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Abstract: This paper reports the numerical determination of the entropy generation due to heat 
transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, 
in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, 
momentum, species conservation and energy balance equations, using a Control Volume Finite-
Element Method. The influences of the inclination angle, the thermal Grashof number and the 
buoyancy ratio on total entropy generation were investigated. The irreversibilities localization 
due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a 
fixed thermal Grashof number. 
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1. Introduction 
 

Thermodiffusion natural convection is important in a variety of disciplines including 
oceanography, geology, material sciences, geophysics and chemical engineering. This topic has 
occupied increasing attention in the past two decades.  Platten and  Chavepeyer [1] investigated the 
influence of thermodiffusion on the birth of free convection in Rayleigh-Benard configuration. They 
summarize the influence of thermodiffusion on free convection together with the way to use this 
mutual  influence  in  order to    experimentally  deduce  the  value of  the  Soret effect. The Soret  effet  
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Nomenclature 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
analysis in thermosolutal convection was investigated by Traore and Mojtabi [2]. The calculation has 
been achieved in the particular case where the buoyancy forces are opposing and of equal intensity 
(N=-1). They showed that the Soret effect can not be neglected in a double diffusion convection 
phenomena. Bennacer and Gobin [3,4] investigated the cooperating thermosolutal convection in 
enclosures. At first step, the scale analysis and mass transfer are studied [3]. They showed, and 
numerically verified, that the distinction between heat  transfer  driven flows  and  mass transfer driven 
flows  is dependent on different  criteria which are expressed in terms of N/Le for heat transfer and 
N/Le1/3 for mass transfer. A general expression for the Sherwood number as a function of the main 
parameters of the problem is also proposed over a very wide range. At second step, heat transfer and 
flow strucure are investigated [4]. They concluded that the thermosolutale convective flows may be 
classified in four different regimes: (i) unicellular regime, where the flow is dominated by the thermal 
effect; (ii) multicellular regime , where the thermal and the solutal effects are comparable in the central  

Greek symbols 
α       inclination angle of the cavity 
βT       coefficient of thermal expansion, (K-1) 
θ        dimensionless temperature 
µ       dynamic viscosity, (Kg m-1 s-1)  
ν         kinematic viscosity, (m2 s-1) 
ζ        dimensionless time  
σ       entropy  generation rate (J m-3 s-1 K-1) 
ϕ      dimensionless concentration 
λi       irreversibility distribution ratio, (i=1,2,3)
Ω      system volume 
 
Subscripts 
1        hot wall 
2        cold wall 
d        diffusion 
f         friction  
h        heat 
n        dimensionless  
 p       steady state 
s        solutal 
T        total, thermal 
α      for specie α 
 
Superscript 
T        temperature 
C       concentration 
 

a           thermal diffusivity (m2 s-1) 
Be        Bejan number 
C          concentration 
C0         bulk concentration, C0 = (C1+C2) / 2 
D         mass diffusivity 
g           acceleration due to gravity (m s-2) 
grad     gradient operator 
GrS       solutal Grashof number 
GrT       thermal Grashof number  
J          flux density vector 
k           conductivity  (J m-1 s-1 K-1) 
L           cavity length (m) 
p           pressure (N m-2) 
P          dimensionless pressure 
Pr         Prandtl number 
Sc         Schmidt number 
t            time (s) 
T           temperature (K) 
T0         bulk temperature, T0 = (T1+T2) / 2 
∆T      temperature difference, ∆T = T1-T2 
∆C       concentration difference, ∆C = C1-C2 
v           velocity vector 
V          dimensionless velocity vector    
u, v       velocity components in x, y  
            directions  (m s-1) 
U, V    dimensionless velocity, components 
            in X, Y directions 
x, y      Cartesian coordinates (m) 
X, Y     dimensionless Cartesian coordinates 
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part of the cavity; (iii) flow globally driven by the solutal buoyancy force, with a persisting thermal 
cell in the centre; (iv) unicellular  regime, where the solutal   force  is   dominating. Bergman and 
Hyun [5]   investigated  the simulation of two-dimensional thermosolutal convection in liquid metals 
induced by horizontal temperature and  species  gradients. Results  show  two distinct  regimes  of   
behavior, in  which  large solutal buoyancy forces lead to enhanced mass transfer rates. The regimes 
are separated by a transition region  where  thermal  and  solutal  buoyancy   forces  can  become  
balanced, resulting  in  a  velocity reduction throughout the cavity and small mass transfer rates. 
Double diffusive steady natural convection in a vertical stack of square enclosures, with heat and mass 
diffusive walls was studied numerically by Costa [6]. It has been established that changes on the 
buoyancy ratio are shown to affect seriously the temperature and concentration fields, the path 
followed by the heat and mass flows, and also the heat and mass transfer parameters. Mamou and 
Vasseur [7] investigated the onset of double diffusive convective flows in an inclined fluid layer, when 
constants fluxes of heat and mass are applied on the two opposing boundary of the layer. It has been 
demonstrated, on the basis of the parallel flow approximation, the existence of a subcritical Rayleigh 
number, for the onset of finite amplitude convection. Transient double diffusive natural convection in a 
horizontal enclosure was investigated numerically and analytically by Bennacer and al. [8]. It has been 
found that there are three distinct regimes, for lower buoyancy ratio (N) value the convective cell is 
essentially due to thermal forces, for high N value the transfer is diffusive and the stabilizing solutal 
stratification suppresses the flow and intermediate domain (moderate N value) the transfer decreases 
with N.Linear nonequilibrium thermodynamics (LNET) theory for coupled heat and mass transport 
was studied by Demirel and Sandler [9]. It has been demonstrated that the theory of LNET can play 
crucial role in the proper definition of the coupled heat and mass flows. Also, it has been suggested the 
use of the resistance type of phenomenological coefficients in the phenomenological equations in 
which the conjugate forces and flows are identified by the dissipation function. Modeling Soret effect 
coefficient measurements in porous media considering thermal and solutal convection was investigated 
by Benano-Melly and al. [10]. It has been found that multiple convection-roll flow patterns can 
develop when solutal and thermal buoyancy forces oppose each other, depending on the Soret number 
value. The effects of concentration and temperature on the coupled heat and mass transport in liquid 
mixtures are studied by Demirel and Sandler [11]. Using published experimental data on the thermal 
conductivity, mutual diffusivity and heats of transport, the degree of coupling between heat and mass 
flows has been calculated for binary and ternary non ideal liquid mixtures. The extent of coupling and 
the thermal buoyancy ratio are expressed in terms of the transport coefficients to obtain a better 
understanting of the interactions between heat and mass flows in liquid mixtures. It was found that the 
composition of the heavy component bromobenzene changes the direction and magnitude of the two-
flow coupling in ternary mixture. The influence of Grashof number on the double diffusive natural 
convection in a rectangular enclosures was investigated by Benissad and Afrid [12]. Results allowed to 
observe complex and varied flow patterns with different conditions of numerical experimentations. In 
the traditional approach in numerical computation of double diffusive convection problems, the 
quantities to be computed are usually temperature, pressure, concentration, mass and heat flow rates, 
but infrequently involving entropy properties.  

The contemporary trend in the field of heat transfer and thermal designs is the second Law (of 
thermodynamics) analysis and its design-related concept of entropy generation minimization [13]. 
Entropy generation is associated with thermodynamic irreversibility, which is common in all types of 
heat transfer processes. Different sources of irreversibility are responsible for heat transfer’s 
generation of entropy like heat transfer across finite temperature gradient, characteristics of convective 
heat transfer, viscous effects, etc. Thus entropy generation depends functionally on the local values of 
velocity and temperature in the domain of interest. Energy conversion processes are accompanied by 
an irreversible increase in entropy, which leads to a decrease in exergy (available energy). 
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For a given system, a set of thermodynamic parameters, which optimize the operating conditions 

may be obtained. Nag and Kumar  [14] studied  second Law  optimization for convective heat  transfer 
through a duct with constant heat flux. In their study, they plotted the variation of entropy generation 
versus the temperature difference of the bulk flow and the surface using a duty parameter. For this case  
[14], the product of Stanton number and the temperature difference between bulk and surface is 
constant due to the constant heat flux imposed on the surface. Shuja and al. [15] analyzed the entropy 
generation in an impinging jet and [16-18] swirling jet impingement on an adiabatic wall for various 
flow conditions. The influence of fluid viscosity on the entropy generation due to turbulent pipe flow 
heated from the pipe wall at constant temperature is investigated by Al-Zaharnah and Yilbas [19]. 
Sahin [20], studied the entropy generation in a laminar viscous flow through a duct with constant wall 
heat flux. He showed that there could be an optimum size for heat exchangers and/or inlet temperature 
of fluid for which the total irreversibility due to heat transfer and pressure drop becomes the minimum. 
Narusawa [21], studied the rate of entropy generation thoeritically and numerically for forced and 
mixed convection in rectangular duct heated at the bottom. In the theoritical study, he expressed the 
rate of entropy generation as a function of relevant non-dimensional thermal and hydrodynamic fields 
as well as interaction between the two fields. The flow structure and the rate of entropy generation 
were numerically investigated and the transition between two and four rolls occurs at the aspect ratio 
3.02 and 2.95 for Rayleigh number, Ra = 2427 and 3777 respectively. The transition of Ra = 2427 is 
accompanied by a clear discontinuity of the entropy generation whereas for Ra = 3777, the transition 
occurs without any discontinuity.  Many other researches carried out studies  on the entropy generation 
in various flow cases. Yapici and al. [22], Hyder and Yilbas [23], Abbassi and al. [24] and Sahin 
[25,26] performed many studies on second Law analysis and the entropy generation due to heat 
transfer and fluid friction in duct flows under various conditions.   

The dissipation of energy takes the form of a sum of products of conjugate forces and fluxes 
associated to the problem under consideration, this was presented by the text of the De Groot [27]. The 
fluxes are expressed as linear functions of all forces, as constitutive equations, subjected to the 
reciprocal relations of Onsager. These lead to coupled field equations for the temperature and species 
concentrations in a given fluid mixture. 

Interferences between heat and mass transport, at the level of constituve equations, and the linear 
theory of non-equilibrium thermodynamics had been formulated as a constitutive theory capable of 
fully expressing the dependence of all fluxes as a function of all thermodynamic forces. 

Altough the varoius topics investigated about entropy generation and its minimization, the 
determination of total irreversibility in convective heat and mass transfer has not been encountered. In 
this context, the present paper reports a numerical determination of the entropy generation in doubly 
diffusive convection on 2D approximation in a square inclined cavity, filled with a fluid (assumed to 
be a perfect gas mixture).  

 
2. Entropy generation for convective heat and mass transfer 

 
The second law of thermodynamics states that the change in entropy for a given system can be 

written as the sum of two terms des and dis. The first is the entropy change due to exchange of matter 
and energy with the exterior, the second is the entropy due to “uncompensated transformations”, the 
entropy produced by the irreversible processes in the interior of the system [28]: 

 
ds =  des + dis                                                                                                                   (1) 
 
 

where: 
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 0=sd i  for reversible processes 
 

 0〉sd i  for irreversible processes 
 
The entropy generation per unit time and volume, called local entropy generation rate is given 

by: 
 

σ 0≥= dt
sid                                                                                                                    (2) 

 
For an incompressible Newtonian fluid, the local entropy generation rate is given by Hirschfelder 

and al. [29]: 
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On the right hand side of equation (3), the first term is due to fluid friction, the second is due to 

mass diffusion and the third is due to heat conduction. The fourth term is due to heat transfer induced 
by mass diffusion and the fifth is due to chemical reactions. In the case of non-reactive mixture, where 
the heat transfer due to diffusion is negligible, the entropy generation can be written as: 
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Assuming the fluid is a perfect gas mixture, the chemical potential of each species can be 

expressed in the following manner: 
 

µα( T, pα ) = µ0
α( T ) + RT log( pα )                                                                                       (5) 

 
where αp is given by the ideal gas equation state:  
 
pα  = Cα RT                                                                                                                                         (6) 
                                                                                                                        

The mass diffusion flux, for the specie (α ), is given by the Fick’s law:  
 

Jα = - Dα grad Cα                                                                                                             (7) 
 

Using Eqs. (4-7) and the Fourier’s law, the local entropy generation rate in a two-dimensional 
flow with a single diffusing specie of concentration (C) can be simplified as: 
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According to the Eq. (8), it is clear that the numerical calculation of the local entropy generation 

rate in a thermodynamics system requires the knowledge of the velocity, temperature and 
concentration fields in the system. 

 
3. Mathematical modeling  
3.1. Flow and governing equations  

 
         Let us consider a  two-dimensional inclined square cavity, shown in figure (1). The walls 1W  and 

2W  are at different but uniform temperature and concentration (T1, C1) and (T2, C2) respectively, while 
the two other walls are impermeable and adiabatic. The fluid is modeled as a Newtonian, Boussinesq 
incompressible fluid whose properties are described by it’s kinematic viscosity ν , its thermal and 
solutal diffusivities, a and D respectively, and its thermal and solutal volumetric expansion coefficients 
βT and βS  respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The set of governing equations in dimensionless term are: 
 

0
Y
V

X
U =

∂
∂+

∂
∂                                                                                                                   (9) 

( ) αζ cos   N  θ  Gr X
PdivU

TU φ++∂
∂−=+∂

∂ J                                                                  (10) 

( ) αζ  sin   N  θ  Gr Y
P   divV

TV φ++∂
∂−=+∂

∂ J                                                                           (11) 

0=+
∂
∂

θdiv
ζ
θ J                                                                                                                (12) 

 

W2

W1 

Adiabatic wall 

T1,C1

T2, C2 

α

Figure1 : Schematic view of 2D cavity 
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0=+
∂
∂

φdiv
ζ
φ J                                                                                                                (13) 

 
with:    
     
JU = UV - gradU                                                                                                          (14) 
 
 

JV = VV - gradV                                                                                                         (15) 
 

Jθ = θ V - Pr
1 gradθ                                                                                                     (16) 

 

Jϕ = ϕ V - Sc
1 gradϕ                                                                                                     (17) 

 
where the dimensionless variables are defined  by:  
 

L
xX =  ; 

L
yY =  ; 

a
uLU =  ; 

a
vLV =  ; θ = (T – T0) / (T1 – T2); ϕ = (C – C0) / (C1 – C2); 2

2

a
pLP
ρ

=   

 
GrT = ( g βT ∆T L3 ) / ν 2; GrS = ( g βS ∆C L3 ) / ν 2; ζ = a t / L2; Pr = ν / a; N = GrS / GrT               (18) 

 
3.2. Boundary and initial conditions  
 

The boundary conditions appropriate to laminar flow within the enclosure are: 
0==VU   for all walls 

0.5== ϕθ   on plane 0=X  
0.5−==ϕθ  on plane 1=X  

0=
∂
∂

=
∂
∂

Y
φ

Y
θ  on planes 1=Y  and 0=Y  

 
The initial conditions are: 

 At ζ = 0, U = V = 0, P = 0, ϕ = 0  and θ = 0.5 - X  for whole space 
 
3.3 Dimensionless entropy generation  

 
As mentioned, in convective heat and mass transfer and for a non reactive mixture, irreversibility 

arises due to the heat transfer, the viscous effects and the mass transfer. The entropy generation rate is 
expressed as the sum of contributions due to thermal, viscous and diffusif effects, and thus it depends 
functionally on  the local values of temperature, velocity and concentration in the domain of interest. 
Many authors, namely, Shohel and Roydon [30] and Tasnim and Shohel [31] gave a dimensionless 
form of the local entropy generation in convective heat transfer, which is a ratio between the local 
entropy generation rate and a characteristic entropy transfer rate oσ . According to Bejan [13], the 
characteristic entropy transfer rate is given by: 
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Where k, L, To and ∆T are respectively, the thermal conductivity, the characteristic length of the 
enclosure, a reference temperature and a reference temperature difference.  
In the same way, and in order to obtain a dimensionless form of the local entropy generation in 
convective heat and mass transfer, equation (8) can be written in the following form: 
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Where Co and To are respectively the reference concentration and temperature, which are in our case, 
the bulk concentration and the bulk temperature. Thus the dimensionless form of the local entropy 
generation rate can be obtained on using the system of the dimensionless variables defined in (18), 
after rearrangement we obtain: 
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Dimensionless terms denoted λi (1≤ i ≤ 3), and called irreversibilities distribution ratios, are 
given by: 
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It is important to note that the entropy generation due to diffusion ( )CT,

dn,
CC,
dn,dn, σσσ +=  is the sum 

of a pure term ( )CC,
dn,σ   witch involves concentration gradient only and a crossed term ( )CT,

dn,σ  with both 
thermal and concentration gradients. Therefore a coupling effect between thermal gradient and 
concentration gradient can be shown in the expression of the entropy generation, whereas this coupling  
effect was neglected in the energy and specie conservation equations (Soret and Dufour effects) and 
also in the mass diffusion flux equation (first Fick’s law). The dimensionless total entropy generation 
is the integral over the system volume of the dimensionless local entropy generation: 

 

∫=
Ω

nTn, dΩσσ                                                                                                                 (29) 

 
In our investigation, the dimensionless form of the local entropy generation rate could not be 

obtained if we didn’t consider the bulk concentration and the bulk temperature of the fluid mixture. In 
this case, the thermo-physical properties of the fluid are constant except, the density which varies 
linearly with the temperature and the concentration ( ( ) ( )( )  C  C     T  T    1    oSoTo −−−−= ββρρ ), where 
ρo is the reference density evaluated at Co and To. The set of the dimensionless equations (9-17), show 
that the problem is governed by the dimensionless numbers of Pr, Sc, GrT and N. The dimensionless 
thermal Grashof number, the buoyancy ratio and the inclination angle are the control parameters of the 
problem. On the other hand, if the temperature and the concentration are brought variables, the local 
entropy generation should be  calculated in a  dimensional form. As a consequence, the numerical 
simulation is easier carried out in dimensionless form due to the reduced number of parameters.  
 
4. Numerical procedure    
 

A modified version of the Control Volume Finite-Element Method (CVFEM) of Saabas and 
Baliga [32] is adapted to the standard staggered grid in which pressure and velocity components are 
stored at different points. The SIMPLER algorithm was applied to resolve the pressure-velocity 
coupling in conjunction with an Alternating Direction Implicit (ADI) scheme for performing the time 
evolution. A shape function describing the variation of the dependant variable ψ (= U, V, θ or ϕ )is 
needed to calculate the flux across the control-volume faces. We have followed Saabas and  Baliga 
[32] in assuming linear and exponential variations respectively when the dependant variable ψ is 
calculated in the diffusive and in the convective terms of the conservation equations. More details and 
discussions  about  CVFEM are  available  in  the  works of Prakash  [33], Hookey [34], Elkaim and al. 
[35], Saabas and Baliga [32] and in many other works. The numerical code used here is described   and  

(27)
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validated in details in Abbassi and al. [36]. 
 
5. Results and discussions 
 

In this study, four dimensionless numbers ( TGr , N, Pr and Sc) are used in the governing 
combined heat and mass transfer equations. In order to keep the number of simulations manageable, 
the ranges of some of these parameters were reduced. The thermal Grashof number is varied from 102 
to 104, only the cooperating situation is investigated, and the buoyancy ratio is kept positive and 
ranging between 0 and 10. The exploitation of the entropy generation equation limits the choices of the 
Prandtl and the Schmidt  numbers to  the case of a gaseous mixture only. For a gaseous mixture, the 
following definition of the Lewis number is used: ( Le = D / a ), both Le  ≥ 1  and Le ≤ 1 are possible 
because (D) is of the same order of magnitude as (a). Furthermore the Prandtl and Schmidt numbers 
are fixed at 0.75 and 1.5 respectively. The parameter λ1 is fixed at 10-4. In  the  case of nonzero 
buoyancy ratio the terms λ2  and λ3 are fixed at 0.5 and 10-2 respectively. The local entropy generation 
rate is a function of temperature and velocity gradients in the x and y directions in the entire calculation 
domain. It is then a good indicator of grid dependence. Grid refinement tests have been performed for 
the case 102 ≤ GrT ≤ 104and  2 ≤ N ≤ 10. Results show that when we pass from a grid of 31x31 to a 
grid of 41x41, total entropy generation undergoes an increase of 3%. We conclude that the grid 31x31 
is sufficient to carry out a numerical study of this flow. This grid is retained for all following 
investigations. The numerical simulations presented in this work has been conducted in order to study 
the effects of the inclination angle of the enclosure, the thermal Grashof number and the buoyancy 
ratio on entropy generation in steady state conditions. For comparison purposes, the presentation of 
results starts in Fig.2 with the influence of the inclination angle at different thermal Grashof numbers 
on the total entropy generation, in the case of no solute transfer (N = 0). In this case the solutal Grashof 
number is zero(GrS = 0), the concentration difference between the walls 1W and 2W  is zero(∆C = 0), 
and consequently the parameters λ2   and λ3  are  zero (Eqs. (27,28)). Therefore the expression of the 
total entropy generation is reduced to the case of pure convective heat transfer that involves heat 
transfer and fluid friction irreversibilities given by the first and the second terms on the right hand side 
of  equation (21) ( )fn,hn,n σσσ += . As  can be seen in Fig. 2, for a  thermal Grashof  number GrT = 102  
and  inclination angle ranging between 0° and 180°, the total entropy generation is practically unity 
( 1=Tn,σ ). This value corresponds to the entropy generation of a system at rest (characterized by a 
conduction regime). This is due to the fact that for small thermal Grashof number, there is practically 
no convection and the entropy generation due to fluid friction is zero, consequently the total entropy 
generation is reduced to the entropy generation due to heat transfer. At a fixed value of inclination 
angle the total entropy generation increases with the thermal Grashof number. This is because at higher 
Grashof number heat transfer due to convection begins to play a significant role increasing the flow 
velocity and in turn the entropy generation due to the viscous effects. Also the isotherms are deformed 
increasing the temperature gradient and consequently the entropy generation due to heat transfer.  

Fig.2 shows also, that the inclination angle has more pronounced effect for GrT ≥ 104, the total 
entropy generation increases and reaches a maximum at the inclination angle α ≈ 45°, then decreases 
and tends towards the value 1=Tn,σ  for inclination angles near α ≈ 180°. Indeed, for inclination angle 
near α ≈ 45° buoyancy acts along both the active and adiabatic walls, there is more work done on the 
fluid by buoyancy thus increasing the total entropy generation via the augmentation of the convective 
heat transfer. As the inclination angle tends towards the value 180°, the velocity of the fluid diminishes 
because buoyancy and pressure oppose each other in the intrusion layer. This decreases entropy 
generation  due  to  viscous  effects. On the  other  hand,  convective  heat  transfer  decreases  and  the  
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isotherms become nearly parallel to the active walls causing a decrease in the magnitude of the thermal 
gradient and consequently of the entropy generation due to heat transfer. Results concerning the 
entropy generation evolution versus inclination angle are in good agreement with those of Baytas [37], 
who investigated the entropy generation for natural convection in an inclined porous cavity. 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The inclination angle is marked between the horizontal and the adiabatic wall. It has been 
showed that flow is converted to a conduction regime for inclination angles from 240° to 300° for all 
Rayleigh numbers, which corresponds in our case to an inclination angle around α ≈ 180°. It can be 
seen also that entropy generation has a maximum at inclination angle of 40° for Rayleigh number      
Ra = 104  corresponding for our notation to an inclination angle α ≈ 50°, which is close to the value 
found in Fig.2 (α ≈ 45°). Fig.3 illustrates the effect of the buoyancy ratio (N) on the total entropy 
generation  for inclination angles α = 60°, 90° and 120° and thermal Grashof numbres GrT =102, 103 
and 104.  

Fig.3 shows that the total entropy generation increases with the buoyancy ratio. This increasing is 
as important as the thermal Grashof number is higher. For thermal Grashof number GrT =102 and for 
buoyancy ratio 0 ≤ N ≤ 2.5. Fig.3 shows that curves of total entropy generation are identical for           
α = 60°, 90° and 120°, which indicates that the isotherms and isoconcentrations are nearly similar for 
the three considered inclination angles. It is important to note the linear behavior of the total entropy 
generation for relatively high thermal Grashof numbers (GrT =104). To understand why the total 
entropy generation increases with the buoyancy ratio, we have plotted in Fig.4 the variation of the 
average Nusselt number on the heated wall and the total entropy generation versus the inclination 
angle. In this case, the viscous and diffusive irreversibilities are neglected (λ1, λ2 and λ3 << 1) thus 
reducing the entropy generation to the heat transfer irreversibility only. Each pair of curves 
corresponds to a given value of the buoyancy ratio ranging from 0 to 10.   

As can be seen from Fig.4, curves of the total entropy generation and the average Nusselt number 
are nearly identical at fixed buoyancy ratio, and also the average Nusselt number increases with the 
buoyancy ratio N. This result is consistent with the heat transfer correlations proposed, at low value of 
the  Lewis number,  by   Trevisan  and  Bejan  [38]   and  Viskanta  and   Ranganathan  [39]. It  can  be   
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Figure 2: Variation of the total entropy generation versus inclined angle (N = 0)
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concluded that the increase of the buoyancy ratio contribute to an augmentation of the energy 
exchanged between the flow and the walls, that induces an increase of the entropy generation via the 
augmentation of the temperature gradients near the walls. On the other hand, at low and moderate 
Lewis numbers and cooperating buoyancy ratio, the double diffusive convection numerical problem  is 
close to the thermal convection problem (N=0). This corresponds also to the fact that when the source 
term in  the Navier-Stokes   equation  increases  as the buoyancy  forces  increases through  the  solutal  
Grashof number, the convective flow is enhanced and the resulting heat transfer increases generating 
an increase of entropy generation. 

At local level, for a thermal Grashof number, GrT = 10 4  and for three angles of inclination of the 
cavity set to be equal 30°, 90° and 150° respectively as an illustrative example, the heat transfer 
irreversibilities and the diffusive irreversibilities are found similar and mainly confined to the lower  
and the upper corners of the heated and the cooled walls respectively except for α = 150° . As the 
buoyancy ratio increases, the indicated irreversibilities increase for α = 30° and 90°, while at fixed 
buoancy ratio, they decrease gradually for increasing the inclination angle. Entropy generation due to 
viscous effect increases with the buoyancy ratio, its maximum is localized in the middle of the active 
and adiabatic walls for α = 30° and in the middle of active walls for α = 90°. At 150°, irreversibility 
due to viscous effect  decreases considerably indicating that the flow velocity diminishes and 
convection becomes insignificant. Total entropy generation covers the whole domain except for the 
center of the cavity at α = 30° and 90°. For α = 150°, the total entropy generation takes on a small 
value even for moderately high value of the buoyancy ratio and is localized in the entire domain 
indicating that viscous irreversibility covers the top and the bottom of the cavity, while heat and 
diffusif irreversibilities cover the center. Fig. 5 summarizes the local irreversibilities for a buoyancy 
ratio N = 10 as an example. 
 
6.Conclusion 

 
The expression of the dimensionless local entropy generation due to heat transfer, viscous effect 

and diffusion was developed in the case of a perfect gas mixture under some hypothesis. The total 
entropy generation in steady state for heat and mass natural convection was calculated numerically by 
using a Control Volume Finite-Element Method. Globally, the angle of inclination was shown to have 
a significant effect on entropy   generation  in  convective  heat and mass transfer. Results show that  
the total entropy generation increases with the thermal Grashof number and the buoyancy ratio for 
moderate Lewis numbers. Locally, the  irreversibility due to heat  and mass transfer are nearly 
identical and are localized in the bottom and the top of the heated and the cooled walls respectively. 
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               Figure 3: Total entropy generation versus bouyancy ratio   
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Figure 5: Local entropy generation for GrT = 10 4 and N = 10 at α = 30°, 90° and 150°: 
 1) thermal irreversibility maps, 2) irreversibility maps due to concentration gradient,                           
                3) irreversibility maps due to viscous effects, 4) total irreversibility maps.  
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