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Abstract: We investigate the nature of entropy generation for natural convection in a two-
dimensional square section enclosure vibrating sinusoidally perpendicular to the applied
temperature gradient in a zero-gravity field. The enclosure is assumed to fill with porous
media. The Darcy momentum equation is used to model the porous media. The full
governing differential equations are simplified with the Boussinesq approximation and solved
by a finite volume method. Whereas the Prandtl number Pr is fixed to 1.0. Results are
presented in terms of average Nusselt number (Nuav), entropy generation number (Nsav),
Bejan number (Beav), and kinetic energy (KEav).

Keywords: vibrational convection, entropy generation, porous media, Bejan number, square
cavity.

Introduction

     Free convection heat transfer inside a square cavity (porous or non-porous) is a well-established
problem. During last two decades, a vast number of articles have been published in this field. For a
comprehensive reference see Bejan [1]. Free convection inside a square cavity with gravity oscillation
is a special class of above-mentioned problem. In low gravity or microgravity environments, we can
expect that reduction or elimination of natural convection may enhance the properties and performance
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of materials such as crystals (Hirata et al. [2]). However, aboard orbiting spacecrafts all objects
experience low-amplitude broadband perturbed accelerations, or g-jitter, caused by crew activities,
orbiter maneuvers, equipment vibrations, solar drag, and other sources. Therefore, there is growing
interest in understanding the effects of these perturbations on the system behavior. The reference
articles by Hirata et al. [2], Biringen and Danabasoglu [3], Gershuni and Zhukhovitskiy [4], Goldhirsch
et al. [5], Kamotani et al. [6], and Kondos and Subramanian [7] will give a clear idea of flow and
thermal fields behavior inside enclosures under gravity oscillation. Until now, there have been no
reported research activities, which systematically elucidate the effects of gravity oscillation on the
entropy generation rate inside enclosures under buoyantly driven flows in a microgravity environment.
Most of the published analyses have been restricted, from a thermodynamic point of view, to only
First-Law (of thermodynamics) analyses. The contemporary trend in the field of heat transfer and
thermal design is to perform a Second-Law (of thermodynamics) analysis, and to perform its design-
related analysis of entropy generation minimization (Bejan [8]). Entropy generation minimization is the
method of modeling and optimization of real devices that owe their thermodynamic imperfection to
heat transfer, mass transfer, and fluid flow irreversibilities. It is also known as thermodynamic
optimization in engineering, where it was first developed, or more recently as finite space-time
thermodynamics in the physics literature (Bejan [9]). Entropy generation minimization combines into
simple models the most basic concepts of heat transfer, fluid mechanics, and thermodynamics. These
simple models are used in the optimization of real (irreversible) devices and processes, subject to
finite-size and finite-time constraints that are in fact responsible for the irreversible operation of the
device. So, for proper use of this method, an analyst must know the behavior of system's
irreversibilities in terms of entropy generation and the variation of irreversibilities with system
parameters (flow parameters, transport properties, geometry etc.).
     Therefore, in the present work, we study the entropy generation characteristics inside a porous
cavity by solving numerically the fully nonlinear time-dependent momentum and energy equations in a
two-dimensional Cartesian frame. More specifically, the cavity has perfectly isothermal and
differentially heated sidewalls and adiabatic top and bottom walls. The gravity oscillation is assumed to
follow a perfect sine wave. Results are presented for three different Rayleigh numbers (Ra=50,100, and
500) and two different frequencies of oscillation.

Equations and Numerical Methods

     Figure 1 shows the domain to be analyzed and the adopted coordinate system. All asterisked
quantities in this paper are in dimensional form. Fluid in a two-dimensional cavity with a square cross-
section is subject to sinusoidal acceleration parallel to the vertical axis in a zero-gravity field. Upper
and lower walls, parallel to the horizontal axis, are adiabatic. Left and right walls are isothermal. It is
assumed that the cavity is completely filled with the fluid. Uneven density of fluid originating from the
temperature difference of the walls produces buoyancy and drives convection due to fluctuating
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Figure 1. Schematic diagram of the problem under consideration

acceleration.  The saturated porous medium is assumed to be isotropic in thermal conductivity and
follows the Darcy model (Bejan [1]). Finally, the set of non-dimensional governing equations in terms
of the stream function ψ and temperature Θ are

( ),sin2

2

2

2
τωψψ

x
Ra

yx ∂
Θ∂=

∂
∂+

∂
∂

(1)

,2

2

2

2

yxyxxy ∂
Θ∂+

∂
Θ∂=

∂
Θ∂

∂
∂−

∂
Θ∂

∂
∂+

∂
Θ∂ ψψ
τ (2)

( )
,

1

,,,,

2
,,,,,

2*

2

coldhot
0coldhot

0
***

p

ssp

C
CC

x
v

y
uWWTKgRa

W
t

TTTTTT
T
TT

W
yy

W
xx

ρ
ρφφρ

σ

ψψ
α
σωω

να
β

σ
ατ

α
ψψ

−+
=

∂
∂−=

∂
∂==∆=






=

+=−=∆
∆
−=Θ===

(3)

subjected to the following boundary conditions

Adiabatic wall: ∂T/∂y=0
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     The meaning of different parameter of Eqs. (1)–(4) are given in nomenclature section. Equations (1)
and (2) along with the boundary conditions given in Eq. (4) are solved using control volume based
Finite-Volume method. A non-staggered and non-uniform grid system is used with a higher mesh
density near the walls. TDMA solver solves discretized and linearized equation systems. For unsteady
terms, Crank-Nicolson method is applied. The whole computational domain is subdivided by an
unequally spaced rectangular mesh with a size of 128×128. The time increment (∆τ) was 10-4 in most
cases; but sometimes, especially at high Ra smaller values were chosen in order to confirm the
accuracy of the results.

Entropy Generation

     The dimensionless form of entropy generation rate ( genS ′′′ ) is termed as entropy generation number

(Bejan [8]). Entropy generation number (Ns) is the ratio between entropy generation rate (Ns) and a
characteristics transfer rate ( 0S ′′′ ). The characteristics transfer rate for the present problem can be
estimated from the following equation:
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For the porous media, which follows the Darcy model, the local rate of entropy generation ( genS ′′′ ) can

be calculated from the following equation:
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The detailed derivation of the above equation is available in Bejan [1]. The dimensionless form of Eq.
(6) gives the expression of entropy generation number as
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which consists of two parts. The first part (first square bracketed term at the right-hand side of Eq. (7))
is the irreversibility due to finite temperature gradient and generally termed as heat transfer
irreversibility (HTI). The second part is the contribution of fluid friction irreversibility (FFI) to entropy
generation, which can be calculated from the second square bracketed term. The overall entropy
generation, for a particular problem, is an internal competition between HTI and FFI. Usually, free
convection problems, at low and moderate Rayleigh numbers, are dominated by the heat transfer
irreversibility. Entropy generation number (NS) is good for generating entropy generation profiles or
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maps but fails to give any idea whether fluid friction or heat transfer dominates. Two alternate
parameters, irreversibility distribution ratio (Φ) and Bejan number (Be), are achieving an increasing
popularity among the Second-Law analysts. Bejan number (Be), which is the ratio of HTI to the total
entropy generation, can be mathematically expressed as

.
FFIHTI

HTI
+

=Be (8)

Bejan number ranges from 0 to 1. Accordingly, Be=1 is the limit at which the heat transfer
irreversibility dominates, Be=0 is the opposite limit at which the irreversibility is dominated by fluid
friction effects, and Be=1/2 is the case in which the heat transfer and fluid friction entropy generation
rates are equal.

Table 1: Comparison of average Nusselt number with some previous numerical results
Nuav

Ra=10 Ra=100 Ra=1000
Baytas and Pop [10] 1.079 3.16 14.06

Walker and Homsy  [11] -------- 3.10 12.96
Gross et al. [12] -------- 3.14 13.45

Manole and Lage  [13] -------- 3.12 13.64
Moya et al. [14] 1.065 2.80 -------

Present prediction 1.079 3.14 13.82

Results and discussion

     For the benchmarking purpose, a differentially heated square porous cavity under constant
gravitational force is considered. Average Nusselt number is calculated for three different Rayleigh
numbers (Ra=10, 100, and 1000) and compared with the available published works [10–14]. This
comparison is shown in Table 1.  It is seen from Table 1 that the agreement between the present and
the previous results is very good. Therefore, we are confidant that the numerical method used and the
results presented in this paper are very accurate.
     At first we start with the heat transfer characteristics inside the cavity. Rate of heat transfer is
measured in terms of the dimensionless Nusselt number. Once the gravity vibration is introduced (at
time τ =τ0), it takes some time to set the convective motion inside the cavity. Determination of this
time is beyond the scope of this paper. For the details about the setup time and instability, see reference
by Gershuni and Lyubimov [15]. At a particular time (=τ0+m.∆τ, m=0,1,2…), normal component of
the temperature gradient (∂Θ/∂n|w) near each wall is measured which is a function of distance and time.
An integration is then carried out using the following equation   

( ) ds
n

NuNu avav ∫
Γ ∂

Θ∂==
2
1τ (9)
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Figure 2. Average Nusselt number (Nuav) as a
function of dimensionless time (τ) at ω=2π and
Ra=50 (solid line), 100 (dash-dot line), and 500
(dash-dot-dot line

Figure 3. Average Nusselt number (Nuav) as a
function of dimensionless time (τ) at ω=2π and 4π
and Ra=100
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Figure 4. Average entropy generation number
(Nsav) as a function of dimensionless time (τ) at
ω=2π and Ra=50 (solid line), 100 (dash-dot line),
and 500 (dash-dot-dot line).

Figure 5. Average entropy generation number
(Nsav) as a function of dimensionless time (τ) at
ω=2π and 4π and Ra=100

along the whole boundary of the cavity (see Gershuni and Lyubimov [15]) to get spatially averaged
Nusselt numbers (Nuav) as a function of dimensionless time. For a limited time interval, 0 > τ ≥ 4,
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variation of Nusselt number (Nuav) is reported as a function of time (τ) in Figure 2 for three different
Rayleigh numbers. In real simulation, the total time is much higher than this time interval. It is evident
from Figure 2 that an induced gravity oscillation introduces a true periodic behavior to the average heat
transfer rate inside the cavity. As we used the absolute value of the normal component of the
temperature gradient (see Eq. (9)) during the calculation of average Nusselt number, the fluctuation of
Nuav appears at the positive half of the Nuav–τ plot. The periodic response of Nuav is synchronized with
the forced acceleration, namely, having the same period as the forced acceleration. At the upper
extreme of the oscillation (ωτ = (2m-1)π/2, m=1,2,3…) the magnitude of Nuav approaches the
corresponding value of Nuav at steady state and constant gravity. At the lower extreme of the oscillation
(ωτ = mπ, m=1,2,3…) gravity force disappears. Heat transfer inside the cavity occurs in conduction
mode. For all Rayleigh numbers, Nuav is same and equal to 1. Effect of ω on Nuav is shown in Figure 3
for Ra=100. Synchronous relation between gravity oscillation and the Nuav–τ profile is observed from
the figure. Two extreme Nusselt numbers remain same for both values of ω.
The local entropy generation rate (Ns) and Bejan number (Be) are calculated using Eqs. (7) and (8),
respectively. Both Ns and Be are function of spatial coordinates and time. The volume averaged value
of entropy generation number (Nsav) and Bejan number (Beav) can be calculated from the following
equations:
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where ∀  represents the volume of the cavity. Average entropy generation number (Nsav) is plotted as a
function of dimensionless time in Figure 4 for three different values of Rayleigh number. The Nsav–τ
behavior is similar to the Nuav–τ behavior as already described. The periodic response of the average
entropy generation number is synchronized with the gravity oscillation. At a particular time (τ),
irreversibility is higher at high Rayleigh number, but the maximum value of Nsav obtained for any
Rayleigh number when gravity oscillation reaches its upper extreme (ωτ = (2m-1)π/2, m=1,2,3…). In
the absence of the gravity (ωτ = mπ, m=1,2,3…) irreversibilities at all Rayleigh numbers are same and
show their minimum. Effect of ω on Nsav is shown in Figure 5 for Ra=100. Synchronous relation
between gravity oscillation and the Nsav–τ profile is observed from the figure. Two extreme entropy
generation numbers remain same for both values of ω. However, average Bejan number (Beav)
distribution remains synchronized with gravity oscillation, but it shows a complicated behavior with
Rayleigh number variation in a particular time period (for example τ = 2 to 3). Figures (6)–(8) show
the distribution of average Bejan number as a function of dimensionless time at Ra=50, 100, and 500,
respectively. At the lower extreme of the gravity oscillation, due to the absence of the gravitational
force, convective motion inside the cavity is absent. This causes the maximum dominance of heat
transfer irreversibility (HTI). Average Bejan number reaches its maximum value (=1) at this extreme of
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oscillation. For all Rayleigh numbers, Beav shows its minimum at the upper extreme of the oscillation
where convection motion is well set and fluid friction irreversibility has a reasonable domination over
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Figure 6. Average Bejan number (Beav) as a
function of dimensionless time (τ) at Ra=50.

Figure 7. Average Bejan number (Beav) as a
function of dimensionless time (τ) at Ra=100.
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Figure 9. Average kinetic energy (KEav) as a
function of.

heat transfer irreversibility. At Ra=500, boundary layer type flow is commonly observed at steady state
and constant gravity situation (see Baytas [16], Baytas and Pop [10]). However, for the situation where
the flow field is under the effect of gravity oscillation, no immediate formation of hydrodynamic and
thermal boundary layers. At the beginning of the oscillation (say at τ = 2 as shown in Figure 8) no
gravity force exists as well as no fluid friction irreversibility (FFI). Conduction dominated heat transfer
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causes only small contributions to the heat transfer irreversibility (HTI). With the absence of FFI,
100% contribution of total irreversibility comes from the HTI and the corresponding Beav is equal to 1
(see Figure 8). A nonzero gravity component appears just after the beginning time (τ = 2), which
immediately set the convective motion inside the cavity. A positive contribution to the overall entropy
generation rate now comes from the FFI. Average Bejan number then rapidly drop to a small value
within a small time. Because within this short time gap, hydrodynamic boundary layer forms and
thermal boundary layer is still in its developing stage. After formation, the additional modification of
hydrodynamic boundary layer with the advancing time is slow and by this time thermal boundary layer
is getting its final shape with increasing temperature gradient as well as HTI. This is the main reason
for a small jump in the Beav–τ profile between τ = 2.04 to τ = 2.12. Then Beav slowly drops to its
minimum value up to the upper extreme of the oscillation. Finally, the spatially averaged kinetic energy
(see Hirata et al. [2]) is calculated according to the following equation:

( ) ( ) ,
2
1 22∫ ∫ +== dydxvu
A

KEKE avav τ (12)

where A is the cross-sectional area of the cavity. Average kinetic energy (KEav) serves as a global
indicator of responses (see Hirata et al. (2001) [2]). Distribution of KEav as a function of τ is shown in
Figure 9 for two Rayleigh numbers (Ra=50 and 100). The synchronous behavior of the KEav–τ profile
with gravity oscillation is similar to the Nuav–τ or Nsav–τ profile as described earlier.

Conclusions

     A numerical solution of the governing momentum and energy equation for a porous square cavity is
presented which shows the responses of heat transfer, heat transfer irreversibility, and total
irreversibility under gravity oscillation condition. Average Nusselt number (Nuav), Bejan number
(Beav), and entropy generation number (Nsav) are used for the corresponding measuring tool for above
parameters. Gravity oscillation introduces a true periodic behavior to the Nusselt number, Bejan
number, and entropy generation rate. The periodic response of these three parameters is synchronized
with the forced acceleration, namely, having the same period as the forced acceleration. At the lower
extreme of the gravity oscillation Nuav and Nsav is minimum and Beav is maximum. This scenario
reverses at the upper extreme of the gravity oscillation.

Nomenclature

A Area of the cavity, m2.
Be Bejan number, (see Eq. (8)).
Cp Specific heat of the fluid, J.kg-1.0C-1.
Cs Specific heat of the solid matrix, J.kg-1.0C-1.
Ecm Modified Eckert number = ( )TKCWu p ∆../22

0 .

K Permeability of the porous media, m2.
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KE Kinetic energy, J.
Ns Entropy generation number, (see Eq. (7)).
Nu Nusselt number, (see Eq. (9)).

Pr Prandtl number = ν/α.

Ra Rayleigh number, (see Eq. (3)).

genS ′′′ Entropy generation rate, W.m-3.K-1.

0S ′′′ Characteristics entropy transfer rate, (see Eq. (5)).

T Temperature of the fluid, 0C.
T0 Reference temperature, 0C.
t Time, sec.
u* x-component of the velocity, m.sec-1.
v* y-component of the velocity, m.sec-1.
u x-component of the dimensionless velocity = u*/u0.
v y-component of the dimensionless velocity = v*/u0.
u0 Reference velocity = α/W.
W Width and height of the cavity, m.
x* Horizontal distance, m.
y* Vertical distance, m.
x Dimensionless horizontal distance =x*/W.
y Dimensionless vertical distance =y*/W.

Greek symbols
α Thermal diffusivity of the fluid, m2.sec-1.
β Thermal expansion coefficient of the fluid, 0C-1.
ψ* Streamfunction, m2.sec-1.
ψ Dimensionless streamfunction = ψ*/α.
Θ Dimensionless temperature = (T-T0)/∆T.
ω* Angular frequency, Hz.
ω Dimensionless angular frequency, (see Eq. (3)).
ρ Density of the fluid, kg.m-3

ρs Density of the solid matrix, kg.m-3

τ Dimensionless time = t.α/(W2.σ).
σ Empirical constant (see Eq. (3))
ν Kinematic viscosity of the fluid, m2.sec-1.
∀ Volume of the cavity, m3.
φ Porosity of the porous media.
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