ 0.1947

It is clear that this fact may be interpreted as follows: for the observer moving together with

information its loss can occur only at the transition to smaller scales, i.e. to greater deformation

parameter α.

Now we consider the general Information Problem. Note that with the classical Quantum Me-

chanics (QM) the entropy density matrix Sα1

α2
(10) is reduced only to one element S0

0
and so we

can not test anything. Moreover, in previous works relating the quantum mechanics of black holes

and information paradox [19],[35, 36] the initial and final states when a particle hits the hole are

treated proceeding from different theories(QM and QMFL respectively):

(Large-scale limit, QM, density matrix) → (Black Hole, singularity, QMFL, density pro-matrix),

Of course in this case any conservation of information is impossible as these theories are based on

different concepts of entropy. Simply saying, it is incorrect to compare the entropy interpretations

of two different theories (QM and QMFL, where this notion is originally differently understood.

So the chain above must be symmetrized by accompaniment of the arrow on the left ,so in an

ordinary situation we have a chain:

(Early Universe, origin singularity, QMFL, density pro-matrix) →
(Large-scale limit, QM, density matrix)→ (Black Hole, singularity, QMFL, density pro-matrix),

So it’s more correct to compare entropy close to the initial and final (Black hole) singularities. In

other words, it is necessary to take into account not only the state, where information disappears,

but also that whence it appears. The question arises, whether the information is lost in this case

for every separate observer. For the event under consideration this question sounds as follows: are

the entropy densities S(in) and S(out) equal for every separate observer? It will be shown that in

all conceivable cases they are equal.

1) For the observer in the large-scale limit (producing measurements in the semiclassical approx-

imation) α1 = 0
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S(in) = S0
1

4

(Origin singularity)

S(out) = S0
1

4

(Singularity in Black Hole)

So S(in) = S(out) = S0
1

4

. Consequently, the initial and final densities of entropy are equal

and there is no any information loss.

2) For the observer moving together with the information flow in the general situation we have

the chain:

S(in) → S(large − scale) → S(out),

where S(large − scale) = S0

0
= S. Here S is the ordinary entropy at quantum mechanics(QM),

but S(in) = S(out) = S
1

4

1

4

,value considered in QMFL. So in this case the initial and final densities

of entropy are equal without any loss of information.

3) This case is a special case of 2), when we do not come out of the early Universe considering

the processes with the participation of black mini-holes only. In this case the originally specified

chain becomes shorter by one Section:

(Early Universe, origin singularity, QMFL, density pro-matrix)→ (Black Mini-Hole, singularity,

QMFL, density pro-matrix),

and member S(large − scale) = S0

0
= S disappears at the corresponding chain of the entropy

density associated with the large-scale consideration:

S(in) → S(out),

It is, however, obvious that in case S(in) = S(out) = S
1

4

1

4

the density of entropy is preserved.

Actually this event was mentioned in [2],where from the basic principles it has been found that

black mini-holes do not radiate, just in agreement with the results of other authors [21]-[24].

As a result, it’s possible to write briefly

S(in) = S(out) = Sα
1

4

,

where α - any value in the interval 0 < α ≤ 1/4.

It should be noted that in terms of deformation the Liouville’s equation (Section 4 [2]) takes the

form:

dρ

dt
=

∑

i

dωi[α(t)]

dt
|i(t) >< i(t)| − i[H, ρ(α)] = d[lnω(α)]ρ(α) − i[H, ρ(α)].
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The main result of this Section is a necessity to account for the member d[lnω(α)]ρ(α),deforming

the right-side expression of α ≈ 1/4.

3 Entropy Bounds, Entropy Density and

Holographic Principle

In the last few years Quantum Mechanics of black holes has been studied under the assumption

that GUR are valid [21],[22],[24]. As a result of this approach, it is indicated that the evaporation

process of a black hole gives a stable remnant with a mass on the order of the Planck’s Mp. How-

ever, J.Bekenstein in [25] has credited such an approach as problematic, since then the objects

with dimensions on the order of the Planck length ∼ 10−33cm should have very great entropy thus

making problems in regard to the entropy bounds of the black hole remnants [26].

In connection with this remark of J.Bekenstein [25] the following points should be emphasized:

I. An approach proposed in [34],[4] and in the present paper gives a deeper insight into the cause

of high entropy for Planck’s black hole remnants, namely: high entropy density that by this ap-

proach at Planck scales takes place for every fixed observer including that on a customary scale,

i.e. on α ≈ 0. In [4] using the exponential ansatz (Section 3) it has been demonstrated how this

density can increase in the vicinity of the singularities with

Sin = S0

0
≈ 0

up to

Sout = S0
1

4

= − < ln[exp(−1/4)]ρpure >= − < ln(ρ∗(1/4)) >=
1

4
.

when the initial state measured by the observer is pure.

As demonstrated in [34],[4], increase in the entropy density will be realized also for the observer

moving together with the information flow: Sout = S
1

4

1

4

> S0

0
, though to a lesser extent than in

the first case. Obviously, provided the existing solutions for (7) are different from the exponential

ansatz, the entropy density for them S0

α2
will be increasing as compared to S0

0
with a tendency of

α2 to 1/4.

II. In works of J.Bekenstein, [26] in particular, a ”universal entropy bound” has been used [27]:

S ≤ 2πMR/~, (11)

where M is the total gravitational mass of the matter and R is the radius of the smallest sphere

that barely fits around a system. This bound is, however, valid for a weakly gravitating matter

system only. In case of black hole remnants under study it is impossible to assume that on Planck

scales we are concerned with a weakly gravitating matter system, as in this case the transition to

the Planck’s energies is realized where quantum-gravitational effects are appreciable, and within
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the proposed paradigm parameter α ≈ 0 is changed by the parameter α > 0 or equally QM is

changed by QMFL.

III.This necessitates mentioning of the recent findings of R.Bousso [28],[29], who has derived

the Bekenstein’s ”universal entropy bound” for a weakly gravitating matter system, and among

other things in flat space, from the covariant entropy bound [30] associated with the holographic

principle of Hooft-Susskind [31],[32],[33].

Also it should be noted that the approach proposed in [4],[2] and in the present paper is consistent

with the holographic principle [31]-[33]. Specifically, with the use of this approach one is enabled to

obtain the entropy bounds for nonblack hole objects of L.Susskind [32]. Of course, in ([2], Section

6) and ([4], Section 4) it has been demonstrated, how a well-known semiclassical Bekenstein-

Hawking formula for black hole entropy may be obtained using the proposed paradigm. Then

we can resort to reasoning from [32]: ”using gedanken experiment, take a neutral non-rotating

spherical object containing entropy S which fits entirely inside a spherical surface of the area A,

and it to collapse to black hole”. Whence

S ≤ A

4l2p
. (12)

Note also that the entropy density matrix Sα1

α2
by its definition [34],[4] falls into 2D objects, being

associated with l2min ∼ l2p [2] and hence implicitly pointing to the holographic principle.

Qualitative analysis performed in this work reveals that the Information Loss Problem in black

holes with the canonical problem statement [19],[35],

[36] suggests in principle positive solution within the scope of the proposed method - high-energy

density matrix deformation. Actually, this problem necessitates further (now quantitative) anal-

ysis. Besides, it is interesting to find direct relations between the described methods and the

holographic principle. Of particular importance seems a conjecture following from [29]:

is it possible to derive GUR for high energies (of strong gravitational field) with the use of the

covariant entropy bound [30] in much the same manner as R.Bousso [29] has developed the Heisen-

berg uncertainty principle for the flat space?

4 Quantum corrections to black hole entropy. Heuristic approach

This paper presents certain results pertinent to the application of the above methods in a Quantum

Theory of Black Holes. Further investigations are still required in this respect, specifically for the

complete derivation of a semiclassical Bekenstein-Hawking formula for the Black Hole entropy,

since in Section 2 the treatment has been based on the demonstrated result: a respective number

of the degrees of freedom is equal to A, where A is the surface area of a black hole measured in

Planck’s units of area L2

p (e.g.[37],[38]). Also it is essential to derive this result from the basic

principles given in this paper.

As indicated in papers [6],[7], the calculation procedure in the described theory may be reduced

to a series expansion in terms of α parameter and to finding of the factors for the ever growing

powers of this parameter, that may be considered in some cases as the calculation of quantum
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corrections. Specifically, this approach to calculation of the quantum correction factors may be

used in the formalism for density pro-matrix (Definition 1 of Section 1). In this case, the value

S0

α point b), in Section 2 may be written in the form of a series

S0

α = α + a0α
2 + a1α

3 + .... (13)

As a result, a measurement procedure using the exponential ansatz may be understood as the

calculation of factors a0,a1,... or the definition of additional members in the exponent ”destroying”

a0,a1,... [4]. It is easy to check that close to the singularity α = 1/4 the exponential ansatz gives

a0 = −3/2, being coincident with the logarithmic correction factor for the black hole entropy [39].

However, by the proposed approach - density matrix deformation at Planck’s scales - the quantum

entropy receives a wider and more productive interpretation due to the notion of entropy density

matrix introduced in [4],[5],[7],[34] and Section 3. Indeed, the value Sα1

α2
= −Sp[ρ(α1) ln(ρ(α2))]

may be considered as a series of two variables α1 and α2. Fixing one of them, e.g. α1, it is possible

to expand the series in terms of α2 parameter and to obtain the quantum corrections to the main

result as more and more higher-order terms of this series. In the process, (13) is a partial case of

the approach to α1 = 0 and α2 close to 1/4.

5 Conclusion

Thus, in this paper it is demonstrated that the developed approach to study a quantum theory

of the Early Universe - density matrix deformation at Planck’s scales - leads to a new method

of studying the black hole entropy its quantum aspects including. Despite the fact that quite a

number of problems require further investigation, the proposed approach seems a worthy contri-

bution: first, it allows for the direct calculations of entropy and, second, the method enables its

determination proceeding from the basic principles with the use of the density matrix. Actually,

we deal with a substantial modification of the conventional density matrix known from the quan-

tum mechanics - deformation at Planck’s scales or minimum length scales. Moreover, within this

approach it is possible to arrive at a very simple derivation and physical interpretation for the

Bekenstein-Hawking formula of black hole entropy in a semi-classical approximation. Note that

the proposed approach enables one to study the information problem of the Universe proceed-

ing from the basic principles and two types of the existing quantum mechanics only: QM that

describes nature at the well known scales and QMFL at Planck’s scales. The author is of the

opinion that further development of this approach will allow to research the information problem

in greater detail. Besides, it is related to other methods, specifically to the holographic principle,

as the entropy density matrix studied in this work is related to the two-dimensional objects.

To conclude, it should be noted that an important problem of the extremal black holes was be-

yond the scope of this paper. In the last decade this problem has, however, attracted much

attention in connection with a string theory and quantum gravitation(e.g., [40]–[43]). Specifically,

the Bekenstein-Hawking formula has been proved for this case by different methods. The author

is hopeful that the approaches proposed in this paper may be developed further to include this

very important problem as well.
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