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Abstract: Recently, there have appeared interesting correctives or challenges [Entropy 
1999, 1, 111-147] to the Second law formulations, especially in the interpretation of the 
Clausius equivalent transformations, closely related in area to extensions of the Clausius 
principle to irreversible processes [Chem. Phys. Lett. 1988, 143(1), 65-70]. Since the 
traditional formulations are central to science, a brief analysis of some of these newer 
theories along traditional lines is attempted, based on well-attested axioms which have 
formed the basis of equilibrium thermodynamics. It is deduced that the Clausius analysis 
leading to the law of increasing entropy does not follow from the given axioms but it can be 
proved that for irreversible transitions, the total entropy change of the system and thermal 
reservoirs (the “Universe”) is not negative, even for the case when the reservoirs are not at 
the same temperature as the system during heat transfer. On the basis of two new simple 
theorems and three corollaries derived for the correlation between irreversible and 
reversible pathways and the traditional axiomatics, it is shown that a sequence of reversible 
states can never be used to describe a corresponding sequence of irreversible states for at 
least closed systems, thereby restricting the principle of local equilibrium. It is further 
shown that some of the newer irreversible entropy forms given exhibit some paradoxical 
properties relative to the standard axiomatics. It is deduced that any reconciliation between 
the traditional approach and novel theories lie in creating a well defined set of axioms to 
which all theoretical developments should attempt to be based on unless proven not be 
useful, in which case there should be consensus in removing such axioms from theory. 
Clausius’ theory of equivalent transformations do not contradict the traditional 
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understanding of heat-work efficiency. It is concluded that the intuitively derived 
assumptions over the last two centuries seem to be reasonably well grounded, requiring 
perhaps some minor elaboration to the concepts of (i) system, (ii) the mechanism of heat 
transfer, and (iii) the environment, which would be expected to evolve with time in any 
case. If new generalizations at variance with Clausius’ concepts are presented, then these 
ideas could be expected to require a different axiomatic basis than the one for equilibrium 
theory, and this difference must be stated at the outset of any new development. So far such 
empirically self-consistent axiomatic developments are not very much in evidence. 

Keywords: Kelvin-Clausius Entropy, Irreversibility, Clausius Equivalent Transformation. 

 

1. Introduction and Semantics 

In order to determine potential “flaws” in the pioneering 19th century development of 
thermodynamics, one must highlight the well known presuppositions (stated below in axiomatic form) 
concerning the system under study. The axioms apply to closed systems. 

• Axiom 1: The systems considered have (internal) states that are instantaneously defined and do 
not enter further into the entropy considerations [1]. 

• Axiom 2: For each pathway (defined as a mapping of thermodynamical variables to a line in the 
thermodynamical space of the system), there exists heat and work energy transfers between systems 
and reservoirs which can be carried out reversibly [2] during the transition from one equilibrium state 
to another; reversible here means that it is possible to arrange the physical conditions so that a 
transition from state A to state B involving transfers of energy of amount q for heat and w for work 
implies that a transition from state B to state A is also possible with the transfer of energy of amount –
q for heat and –w for work, where the states A and B are arbitrarily close. 

• Axiom 3: Where reversible transfers are concerned, bodies of unequal temperature should never 
be put together [3]. 

• Axiom 4: Total energy is conserved, and the net work output of a cyclical heat engine could be 
related to the net heat input over the cycle through the mechanical equivalent of heat conversion factor 
[4]. 

• Axiom 5: The isothermal transfer of heat between two bodies involves the presence of heat 
gradients which can be chosen to be vanishingly small to the point of being neglected, where heat is 
defined as that form of energy which is transferred by virtue of a temperature difference only between 
two regions of a system [5, 6] and is therefore the same form of energy as that due to Fourier heat 
conduction.  

• Axiom 6: Work is that form of energy which is not temperature specific and which may be 
converted into other forms of energy completely without having to specify necessarily temperature 
variables; in particular it may completely or partially be converted during any stage of the cyclical 
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Carnot engine into heat which must be transferred to a body which has an associated temperature 
parameter. The work may be stored in principle without degradation (into heat) in a work reservoir that 
need not be specified by a temperature that can be used to effect changes on the component portions of 
an isolated system [7]. 

• Axiom 7: The system and thermal reservoirs used in thermal energy exchange may be in principal 
distinguished, even if they may form part of the same body. 

• Axiom 8: The heat exchange in a closed loop along a thermodynamical pathway may be 
approximated to any degree of accuracy by a juxtaposition of an arbitrary number of virtual Carnot 
cycles working at either maximum or non-maximum efficiency where the heat absorption along the 
pathway corresponds to the isothermal heat transfer stage in the juxtaposed virtual Carnot engine 
sharing common adiabats [1-4]. 

For what follows, the systems are closed, such as obtains for the original Carnot engine; 
generalization to open systems were quantitatively and intuitively carried out most notably by Gibbs 
[8] in his pioneering work, which did not resort to the rigorous consideration of cyclical changes which 
lead to the entropy function of state definition in the first place, which was presumed to obtain for 
heterogeneous equilibria involving open systems as well.  

We now illustrate by some examples how the traditional interpretation of the Kelvin-Clausius 
theorems, based on the above axiomatics differ from those recently postulated [9]; an instance is 
afforded by the Clausius definition of equivalent transformations. It turns out that the problem seems 
to be a divergence in how systems are categorized and understood.  

 
                                                              a  
     Q1             b        T1                            
 
 
 
                                     P                                                     c             Q2 

           T2

                                                                                                                        d 
                                  T3

                                                                           f             Q2                          e 
  
  
                                         V 
Figure 1. A closed system utilizing three heat reservoirs undergoing a cyclical change by changes 

in pressure (P), temperature (T) and volume (V). The adiabatic steps are represented by the vertical 
curves such as a-f, b-c and d-e. 

 
Fig. 1 depicts a closed system undergoing a cyclical transformation absorbing heat and  at 

temperatures  and releasing amount  at temperature  in isothermal transitions involving 
1Q 2Q

1 andT 2Q 3T
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heat reservoirs [10]. Fig. 1 above reduces to Fig. 1 of reference [11] if the adiabatic step b-c is reduced 
to zero measure (zero external work done). Our Fig. 1 is adapted from a diagram concerned with a 
standard analysis of Clausius’ equivalence transformations [10]. Let  denote the Clausius 
equivalence value of the generation of heat  at temperature  from mechanical energy, and 

 as the equivalence value of the flow of heat energy  from  to . Clausius, probably 
relying on Kelvin’s 1854 paper on thermoelectric currents, makes the identities [10] 

1 1. ( )Q f T

1Q 1T

2 2 3. ( , )Q f T T 2Q 2T 3T
( ) 1/f T T=  and 

2 3 3 2( ) (1/ ) (1/ )f T T T T− = − , so that this equation for the total or net equivalence S  between a flow of 

heat energy and the conversion of heat into mechanical energy becomes  

 1 2 2

1 3 2

0Q Q QS
T T T

⎛ ⎞−
= + − =⎜ ⎟

⎝ ⎠
       (1) 

for the above reversible cycle of Fig. 1; in retrospect may be identified with the entropy. If the 
Universe  is viewed as a set composed of the union of the closed system 

S
U sC  and  thermal 

reservoirs 
n

iR  with the set of all reservoirs given by { }1 2... nR R R R= ∪ , then our Universe may be 
loosely denoted by . Clausius views the heat increments as changes in the reservoirs, rather 

than the system, where for reversible transitions involving heat exchanges with the reservoirs,  
sU C R= ∪

 ( ) (sS U C S U R)− = − −        (2) 

in set theory notation. Early workers, including Clausius, defined the heat absorbed according to 
Eq.(1) (or Fig.1 in [11]) as positive relative to the reservoirs, i.e. the entropy is measured in terms of 
heat absorptions experienced by the reservoirs, i.e. ( )sS U C− . The generalization of Eq.(1) as the 

number of reservoirs tend to infinity leads to the Second law deduction for closed systems over a 
cyclical loop-like transition between the same end-points written as 

 ∑ ∫ ==∑ ⇒=
=→=→

n

i i

i
n

n

i i

i
n T

Q
T
Q

T
Q

1010
0lim0lim δδδ

       (3) 

The implication sign leading to the path integral in Eq.(3) requires a separate analysis which will 
not be attempted here, suffice to say that it has been the standard assumption throughout the history of 
thermodynamic analysis concerning the imperfect heat increment Qδ , where the thermodynamical 
path  is Riemann integrable with respect to this heat variable Q , which is assumed to be a continuous 
function. 

Never in the traditional understanding and development has ‘entropy’ or equivalent 
transformations been interpreted as pertaining to , i.e. the entire Universe taken as a whole[12-
13] and all logical and algebraic developments have assumed that  is not the whole Universe but 
the variables connected to the system (or the respective reservoirs, but not both). There is therefore a 
danger of extrapolating the basic thermodynamical development beyond its intentions if this and other 
basic presuppositions are not borne in mind. For instance, In [11] writes for his Fig.1 
transformations the following “So, the values of the transformations occurring in a reversible cyclical 
process instead of being  

( )S U
( )S U

iguez%

[ ] [ ]'( ) '( ) '( ) / ( .3) and ( ) / ( .4)h c h c h c h hrev rev
S Q T Q T Q T T T T his eqn S Q T w Q T his eqn∆ → = − ∆ → = −   
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as the Clausius principle of the equivalence of transformations demand, they both turn out to be, as 
eqs. 1 and 2 show, equal to zero.” However, his eqs.1 and 2 refer to the algebraic sum of contributions 
from both system and reservoir (i.e. the entropy is essentially defined as  in our notation) and 
therefore differs in interpretation from the traditional development, including the definitions and 
axioms used traditionally. Indeed, the real significance of the non-composite sum 

( )S U

( ) '( ) / /s h c h cS U C Q T T T T Q T− = − − h  from the Clausius and traditional point of view is that it is equal 

to zero; the generalization of which leads to the Second law statement of the existence of the entropy 
state function. Since the In  development does not use the same basic premises and axiomatics of 
the traditional Kelvin-Clausius thermodynamics, they are not comparable, and it is therefore 
questionable to speak of “flaws” in the traditional development when a common basis is absent. In 
isothermal exchanges of heat, clearly the algebraic sum of entropy increments must always cancel for 
system and reservoirs taken together, but no significant consequences may be deduced from this 
observation.  

iguez%

There have been attempts to create an irreversible thermodynamics with an entropy perfect 
differential based on considerations of “compensated heat” [14], which has been disproved [15] for 
isothermal processes; the analysis for the general case is given here in a subsequent section. Generally, 
concepts used in the attempts to extend thermostatics to nonequilibrium systems still rely on the 
structure and definitions used in equilibrium theory. In such developments, it  is generally assumed 
that the Clausius inequality 0<∫ Tqδ   obtains where the heat exchange is isothermal in the limit, even 
for irreversible transitions; clearly if this were not the case, then the ‘compensated heat’ entropy of the 
composite system would certainly break down, since the reservoir temperature variables are free to 
vary in this case [14]. It will be shown below that the statements concerning the law of increasing 
entropy for systems obeying the stated conditions is not jeopardized by non-isothermal heat transfers 
between system and reservoir. It is interesting that at least one text [7] has discussed the possibility of 
non-isothermal system-reservoir heat transfer as the basis or cause of irreversibility and the Clausius 
inequality, but in general the arguments seem to assume that the temperature parameter T  is that 
registered at the heat reservoirs only which is the same as the system temperature when there is energy 
exchange with the reservoirs.  

Another example of departure from tradition is due to the definition of quantities. Definitions 
(almost always) are not provable, but the effectiveness of definitions in scientific analysis is dependent 
on the rationality of the arguments used to create the definitions. For instance, whilst it is 
acknowledged that [16] the efficiency η  of a cyclical process associated with heat transfers between 
temperatures  and  is given by hT cT ( ) /h cT T Thη = − , it is also stated that if the “availability of energy 

for external purposes” is defined u as its quality, then the quality of loss c∆−  will be proportional to 

the temperature of its cold reservoir, i.e. c h

c h

T Tc
T T
−

−∆ =  since its “capacity for further work production 

will be lesser the lesser the temperature of the cold reservoir...”. Elementary considerations show that 
as 0, 1cT η→ → , so that the capacity for further work production increases as . We note that 

there is a danger in utilizing ratios, proportions and reciprocals without establishing the value of the 

0cT →
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exponents γ associated with a particular variable in expressions such as T γ ; there is no proof why 
unity (±1) should be the preferred exponent from the arguments presented for proportions, etc. 
(although it may  eventually be proved as  the correct choice). Notational confusion can also add to the 
obscurity [17] as when it is stated: “The true criterion of reversibility is embedded in eq.8 in the 

equation: .... For every process that can in no way be completely reversed, it follows 

that:  ”. From the fundamental theorem of integration, if S possesses a differential dS 

(in multidimensional space) it follows that 

B A

A B
dS dS= −∫ ∫

B A

A B
dS dS≠ −∫ ∫

0 or
B A A B A

A B A A B
dS dS dS dS dS+ = = =−∫ ∫ ∫ ∫ ∫ , irrespective of 

pathway (whether irreversible or not, provided dS represents the entropy increment). Hence it is 
apparent [17] that the writer concerned has at the very least used an inappropriate notation in his 
explanations. Unreviewed grammar may also complicate the situation, when subject and predicate is 
not clearly distinguished, as when one writes [18]: “...it is learned that while the entropy change for the 
Universe of the reversible transfer of an amount of heat  from to  is equal to zero, that of the 
irreversible transfer is equal to . Looking back now at the principle of the equivalence 

of transformations one can only qualify as peculiar the fact that the entropy change in it associated to 
the reversible transfer of heat taking place in the reversible cyclical process to which such a principle 
refers, instead of being zero, as it should correspond to a reversible process, be  which 

is the one associated to an irreversible heat transfer” (italics mine).  

'Q hT cT
'( ) /h c hQ T T T T− c

c'( ) /h c hQ T T T T−

It is difficult to relate the above from the traditional perspective. Restricting the argument to closed 
systems delivering work W in one complete cycle, the entropy change of the reservoirs is given by 

' ( ' )( ) 0
h c

Q Q WS R
T T

−
= − + =  whereas for a completely dissipating system, W=0, and so 

. Thus the intentions of the writer is not so evident here. '( ) / 0h c h cQ T T T T− >

(Needless to mention perhaps, vague and imprecise writing which does not trouble to relate 
historically to previously accepted practices and to persons, and which does not take pains to point out 
areas of departure from pre-existing or prevailing practices, could potentially masquerade as a TOE -
“theory of everything”- by claims that what was mooted could subsume whatever another creates or 
postulates, thereby jeopardizing the anamnesis sequence within the living communion of investigators, 
so vital for its non-nihilistic functioning). 

Apart from ambiguity of terminology, we next examine whether it is possible to extend the 
equilibrium Clausius entropy principle to irreversible systems. 
 
2. Discussion of the Clausius Inequality and Some Definitions 

The derivation of the Clausius inequality 0<∫ Tqδ  for heat increments qδ  absorbed by a closed 
system in a closed loop transition is based on superimposing in the limit an infinite number of Carnot 
engines with common adiabatic steps between any two infinitesimal small loop transitions, such as 
discussed in [7]. Two general cases may be considered, when the thermal reservoirs are in the limit at 
the same temperature of the system (subparagraph a) below and when they are not (subparagraph b).  
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a) When system and reservoirs are in contact at almost the same temperature: Associated 
system 

For conductive thermal energy transfer between system at temperature  and thermal reservoir at 
 the Fourier inequality 

sT

rT . T∇ <q  implies ε>− rs TT  for arbitrarily small positive ε  (where q is the 

heat current vector). On the other hand, a common assumption in the Carnot analysis is that there can 
be “isothermal” transfer of heat, so that .0→ε  For what follows, we shall assume that these limits 
obtain. 

For any one Carnot engine cycle in this summation process, let the optimum heat absorbed be 2Qδ  
(at temperature ) and that expelled be 2T 1Qδ  (at temperature ) where  and δW is the positive 
work done by the system (engine). The following definition will be required in due course. 

1T 2T T> 1

Definition 1. Internally driven engine (system): An internally driven engine (system) i is one where 
0iWδ > for any engine Ei where the work refers to a cycle, and if the work increment  for an 

element of path 
0idw >

iCδ , the system or engine is internally driven along that path increment. 

Definition 2. Externally driven engine (system): An externally driven engine (system) i is one where 
0<iWδ  for any engine Ei where the work refers to a cycle, and if the work increment 0idw <  for an 

element of path iCδ , the system or engine is externally driven along that path increment. 

Hence one necessary condition is that the system is not functioning as a refrigerator (where 
0iWδ < ) for  for an internally driven engine and where the system can never act as a source of 

work for an externally driven engine. From Axiom 1, the only way in which dissipation could be 
achieved is when work 

2T T> 1

Wδ , representing the Carnot maximum work (see Fig. 2 below) is partly 
dissipated back by amounts 1Wδ  and 2Wδ  − where the subscripts (1,2) refer specifically to the 
interfacial ports of heat absorption and expulsion respectively − and held at temperatures  and  
respectively.  

1T 2T

                                               2T
 

               2Qδ                                    2Wδ  
 

                                                                                         Wδ  
                                                    1Wδ  

                                                                  1Qδ  
                                                   2T

    System 

Figure 2. Typical energy exchange of a Carnot engine during a cycle with dissipation. 
 

For internally driven engines, 1 20 ( 1, 2) and qW W q W W Wδ δ δ δ< < = + < δ , and for externally 
driven engines (e.g. refrigerating cycles), 1 2( 1, 2)q ac acW W W q and W W W Wδ δ δ δ δ≤ − = + = −  where 

 is the actual work done on the system. For the above, it will be noticed that the work term, as it so acW
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1

far stands, is a globally relevant term, in that it represents the sum of all work increments over the 
cycle. It has been rigorously proven [19] that any transition along the adiabatic steps in the Carnot 
cycle (a device used to ensure that the working substance can absorb heat at at least two different 
temperatures) itself conforms to the Carnot theorem, and furthermore, it has been suggested [19] and 
proven [20] that the “isothermal”” steps involving conductive heat with vanishingly small heat 
gradients also conforms to a Carnot theorem involving a “disintegrating” system [19, 20]. Hence it 
might be possible to derive the above inequalities by not concatenating “global” engines, but by a 
process involving local transitions, but this analysis is for the future; at present, on an ad hoc basis, 
one can suppose –without jeopardizing the traditional format– that the system is coupled to a “work 
reservoir” that can store pure work energy at each stage in the cycle, and at different times, and this 
work is available at all times to the system. Since the energy U  is unchanged over a cyclic transition, 
then over the cycle W  where W  is the total work done on the system and Q  the total heat 
absorbed; i.e.  in the notation of Fig. 2. 

= −

2Q Q Q= −
Therefore, for net work to be done to the environment, 2Q Q> 1 →; hence as  for an 

infinitesimally small (arbitrary) cycle, an internally driven engine will always have the capacity to do 
net work on the environment at any stage where the energy reservoir has zero work energy if 

2 0Q

2 0Q ≠  
provided the cycle begins at the upper temperature isotherm. Denoting the entropy differential 

TqdS /δ= , with superscripts labeling the system or heat reservoir, and the subscripts denote whether 
the increment is due to an irreversible or reversible transition. Then according to the notation of Fig.1 

 2 1

2 1

0sy
revdS s Q Q

T T
δ δ

= − =        (4) 

for the system. If there is dissipation (irreversible change) we get 

 0)1 <
()(

1

1

2

22 −
−

−
=

T
WQ

T
WQS sys

irr
δδδδδ       (5) 

where Sδ  represents imperfect differentials and 1,2Wδ  is the potential work that is dissipated as heat to 

the thermal reservoir concerned through the system surface concerned. From Axioms {1-7}, a 
fundamental presupposition made for the Clausius inequality to obtain for the system is that the 
potential work energy must be dissipated to the thermal reservoirs interacting with the system, and that 
the dissipation of energy must be considered to flow through the system boundary to the thermal 
reservoir, or else inequality (5) would never obtain and so likewise the Clausius inequality ∫ ≤ 0sys

irrSδ  

would also not obtain; by definition, we have excluded thermal energy transfer for the adiabatic steps, 
although in a more flexible theory, one might distinguish between system heat absorption through its 
own boundary and heat transfer from a work reservoir to the thermal reservoirs, through another 
boundary as distinct (and therefore allow for a specialized form of heat transfer during an adiabatic 
transition). Here we adhere to the conventional definitions. From inequality (5), since the Wδ ’s are 

positive, the extra entropy gain for the reservoirs  would be res
exdS 0

2

2

1

1 >+=
T
W

T
WdS res

ex
δδ

 over the 

cycle rather than zero; in particular even if the work were dissipated to another heat reservoir external 
to the system, the total entropy change of the reservoirs and system would be positive, as is 
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conventionally expected, since both the ' and 'W s T sδ  are positive. For permitted or accessible 

transitions from state A to B (denoted AB, and vice-versa BA for B to A transitions) the Clausius 
inequality reduces to  

 , , 0sys sys
rev BA irr ABdS dS+ <          (6) 

over a specified pathway. Integration yields ,
sys sys sys
rev BA AB BAdS S Sα α= ∆ = ⇒ ∆ = −∫  and 

, ,
sys sys
irr AB irr ABdS S β= ∆ =∫  where the sign of β cannot change for a BA irreversible transition (unlike α 

since the transition is irreversible). Thus, inequality (6) yields 0 or 0.α β α β− + < − > Now, if we 
should allow Axiom 3 to obtain for the moment then the reservoirs involved in the heat interchange 
would be , ,,res res

rev BA irr ABS Sα β∆ = + ∆ = − . For the AB transition, we have that the total entropy change of 

system and reservoir is given by  from (6). This result is to be contrasted 

with  Iñiguez who writes [21] “…That the entropy change for the universe of a process can be 
negative, a fact defined by Clausius work, is the reason the name chosen –negentropic—for the 
formulation herein presented.” The inequality is zero for reversible cyclic transitions, but it can never 
be negative.  

, 0sys res
AB irr ABS S α β∆ +∆ = − >

 
b) When system and reservoirs are in contact at not the same temperature: Non−Associated 
system 

Here, ε>− rs TT  where ε  is any finite non-vanishing number for thermal energy exchange. The 

above result is not jeopardized if the condition given by Axiom 3 is relaxed, such as what Moore 

alleges [7], when he writes for the expression ∫ < 0
T
qδ  (irreversible) , the following: “We should note 

that the T ... is the temperature of the reservoir that supplies the heat, and not the temperature of the 
body to which the heat is supplied.” Clearly, this is in apparent contradiction to Axiom 3 as understood 
by other authorities; the above shows that for associated systems, (i.e. those for which the system and 
reservoir temperatures when in mutual contact possess a vanishingly small temperature gradient), 
Clausius’ inequality can still obtain if we postulate a back transfer of heat through the system surface 
due to work degradation; Moore’s postulate seems to not preclude the case where if the T variable 
where almost exactly the same for the system and reservoir, then the Clausius inequality would not 
obtain in general if the above back transfer suggestion is not included. But Moore’s definition may not 
be too helpful since if T were not the system temperature, then the inequality need not apply without 
further assumptions concerning the flow of (thermal) heat; hence it is imperative to consider Moore’s 
suggestion to define the limits of its applicability. If conductive heat transfer is envisaged [22, 23] 
where the inequality  obtains locally, ( q  is the thermal heat conduction vector), then this 
fundamental inequality may be applied to any portion of a Carnot engine, at any stage in a cycle. Thus 
relative to Fig.3 below,  

. T∇ ≤q 0
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2

1

 
 
                                                          Q2T 2

                                                                                                    
                  
   

Reservoir temp. T  '
2

                                                 T1                Q1

System absorbing heat at 
two temperatures T and 2

1

Reservoir temp T  '
1

T  

 Figure 3. System absorbing thermal energy from heat reservoirs with dissimilar temperatures. 
 

2Q  is a positive increment of heat absorbed by the system whenever  and vice-versa, and  
would be a negative quantum of heat absorbed (i.e. heat lost) of . Now, in the traditional 
understanding, minute temperature differences 

'
2T T> 1Q

'
1T T>

( )Lim 0δ δ± →  must exist with the condition 
'

2 20, T Tδ δ> = + for heat absorption, or for work degradation into heat – by convention through the 
system boundary – whenever '' '

2 20, T Tδ δ< = +  at the same interface. Clearly the back transfer of 
work energy as dissipated heat through the same boundary as when heat was absorbed would involve 
the change of sign of δ  and these processes cannot be simultaneously accomplished. If there exists a 
non-vanishing temperature difference '

2 2 0T T α− > > , where α  is fixed, then the isothermal 
absorption of heat by the system at temperature  and its conversion to work (e.g. in the isothermal 
expansion of a gas ) along a segment AB of a thermodynamical path where 

2T
qδ >0 (for the system) 

implies ; if the transition along AB is along a pathway where the system boundary 
temperature is always less than the heat reservoir so that no work back-transfer can occur, then the 
curios result  would obtain; the heat absorbed would correspond to the reversible 

heat absorbed. However, for such a transition, the entropy of both system and reservoir would increase 
since for each increment of heat

0sys
ABS∆ >

, 0sys sys
AB AB revS S∆ = ∆ >

qδ absorbed by the system from the thermal reservoir, 

011
'

22
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

TT
qdSU

irr δ for each qδ  increment. For the segment of the system transition CD for which 

qδ <0, represented in general by Fig.3 by the heat transition  between temperatures  and ,the 
gradient is such that if 

1Q 1T '
1T

( )eqrev qq δδ ≡  represents the reversible transition increment, then by the external 
dissipation of work from the environment with increment exqW δδ ≡ , there is the actual transfer of heat 

, so that the entropy increment follows the overall entropy increment for the 

system 

eq
ex

eqac qqqq δδδδ >+=

T
qdS

ac
sys δ

<  (in accordance with the Clausius inequality derived from cyclical considerations) 

and the total entropy increase of the Universe  for each increment  because 0u
irrdS > acqδ

011

1
'

1
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

TT
qdS acu

irr δ . This illustration may be generalized.  

For a reversible transition between states A and B, the heat increments along a pathway can be 
represented by a sequence { }iqδ , where λ  is a generalized path parameter completely specifying the '
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path taken. From the First law statement dU dQ dW= +  (with Q and W representing the heat and 
work functions respectively), it is clear that an irreversible transition need not correspond to the same 
{ iq }δ sequence; a particular transitional pathway may be specified by the set { }, ,Q Tλ with heat 
absorption increments { } { } ( )∞→= nqqqdQ n ,..., 21 δδδ ;  are all the other thermodynamical variables 

other than the temperature T and total heat content Q for transitions between states A and B; the 
temperature of the system is given by the sequence 

λ

{ }iT and time of transition by the sequence { }iτ ; 

the temperature of the reservoirs is denoted by the sequence { }iT Tiδ+  where for the associated 
case 0.iTδ → For this case  

 ∑ ∆<=∆
=

n

i

revB
A

i

iirr
assoc

B
A S

T
qS

1
.

δ     (7) 

as demonstrated previously. We partition the sequence { } { } { }dQ dQ dQ+= ∪ −  where 

{ } { }( )......,..., 2121 rnnn nnnqqqdQ
r

<<=+ δδδ  represents positive increments for heat absorption iqδ  by 

the system with a similar notation for { }dQ− , which represents the ordered (infinite) sequence with net 

heat loss by the system, the mechanism in both cases being purely Fourier heat conduction across a 
diathermal boundary[22,23]. The corresponding partitioned temperature sequences will be denoted 
{ } { }andT T+ − and similarly { } { }andτ τ+ − are the corresponding time increments associated with the 

direction of heat transfer. For ‘associated’ heat transfers 0
inTδ →  for all members in { }dQ , and for 

such a case the reservoir entropy .,
B irr
A assoc reservoirS∆  clearly obeys 

 ., .,
B irr B irr
A assoc reservoir A assoc systemS S∆ = −∆      (8) 

For the same specified path { }, ,Q Tλ  to be traversed for non-associated systems subjected to the 

Fourier inequality, it is sufficient to maintain the temperature gradients in the same direction as in the 
associated case where '

iTδ  is a (small) finite and non-vanish quantity for a reservoir held at { }'i iT Tδ+  

and this reservoir temperature is maintained until the amount of heat { }dQq ∈1δ  has been transferred; 
hence only the { }τ sequence will differ for the associated and non-associated case. Since (Axiom 1) 

the system is instantaneously defined, and  for any 0iTδ → iTδ (it is as small as is specified),we can 

write { } { }' 'if and ifi i i j j jT T T T T T T Tδ δ δ δ δ δ δ δ+> ∈ < ∈ − . Thus for the same system pathway 

{ }, ,Q Tλ , the reservoir entropies would obey the inequality 
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Since , , ,, soB irr B irr B irr B irr
A non asssoc reservoir A asssoc reservoir A non a ,sssoc reservoir A asssoc reservoirS S S S− −∆ > ∆ ∆ ≠ ∆ , for any definite 

pathway { }, , B

A
Q Tλ , and in particular, Eq.(6) which yields  clearly implies 

 for the same AB transition and so even here the entropy of the 

Universe is positive. For such constructs, the Iñiguez result [21] cannot obtain. The reservoir variables 

0, >−=∆+∆ βαres
ABirr
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AB SS

0,
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are free to vary in Moore’s characterization, so it is not necessarily true –subjected to further 
elaboration− to suppose that a “compensated entropy” may be described to create a new function of 
state because of the ambiguity of the temperature value, where we suppose for the time being that such 
theories are true [14] for associated systems. However, even for associated systems, it has been proved 
that such a scheme does not exist for isothermal systems with no work transitions [15]. Hence it is 
imperative to study the case of non-equilibrium transitions for associated systems to determine 
whether any new function(s) of state are implicated as a generalization of Clausius’ result. 
 
3. Investigation on whether a Nonequilibrium Entropy may be Deduced from the Clausius 
Inequality of Equilibrium Thermodynamics 
 
(a) Formal theoretical construct 

The lucid arguments of Benofy and Quay [22] make a case for the global nature of the descriptions 
provided by the traditional Kelvin-Clausius development, which must be contrasted to its reduction to 
a supposed local form from total system interactions involving circular integrals [24]; the resolution of 
these conflicting viewpoints is attempted here. Writing the Clausius integral as –N and integrating 
between thermodynamical variable space points A and B located on the thermodynamical path of the 
loop yields the following “global” [22] result 

 0≤=− ∫irrev T
dQN      (10a) 

 or 

 
[ ]

0'
,

≥−∆= ∫
B

irrA
AB

T
PdQSN      (10b) 

where 
[ ]

∫=∆
B

revA
AB

T
PdQS

,
 is the reversible entropy change between states A and B; where  denotes 

a reversible path and an irreversible pathway, and the state variables for the system is Q for each 
equilibrium state.  

ABP

ABP'

Lemma 1: The variable N must be a functional of the variable A,B and path , i.e. 
 

ABP'
( , , ' ).ABN N A B P=

Proof: Since  is the integral of a perfect differential, it is a function of the endpoints of the integral, 
and the irreversible integration along  is path dependent, hence the result. 

S∆
ABP'

In order to develop the global properties of the Kelvin-Clausius theory, we need to state some 
elementary theorems, where the first theorem is more obvious than the second. 
Theorem 1: There exists an infinite number of irreversible heat exchange pathways  even if 
during the irreversible transition from A to B, the system traverses arbitrarily closely along a reversible 
pathway  where the pathway is described by a sequence of equilibrium state variables Q.  

ABP'

ABP +

Proof: From Axiom 1 the system state is instantaneously defined, so that the isothermal heat 
exchanges are due to the dissipation of heat about the system boundary due to the system work or the 
external work reservoir, and likewise at each point in the time sequence, the virtual reversible 
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transition may be characterized by an equilibrium state variable, the entire set constituting . In 
accordance with the well-known Axiom 8, the dissipation of work to heat through the boundaries of 
the system is bounded by W

ABP +

op, the optimum work which the cycle can perform. However, if the 
external environment were to dissipate energy in addition to Wop, the result below would still obtain by 
considering the dissipation inequalities below. Now, consider the loop formed by the reversible path 

 followed by the irreversible transition , such as depicted in Fig. 4 below. By Axiom 1 and 8, 
we may consider one elementary Carnot cycle with corners at (a

BAP ABP'

1, b1, b2, a2) where heat Q1 is absorbed  
along reversible segment a1-b1 and 2Q  ejected about irreversible segment a2-b2. 

                             Q1                         PAB

                                                     b1                                                           B 
                              a1                                                       

                                                               b'                                          
                                        a'                        b2    P'AB   
                                                                                
                       A                            a2               
                                                                Q2

 
Figure 4. A thermodynamical circular pathway with the reversible portion maintained at a higher 
temperature than the irreversible segment, and where heat is absorbed, with elementary Carnot engine 
superimposed with isotherms and adiabats meeting at a1, b1, b2 and a2. 
 

The system here corresponds to an internally driven engine; the arguments for an externally driven 
engine are similar (and will be omitted). At the optimum (op) level, opopop WQQ −=+ ,2,1 , where is 
the work done on the system for the reversible cycle about (a

opW

1,b1,b2,a2) and as 

stated previously. Since segment (a

( )),( 211 TTfQWop =

1,b1) is reversible, the amount of heat ejected )'(2 BAPQ  about the 

(a2,b2) segment would be ),( 2212 baWQQ op δ++= where ),( 22 baδ  is the dissipation function about 

segment (a2,b2) where opWba ≤< ),(0 22δ  and if there is extra work provided externally, then the 

preceding condition reduces to ),(0 22 baδ< .Clearly δ  is not dependent on the  or  
sequence of path variables and an infinite number of separate values for 

ABP +
BAP +

δ  exists for each infinitesimal 
segment (a2,b2). Hence an entire set of dissipation functions obtain for this infinitesimal segment, and 
thus for the entire pathway  which corresponds to the system having a particular set of equilibrium 
variable sequences, we can write 

BAP'
{ }∆= + ;' BABA PP , where ∆  are the variables along  connected to 

the dissipation function 
ABP +

δ  about the boundary of the system.  
Theorem 2: Subject to the (system) conditions of the preceding theorem, it is impossible for the 
irreversible pathway  (for any finite length) to contain the same sequence of points as  (in the 
opposite direction) for any fixed, predetermined path  in a closed loop Clausius integral. 

ABP' ABP

ABP
Remark: The above theorem precludes the localization of the irreversible and reversible connected 
segments of the Clausius closed loop integral. 



Entropy 2003, 5  
 

 

265

Proof: Any segment  (see Fig. 4) may be completed by the reversible pathway  to form a 
closed loop, where  possesses at each point the state variables belonging to the reversible pathway 

(  in terms of the sequence of points ) as in the preceding theorem. We now distort the 
contour  such that , where 

ABP' BAP

ABP'
ABP +

BAP +≡

ABP +→ ABAB PP { }∆≡ + ,' ABAB PP  as described previously. Then for each 
virtual Carnot cycle, the adiabatic paths b' and a' → 0 in length, so that because 

 and 
,0=opW

21211  as 0' where),('. TTfTTfQWop →→= opW≤< δ0  (along the entire irreversible 
segment) .0=⇒δ  Hence the opposite direction pathway  is a reversible pathway with BAP' 12 QQ −=  
for each infinitesimal isotherm, and since 0=∆ ,  cannot therefore be irreversible. ABP'
Corollary 1: The Clausius inequality of the closed loop integral under the conditions of Axiom 8 
precludes the non-trivial existence of a local infinitesimal excess quantity dN for any of the following 
definitions of dN: (a) NLimdN

BA→
=  , (b) NLimdN

ABAB PP '→

=  and (c) NLimdN
BA
PP ABAB

→
→

=

'
 where N is defined 

as in Eqs.(10a,b). 
Proof: Case (a) If , then since ,we have BA→ 0→∆S

                               0)( ',, ≤⎥⎦
⎤

⎢⎣
⎡

∫−==
→

B
ABPirrA

BA T
dQ

LimdNN                  (11) 

The general possibilities for (11) imply a cusp-like topology as in Fig. 5 (or its generalizations to 
intersecting looped chains) or line for the path. 
 
 
                                                               P'AB 

 •• 
                                                                               A B 
 Figure 5. A simple cusp or loop path as . BA→
 
If a cusp or cusps are implied, then in the limit as , we get dN = N(P'BA→ AB), where dN is a finite, 
non-vanishing number if  in (11) and the length of the path is bounded, and so dN is dependent 
on P'

TdQ /

AB and is clearly not a differential element since it is a finite number. If the condition 0' →ABP  
applies, then from Theorem 2, since  is irreversible, it cannot contain the same sequence of points 
as , and so is a non-local path dependent parameter. Writing the heat absorption increment as 

ABP'

ABP
dRRH ).,( δ=dQ  where dR is the element of length in thermodynamic space and H a bounded 

function specific to the pathway implies that as 0' →ABP , dR→ 0, so dN→ 0 and in the limit, dN = 0. 
Case (b): From (a), if , then from Theorem 2, ABAB PP →' 0=dN  trivially since an irreversible path 
would not exist.  
Case (c): From (a) and (b) , . 0=dN
Corollary 2: N is at most a constant function locally since 0=dN when there is a coincidence of paths 
from Corollary 1 and Theorems 1 and 2. 
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Corollary 3: It is not possible to have a (continuous) sequence of states which are known to be 
nonequilibrium states be described by a continuous sequence of thermodynamical equilibrium states 
for if this was the case, Theorem 2 would be contradicted.   

We now investigate whether (10a) rewritten as 

 0=+∫ N
T

dQ      (12) 

and the expression ∫= dNN  (circular integral) leading to  

 0=⎟
⎠
⎞

⎜
⎝
⎛ +∫ dN

T
dQ      (13a) 

implies the existence of a new entropy exact differential Σd  such that  

 dN
T

dQd +=Σ .     (13b) 

The formal development above indicates clearly that if a cusp-like non-local loop is involved 
from Corollary 1 where dN is a finite number and is not a differential, and therefore 

0>dN
Σd  is not a 

differential. If locality (implying coincidence of the thermodynamical variables) is imposed as in 

Corollary 2, then 
T

dQd =Σ  is a perfect differential, where 
T

dQ  must be defined as the reversible heat 

increment, which is not obvious from (13b). Hence the formal development based on traditional 
axiomatics does not in general support (13b) as a candidate for a new irreversible entropy differential 
[24]. In order to confirm the above for the general case, we resort to a direct evaluation. 
 
(b) Direct analysis of irreversible entropy increment 

The integral ∫= dNN  is not arbitrary but has a form which must always conform to the defining 

relations (10a), where the pathways for the reversible and irreversible portion of the integral must be 
carefully distinguished, i.e.  

 
[ ] [ ]

0')',,( ≥⎟
⎠
⎞

⎜
⎝
⎛−= ∫∫

irr

B

A
ABB

A
AB

AB T
PdQ

T
PdQPBAN  .    (14) 

Hence generalizations of (14) include expressions such as  

 
T

PBAdQPBAdN AB
revAB

),,(),,( −=      (15a) 

 where  

 0),,(),,( =−= ∫∫ T
PAAdQPAAdN AA

revAA      (15b) 

for a cyclical reversible path AA and a similar expression obtains for irreversible paths, i.e. 

 
T

PBAdQPBAdN AB
irrAB

)',,()',,( −=       (16a) 

 and 

 0)',,()',,( ≥−= ∫∫ T
PAAdQPAAdN AA

irrAA   .   (16b) 
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Eqs.(15-16) makes it clear that Eqs.(10a,b) are not arbitrary circular integrals over all 
thermodynamical spaces such that ∫ = NdN , but that N must be defined always in terms of the 

reversible and irreversible paths traversed, i.e. 

 
rev

B

A
irr

B

A T
dQ

T
dQNdN ∫∫ ∫ ⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−==      (17) 

leading to Eq.(10a) 

 B
A

B

AABAB S
T

dQPPBAN ∆+−= ∫)',,,(      (18) 

Reference [14] for instance has ∫ = NdN  ( Eq.(10) there, denoted (10') here) and 

0=+ ∫ T
dQN (Eq.(9) there, denoted (9') here) so that substitution of (10') into (9') apparently yields  

 0=⎟
⎠
⎞

⎜
⎝
⎛ +∫ dN

T
dQ      (19) 

From (14), retracing the substitutions leading to (19) leads exactly to 
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                                                                                                             (20) 
So, exactly the same equations are subtracted i.e. 0=− NN , from which a perfect differential was 

deduced in reference [14]; this tautology cannot imply that dN
T

dQirr  and  are conjugate variables, in 

the sense that  are in thermostatics, (which incidentally are experimentally distinguishable 

and defined differently theoretically). It is deducted that since 

dWdQ  and 

0=∫ ⎟
⎠
⎞

⎜
⎝
⎛ + dN

T
dQ , then  

dN
T

dQ
d irr +=Σ  is a perfect differential. This is true if ⎟

⎠
⎞

⎜
⎝
⎛ + dN

T
dQirr  were defined over all 

completely arbitrary pathways, but since dQ , N and dN are all specifically characterized by the 
pathways and points (A, B, PAB, P'AB), there being different functionals dQ, N and dN for different (A, 
B, PAB, P'AB), it does not follow in general that the same infinitesimal quantities (e.g. dQ and dN) 
obtain for different pathways; it they did, i.e. if these quantities were defined independently of the 
variation of thermodynamical space, then Σd  would be a perfect differential, but this has not been 

explicitly demonstrated. Further, it is clear that the infinitesimals such as dN
T
dQ  and  are not 

simultaneously defined for exactly the same thermodynamical space coordinate, which must obtain if a 
test is to be performed for their sum being a perfect differential; Corollary 2 give examples of the 
resulting value of dN when the contour is localized. In particular, if points A and B are considered 
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fixed then (10b) yields 
T

PBAdQ
PBAdN irrAB

AB
)',,(

)',,( −= from which it would be not true to state 

that for every irreversible segment, despite  since the irreversible heat exchange has 
indeterminate sign. Hence the statement "The differential ….  for every irreversible segment, 
or it would be possible to contrive…" [14] need not obtain for non-local situations, whereas Corollary 

2 shows that for the limits mentioned, the local result reduces to 

0>dN 0≥N
0>dN

0 since ==Σ dN
T

dQ
d irr , where 

clearly  must represent the reversible heat increment for irrdQ Σd  to be a perfect differential.  

 
Conclusion 

The above shows that investigators of new entropy forms should clarify further the topological 
structure of the space that they are utilizing if they are to avoid some of the paradoxes that might arise 
if they utilized traditional concepts without carefully distinguishing and relating these to their own 
definitions concerning primary concepts such as heat, work, Universe and environment. Another 
related point concerns the use of entropy vectors in modern developments, where traditionally, the 

reversible entropy increment dS has been defined as 
T

dQdS =  where .
C

dQ
dt ∂

= ∫ qJ ds where  is the 

thermal conductive vector integrated over the 

qJ

C∂ surface of the system with area increment ds  and 
time parameter t. The entropy then is a scalar quantity here [19]. A preliminary general irreversible 
theory has been attempted (in the presence of a temperature field) where the entropy is considered to 
be scalar [25], according to classical definition. The common modern view [26], on the other hand, 
views entropy as a caloric vector fluid flow, described by balance equations and "internal" entropy 
production. The paradoxes associated with these descriptions have been examined in relation to the 
traditional axioms [19,25]. Of immediate practical significance is the often used local equilibrium 
hypothesis in modeling nonequilibrium processes, where it is assumed that each neighborhood of a 
point in the nonequilibrium system corresponds to an equilibrium state, so that certain conserved 
quantities (such as particles with invariant mass), if described as a subsystem flowing through a 
streamline within the system though a sequence of equilibrium states, would violate Corollary 3, 
implying that such subsystems can never be described fully by utilizing the local equilibrium 
hypothesis. 

Finally, the above analysis of systems have as a presupposition an inertial frame of reference 
through which all elements (system, Universe, environment, source and sink reservoirs of 
thermophysical quantities) are related to each other via the dynamical coordinates, which involves the 
transfer of quantities such as impulse, energy and momentum between the sub-elements. It may be 
anticipated that modifications to the traditional axiomatics would involve considerations concerning 
frames of reference. 
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